GNU Linux-libre 4.19.264-gnu1
[releases.git] / kernel / sched / loadavg.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kernel/sched/loadavg.c
4  *
5  * This file contains the magic bits required to compute the global loadavg
6  * figure. Its a silly number but people think its important. We go through
7  * great pains to make it work on big machines and tickless kernels.
8  */
9 #include "sched.h"
10
11 /*
12  * Global load-average calculations
13  *
14  * We take a distributed and async approach to calculating the global load-avg
15  * in order to minimize overhead.
16  *
17  * The global load average is an exponentially decaying average of nr_running +
18  * nr_uninterruptible.
19  *
20  * Once every LOAD_FREQ:
21  *
22  *   nr_active = 0;
23  *   for_each_possible_cpu(cpu)
24  *      nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
25  *
26  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
27  *
28  * Due to a number of reasons the above turns in the mess below:
29  *
30  *  - for_each_possible_cpu() is prohibitively expensive on machines with
31  *    serious number of CPUs, therefore we need to take a distributed approach
32  *    to calculating nr_active.
33  *
34  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
35  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
36  *
37  *    So assuming nr_active := 0 when we start out -- true per definition, we
38  *    can simply take per-CPU deltas and fold those into a global accumulate
39  *    to obtain the same result. See calc_load_fold_active().
40  *
41  *    Furthermore, in order to avoid synchronizing all per-CPU delta folding
42  *    across the machine, we assume 10 ticks is sufficient time for every
43  *    CPU to have completed this task.
44  *
45  *    This places an upper-bound on the IRQ-off latency of the machine. Then
46  *    again, being late doesn't loose the delta, just wrecks the sample.
47  *
48  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because
49  *    this would add another cross-CPU cacheline miss and atomic operation
50  *    to the wakeup path. Instead we increment on whatever CPU the task ran
51  *    when it went into uninterruptible state and decrement on whatever CPU
52  *    did the wakeup. This means that only the sum of nr_uninterruptible over
53  *    all CPUs yields the correct result.
54  *
55  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
56  */
57
58 /* Variables and functions for calc_load */
59 atomic_long_t calc_load_tasks;
60 unsigned long calc_load_update;
61 unsigned long avenrun[3];
62 EXPORT_SYMBOL(avenrun); /* should be removed */
63
64 /**
65  * get_avenrun - get the load average array
66  * @loads:      pointer to dest load array
67  * @offset:     offset to add
68  * @shift:      shift count to shift the result left
69  *
70  * These values are estimates at best, so no need for locking.
71  */
72 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
73 {
74         loads[0] = (avenrun[0] + offset) << shift;
75         loads[1] = (avenrun[1] + offset) << shift;
76         loads[2] = (avenrun[2] + offset) << shift;
77 }
78
79 long calc_load_fold_active(struct rq *this_rq, long adjust)
80 {
81         long nr_active, delta = 0;
82
83         nr_active = this_rq->nr_running - adjust;
84         nr_active += (long)this_rq->nr_uninterruptible;
85
86         if (nr_active != this_rq->calc_load_active) {
87                 delta = nr_active - this_rq->calc_load_active;
88                 this_rq->calc_load_active = nr_active;
89         }
90
91         return delta;
92 }
93
94 /*
95  * a1 = a0 * e + a * (1 - e)
96  */
97 static unsigned long
98 calc_load(unsigned long load, unsigned long exp, unsigned long active)
99 {
100         unsigned long newload;
101
102         newload = load * exp + active * (FIXED_1 - exp);
103         if (active >= load)
104                 newload += FIXED_1-1;
105
106         return newload / FIXED_1;
107 }
108
109 #ifdef CONFIG_NO_HZ_COMMON
110 /*
111  * Handle NO_HZ for the global load-average.
112  *
113  * Since the above described distributed algorithm to compute the global
114  * load-average relies on per-CPU sampling from the tick, it is affected by
115  * NO_HZ.
116  *
117  * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
118  * entering NO_HZ state such that we can include this as an 'extra' CPU delta
119  * when we read the global state.
120  *
121  * Obviously reality has to ruin such a delightfully simple scheme:
122  *
123  *  - When we go NO_HZ idle during the window, we can negate our sample
124  *    contribution, causing under-accounting.
125  *
126  *    We avoid this by keeping two NO_HZ-delta counters and flipping them
127  *    when the window starts, thus separating old and new NO_HZ load.
128  *
129  *    The only trick is the slight shift in index flip for read vs write.
130  *
131  *        0s            5s            10s           15s
132  *          +10           +10           +10           +10
133  *        |-|-----------|-|-----------|-|-----------|-|
134  *    r:0 0 1           1 0           0 1           1 0
135  *    w:0 1 1           0 0           1 1           0 0
136  *
137  *    This ensures we'll fold the old NO_HZ contribution in this window while
138  *    accumlating the new one.
139  *
140  *  - When we wake up from NO_HZ during the window, we push up our
141  *    contribution, since we effectively move our sample point to a known
142  *    busy state.
143  *
144  *    This is solved by pushing the window forward, and thus skipping the
145  *    sample, for this CPU (effectively using the NO_HZ-delta for this CPU which
146  *    was in effect at the time the window opened). This also solves the issue
147  *    of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ
148  *    intervals.
149  *
150  * When making the ILB scale, we should try to pull this in as well.
151  */
152 static atomic_long_t calc_load_nohz[2];
153 static int calc_load_idx;
154
155 static inline int calc_load_write_idx(void)
156 {
157         int idx = calc_load_idx;
158
159         /*
160          * See calc_global_nohz(), if we observe the new index, we also
161          * need to observe the new update time.
162          */
163         smp_rmb();
164
165         /*
166          * If the folding window started, make sure we start writing in the
167          * next NO_HZ-delta.
168          */
169         if (!time_before(jiffies, READ_ONCE(calc_load_update)))
170                 idx++;
171
172         return idx & 1;
173 }
174
175 static inline int calc_load_read_idx(void)
176 {
177         return calc_load_idx & 1;
178 }
179
180 void calc_load_nohz_start(void)
181 {
182         struct rq *this_rq = this_rq();
183         long delta;
184
185         /*
186          * We're going into NO_HZ mode, if there's any pending delta, fold it
187          * into the pending NO_HZ delta.
188          */
189         delta = calc_load_fold_active(this_rq, 0);
190         if (delta) {
191                 int idx = calc_load_write_idx();
192
193                 atomic_long_add(delta, &calc_load_nohz[idx]);
194         }
195 }
196
197 void calc_load_nohz_stop(void)
198 {
199         struct rq *this_rq = this_rq();
200
201         /*
202          * If we're still before the pending sample window, we're done.
203          */
204         this_rq->calc_load_update = READ_ONCE(calc_load_update);
205         if (time_before(jiffies, this_rq->calc_load_update))
206                 return;
207
208         /*
209          * We woke inside or after the sample window, this means we're already
210          * accounted through the nohz accounting, so skip the entire deal and
211          * sync up for the next window.
212          */
213         if (time_before(jiffies, this_rq->calc_load_update + 10))
214                 this_rq->calc_load_update += LOAD_FREQ;
215 }
216
217 static long calc_load_nohz_fold(void)
218 {
219         int idx = calc_load_read_idx();
220         long delta = 0;
221
222         if (atomic_long_read(&calc_load_nohz[idx]))
223                 delta = atomic_long_xchg(&calc_load_nohz[idx], 0);
224
225         return delta;
226 }
227
228 /**
229  * fixed_power_int - compute: x^n, in O(log n) time
230  *
231  * @x:         base of the power
232  * @frac_bits: fractional bits of @x
233  * @n:         power to raise @x to.
234  *
235  * By exploiting the relation between the definition of the natural power
236  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
237  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
238  * (where: n_i \elem {0, 1}, the binary vector representing n),
239  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
240  * of course trivially computable in O(log_2 n), the length of our binary
241  * vector.
242  */
243 static unsigned long
244 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
245 {
246         unsigned long result = 1UL << frac_bits;
247
248         if (n) {
249                 for (;;) {
250                         if (n & 1) {
251                                 result *= x;
252                                 result += 1UL << (frac_bits - 1);
253                                 result >>= frac_bits;
254                         }
255                         n >>= 1;
256                         if (!n)
257                                 break;
258                         x *= x;
259                         x += 1UL << (frac_bits - 1);
260                         x >>= frac_bits;
261                 }
262         }
263
264         return result;
265 }
266
267 /*
268  * a1 = a0 * e + a * (1 - e)
269  *
270  * a2 = a1 * e + a * (1 - e)
271  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
272  *    = a0 * e^2 + a * (1 - e) * (1 + e)
273  *
274  * a3 = a2 * e + a * (1 - e)
275  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
276  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
277  *
278  *  ...
279  *
280  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
281  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
282  *    = a0 * e^n + a * (1 - e^n)
283  *
284  * [1] application of the geometric series:
285  *
286  *              n         1 - x^(n+1)
287  *     S_n := \Sum x^i = -------------
288  *             i=0          1 - x
289  */
290 static unsigned long
291 calc_load_n(unsigned long load, unsigned long exp,
292             unsigned long active, unsigned int n)
293 {
294         return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
295 }
296
297 /*
298  * NO_HZ can leave us missing all per-CPU ticks calling
299  * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
300  * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
301  * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
302  *
303  * Once we've updated the global active value, we need to apply the exponential
304  * weights adjusted to the number of cycles missed.
305  */
306 static void calc_global_nohz(void)
307 {
308         unsigned long sample_window;
309         long delta, active, n;
310
311         sample_window = READ_ONCE(calc_load_update);
312         if (!time_before(jiffies, sample_window + 10)) {
313                 /*
314                  * Catch-up, fold however many we are behind still
315                  */
316                 delta = jiffies - sample_window - 10;
317                 n = 1 + (delta / LOAD_FREQ);
318
319                 active = atomic_long_read(&calc_load_tasks);
320                 active = active > 0 ? active * FIXED_1 : 0;
321
322                 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
323                 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
324                 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
325
326                 WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
327         }
328
329         /*
330          * Flip the NO_HZ index...
331          *
332          * Make sure we first write the new time then flip the index, so that
333          * calc_load_write_idx() will see the new time when it reads the new
334          * index, this avoids a double flip messing things up.
335          */
336         smp_wmb();
337         calc_load_idx++;
338 }
339 #else /* !CONFIG_NO_HZ_COMMON */
340
341 static inline long calc_load_nohz_fold(void) { return 0; }
342 static inline void calc_global_nohz(void) { }
343
344 #endif /* CONFIG_NO_HZ_COMMON */
345
346 /*
347  * calc_load - update the avenrun load estimates 10 ticks after the
348  * CPUs have updated calc_load_tasks.
349  *
350  * Called from the global timer code.
351  */
352 void calc_global_load(unsigned long ticks)
353 {
354         unsigned long sample_window;
355         long active, delta;
356
357         sample_window = READ_ONCE(calc_load_update);
358         if (time_before(jiffies, sample_window + 10))
359                 return;
360
361         /*
362          * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs.
363          */
364         delta = calc_load_nohz_fold();
365         if (delta)
366                 atomic_long_add(delta, &calc_load_tasks);
367
368         active = atomic_long_read(&calc_load_tasks);
369         active = active > 0 ? active * FIXED_1 : 0;
370
371         avenrun[0] = calc_load(avenrun[0], EXP_1, active);
372         avenrun[1] = calc_load(avenrun[1], EXP_5, active);
373         avenrun[2] = calc_load(avenrun[2], EXP_15, active);
374
375         WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);
376
377         /*
378          * In case we went to NO_HZ for multiple LOAD_FREQ intervals
379          * catch up in bulk.
380          */
381         calc_global_nohz();
382 }
383
384 /*
385  * Called from scheduler_tick() to periodically update this CPU's
386  * active count.
387  */
388 void calc_global_load_tick(struct rq *this_rq)
389 {
390         long delta;
391
392         if (time_before(jiffies, this_rq->calc_load_update))
393                 return;
394
395         delta  = calc_load_fold_active(this_rq, 0);
396         if (delta)
397                 atomic_long_add(delta, &calc_load_tasks);
398
399         this_rq->calc_load_update += LOAD_FREQ;
400 }