GNU Linux-libre 4.19.264-gnu1
[releases.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19         struct rt_bandwidth *rt_b =
20                 container_of(timer, struct rt_bandwidth, rt_period_timer);
21         int idle = 0;
22         int overrun;
23
24         raw_spin_lock(&rt_b->rt_runtime_lock);
25         for (;;) {
26                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27                 if (!overrun)
28                         break;
29
30                 raw_spin_unlock(&rt_b->rt_runtime_lock);
31                 idle = do_sched_rt_period_timer(rt_b, overrun);
32                 raw_spin_lock(&rt_b->rt_runtime_lock);
33         }
34         if (idle)
35                 rt_b->rt_period_active = 0;
36         raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43         rt_b->rt_period = ns_to_ktime(period);
44         rt_b->rt_runtime = runtime;
45
46         raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48         hrtimer_init(&rt_b->rt_period_timer,
49                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50         rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
53 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55         raw_spin_lock(&rt_b->rt_runtime_lock);
56         if (!rt_b->rt_period_active) {
57                 rt_b->rt_period_active = 1;
58                 /*
59                  * SCHED_DEADLINE updates the bandwidth, as a run away
60                  * RT task with a DL task could hog a CPU. But DL does
61                  * not reset the period. If a deadline task was running
62                  * without an RT task running, it can cause RT tasks to
63                  * throttle when they start up. Kick the timer right away
64                  * to update the period.
65                  */
66                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
67                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
68         }
69         raw_spin_unlock(&rt_b->rt_runtime_lock);
70 }
71
72 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
73 {
74         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
75                 return;
76
77         do_start_rt_bandwidth(rt_b);
78 }
79
80 void init_rt_rq(struct rt_rq *rt_rq)
81 {
82         struct rt_prio_array *array;
83         int i;
84
85         array = &rt_rq->active;
86         for (i = 0; i < MAX_RT_PRIO; i++) {
87                 INIT_LIST_HEAD(array->queue + i);
88                 __clear_bit(i, array->bitmap);
89         }
90         /* delimiter for bitsearch: */
91         __set_bit(MAX_RT_PRIO, array->bitmap);
92
93 #if defined CONFIG_SMP
94         rt_rq->highest_prio.curr = MAX_RT_PRIO;
95         rt_rq->highest_prio.next = MAX_RT_PRIO;
96         rt_rq->rt_nr_migratory = 0;
97         rt_rq->overloaded = 0;
98         plist_head_init(&rt_rq->pushable_tasks);
99 #endif /* CONFIG_SMP */
100         /* We start is dequeued state, because no RT tasks are queued */
101         rt_rq->rt_queued = 0;
102
103         rt_rq->rt_time = 0;
104         rt_rq->rt_throttled = 0;
105         rt_rq->rt_runtime = 0;
106         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
107 }
108
109 #ifdef CONFIG_RT_GROUP_SCHED
110 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
111 {
112         hrtimer_cancel(&rt_b->rt_period_timer);
113 }
114
115 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
116
117 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
118 {
119 #ifdef CONFIG_SCHED_DEBUG
120         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
121 #endif
122         return container_of(rt_se, struct task_struct, rt);
123 }
124
125 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
126 {
127         return rt_rq->rq;
128 }
129
130 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
131 {
132         return rt_se->rt_rq;
133 }
134
135 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
136 {
137         struct rt_rq *rt_rq = rt_se->rt_rq;
138
139         return rt_rq->rq;
140 }
141
142 void free_rt_sched_group(struct task_group *tg)
143 {
144         int i;
145
146         if (tg->rt_se)
147                 destroy_rt_bandwidth(&tg->rt_bandwidth);
148
149         for_each_possible_cpu(i) {
150                 if (tg->rt_rq)
151                         kfree(tg->rt_rq[i]);
152                 if (tg->rt_se)
153                         kfree(tg->rt_se[i]);
154         }
155
156         kfree(tg->rt_rq);
157         kfree(tg->rt_se);
158 }
159
160 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
161                 struct sched_rt_entity *rt_se, int cpu,
162                 struct sched_rt_entity *parent)
163 {
164         struct rq *rq = cpu_rq(cpu);
165
166         rt_rq->highest_prio.curr = MAX_RT_PRIO;
167         rt_rq->rt_nr_boosted = 0;
168         rt_rq->rq = rq;
169         rt_rq->tg = tg;
170
171         tg->rt_rq[cpu] = rt_rq;
172         tg->rt_se[cpu] = rt_se;
173
174         if (!rt_se)
175                 return;
176
177         if (!parent)
178                 rt_se->rt_rq = &rq->rt;
179         else
180                 rt_se->rt_rq = parent->my_q;
181
182         rt_se->my_q = rt_rq;
183         rt_se->parent = parent;
184         INIT_LIST_HEAD(&rt_se->run_list);
185 }
186
187 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
188 {
189         struct rt_rq *rt_rq;
190         struct sched_rt_entity *rt_se;
191         int i;
192
193         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
194         if (!tg->rt_rq)
195                 goto err;
196         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
197         if (!tg->rt_se)
198                 goto err;
199
200         init_rt_bandwidth(&tg->rt_bandwidth,
201                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
202
203         for_each_possible_cpu(i) {
204                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
205                                      GFP_KERNEL, cpu_to_node(i));
206                 if (!rt_rq)
207                         goto err;
208
209                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
210                                      GFP_KERNEL, cpu_to_node(i));
211                 if (!rt_se)
212                         goto err_free_rq;
213
214                 init_rt_rq(rt_rq);
215                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
216                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
217         }
218
219         return 1;
220
221 err_free_rq:
222         kfree(rt_rq);
223 err:
224         return 0;
225 }
226
227 #else /* CONFIG_RT_GROUP_SCHED */
228
229 #define rt_entity_is_task(rt_se) (1)
230
231 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
232 {
233         return container_of(rt_se, struct task_struct, rt);
234 }
235
236 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
237 {
238         return container_of(rt_rq, struct rq, rt);
239 }
240
241 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
242 {
243         struct task_struct *p = rt_task_of(rt_se);
244
245         return task_rq(p);
246 }
247
248 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
249 {
250         struct rq *rq = rq_of_rt_se(rt_se);
251
252         return &rq->rt;
253 }
254
255 void free_rt_sched_group(struct task_group *tg) { }
256
257 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
258 {
259         return 1;
260 }
261 #endif /* CONFIG_RT_GROUP_SCHED */
262
263 #ifdef CONFIG_SMP
264
265 static void pull_rt_task(struct rq *this_rq);
266
267 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
268 {
269         /* Try to pull RT tasks here if we lower this rq's prio */
270         return rq->rt.highest_prio.curr > prev->prio;
271 }
272
273 static inline int rt_overloaded(struct rq *rq)
274 {
275         return atomic_read(&rq->rd->rto_count);
276 }
277
278 static inline void rt_set_overload(struct rq *rq)
279 {
280         if (!rq->online)
281                 return;
282
283         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
284         /*
285          * Make sure the mask is visible before we set
286          * the overload count. That is checked to determine
287          * if we should look at the mask. It would be a shame
288          * if we looked at the mask, but the mask was not
289          * updated yet.
290          *
291          * Matched by the barrier in pull_rt_task().
292          */
293         smp_wmb();
294         atomic_inc(&rq->rd->rto_count);
295 }
296
297 static inline void rt_clear_overload(struct rq *rq)
298 {
299         if (!rq->online)
300                 return;
301
302         /* the order here really doesn't matter */
303         atomic_dec(&rq->rd->rto_count);
304         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
305 }
306
307 static void update_rt_migration(struct rt_rq *rt_rq)
308 {
309         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
310                 if (!rt_rq->overloaded) {
311                         rt_set_overload(rq_of_rt_rq(rt_rq));
312                         rt_rq->overloaded = 1;
313                 }
314         } else if (rt_rq->overloaded) {
315                 rt_clear_overload(rq_of_rt_rq(rt_rq));
316                 rt_rq->overloaded = 0;
317         }
318 }
319
320 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
321 {
322         struct task_struct *p;
323
324         if (!rt_entity_is_task(rt_se))
325                 return;
326
327         p = rt_task_of(rt_se);
328         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
329
330         rt_rq->rt_nr_total++;
331         if (p->nr_cpus_allowed > 1)
332                 rt_rq->rt_nr_migratory++;
333
334         update_rt_migration(rt_rq);
335 }
336
337 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
338 {
339         struct task_struct *p;
340
341         if (!rt_entity_is_task(rt_se))
342                 return;
343
344         p = rt_task_of(rt_se);
345         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
346
347         rt_rq->rt_nr_total--;
348         if (p->nr_cpus_allowed > 1)
349                 rt_rq->rt_nr_migratory--;
350
351         update_rt_migration(rt_rq);
352 }
353
354 static inline int has_pushable_tasks(struct rq *rq)
355 {
356         return !plist_head_empty(&rq->rt.pushable_tasks);
357 }
358
359 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
360 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
361
362 static void push_rt_tasks(struct rq *);
363 static void pull_rt_task(struct rq *);
364
365 static inline void rt_queue_push_tasks(struct rq *rq)
366 {
367         if (!has_pushable_tasks(rq))
368                 return;
369
370         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
371 }
372
373 static inline void rt_queue_pull_task(struct rq *rq)
374 {
375         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
376 }
377
378 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
379 {
380         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
381         plist_node_init(&p->pushable_tasks, p->prio);
382         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
383
384         /* Update the highest prio pushable task */
385         if (p->prio < rq->rt.highest_prio.next)
386                 rq->rt.highest_prio.next = p->prio;
387 }
388
389 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
390 {
391         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
392
393         /* Update the new highest prio pushable task */
394         if (has_pushable_tasks(rq)) {
395                 p = plist_first_entry(&rq->rt.pushable_tasks,
396                                       struct task_struct, pushable_tasks);
397                 rq->rt.highest_prio.next = p->prio;
398         } else
399                 rq->rt.highest_prio.next = MAX_RT_PRIO;
400 }
401
402 #else
403
404 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 }
407
408 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
409 {
410 }
411
412 static inline
413 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
414 {
415 }
416
417 static inline
418 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421
422 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
423 {
424         return false;
425 }
426
427 static inline void pull_rt_task(struct rq *this_rq)
428 {
429 }
430
431 static inline void rt_queue_push_tasks(struct rq *rq)
432 {
433 }
434 #endif /* CONFIG_SMP */
435
436 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
437 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
438
439 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
440 {
441         return rt_se->on_rq;
442 }
443
444 #ifdef CONFIG_RT_GROUP_SCHED
445
446 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
447 {
448         if (!rt_rq->tg)
449                 return RUNTIME_INF;
450
451         return rt_rq->rt_runtime;
452 }
453
454 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
455 {
456         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
457 }
458
459 typedef struct task_group *rt_rq_iter_t;
460
461 static inline struct task_group *next_task_group(struct task_group *tg)
462 {
463         do {
464                 tg = list_entry_rcu(tg->list.next,
465                         typeof(struct task_group), list);
466         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
467
468         if (&tg->list == &task_groups)
469                 tg = NULL;
470
471         return tg;
472 }
473
474 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
475         for (iter = container_of(&task_groups, typeof(*iter), list);    \
476                 (iter = next_task_group(iter)) &&                       \
477                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
478
479 #define for_each_sched_rt_entity(rt_se) \
480         for (; rt_se; rt_se = rt_se->parent)
481
482 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
483 {
484         return rt_se->my_q;
485 }
486
487 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
488 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
489
490 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
491 {
492         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
493         struct rq *rq = rq_of_rt_rq(rt_rq);
494         struct sched_rt_entity *rt_se;
495
496         int cpu = cpu_of(rq);
497
498         rt_se = rt_rq->tg->rt_se[cpu];
499
500         if (rt_rq->rt_nr_running) {
501                 if (!rt_se)
502                         enqueue_top_rt_rq(rt_rq);
503                 else if (!on_rt_rq(rt_se))
504                         enqueue_rt_entity(rt_se, 0);
505
506                 if (rt_rq->highest_prio.curr < curr->prio)
507                         resched_curr(rq);
508         }
509 }
510
511 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
512 {
513         struct sched_rt_entity *rt_se;
514         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
515
516         rt_se = rt_rq->tg->rt_se[cpu];
517
518         if (!rt_se) {
519                 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
520                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
521                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
522         }
523         else if (on_rt_rq(rt_se))
524                 dequeue_rt_entity(rt_se, 0);
525 }
526
527 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
528 {
529         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
530 }
531
532 static int rt_se_boosted(struct sched_rt_entity *rt_se)
533 {
534         struct rt_rq *rt_rq = group_rt_rq(rt_se);
535         struct task_struct *p;
536
537         if (rt_rq)
538                 return !!rt_rq->rt_nr_boosted;
539
540         p = rt_task_of(rt_se);
541         return p->prio != p->normal_prio;
542 }
543
544 #ifdef CONFIG_SMP
545 static inline const struct cpumask *sched_rt_period_mask(void)
546 {
547         return this_rq()->rd->span;
548 }
549 #else
550 static inline const struct cpumask *sched_rt_period_mask(void)
551 {
552         return cpu_online_mask;
553 }
554 #endif
555
556 static inline
557 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
558 {
559         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
560 }
561
562 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
563 {
564         return &rt_rq->tg->rt_bandwidth;
565 }
566
567 #else /* !CONFIG_RT_GROUP_SCHED */
568
569 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
570 {
571         return rt_rq->rt_runtime;
572 }
573
574 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
575 {
576         return ktime_to_ns(def_rt_bandwidth.rt_period);
577 }
578
579 typedef struct rt_rq *rt_rq_iter_t;
580
581 #define for_each_rt_rq(rt_rq, iter, rq) \
582         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
583
584 #define for_each_sched_rt_entity(rt_se) \
585         for (; rt_se; rt_se = NULL)
586
587 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
588 {
589         return NULL;
590 }
591
592 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
593 {
594         struct rq *rq = rq_of_rt_rq(rt_rq);
595
596         if (!rt_rq->rt_nr_running)
597                 return;
598
599         enqueue_top_rt_rq(rt_rq);
600         resched_curr(rq);
601 }
602
603 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
604 {
605         dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
606 }
607
608 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
609 {
610         return rt_rq->rt_throttled;
611 }
612
613 static inline const struct cpumask *sched_rt_period_mask(void)
614 {
615         return cpu_online_mask;
616 }
617
618 static inline
619 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
620 {
621         return &cpu_rq(cpu)->rt;
622 }
623
624 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
625 {
626         return &def_rt_bandwidth;
627 }
628
629 #endif /* CONFIG_RT_GROUP_SCHED */
630
631 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
632 {
633         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
634
635         return (hrtimer_active(&rt_b->rt_period_timer) ||
636                 rt_rq->rt_time < rt_b->rt_runtime);
637 }
638
639 #ifdef CONFIG_SMP
640 /*
641  * We ran out of runtime, see if we can borrow some from our neighbours.
642  */
643 static void do_balance_runtime(struct rt_rq *rt_rq)
644 {
645         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
646         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
647         int i, weight;
648         u64 rt_period;
649
650         weight = cpumask_weight(rd->span);
651
652         raw_spin_lock(&rt_b->rt_runtime_lock);
653         rt_period = ktime_to_ns(rt_b->rt_period);
654         for_each_cpu(i, rd->span) {
655                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
656                 s64 diff;
657
658                 if (iter == rt_rq)
659                         continue;
660
661                 raw_spin_lock(&iter->rt_runtime_lock);
662                 /*
663                  * Either all rqs have inf runtime and there's nothing to steal
664                  * or __disable_runtime() below sets a specific rq to inf to
665                  * indicate its been disabled and disalow stealing.
666                  */
667                 if (iter->rt_runtime == RUNTIME_INF)
668                         goto next;
669
670                 /*
671                  * From runqueues with spare time, take 1/n part of their
672                  * spare time, but no more than our period.
673                  */
674                 diff = iter->rt_runtime - iter->rt_time;
675                 if (diff > 0) {
676                         diff = div_u64((u64)diff, weight);
677                         if (rt_rq->rt_runtime + diff > rt_period)
678                                 diff = rt_period - rt_rq->rt_runtime;
679                         iter->rt_runtime -= diff;
680                         rt_rq->rt_runtime += diff;
681                         if (rt_rq->rt_runtime == rt_period) {
682                                 raw_spin_unlock(&iter->rt_runtime_lock);
683                                 break;
684                         }
685                 }
686 next:
687                 raw_spin_unlock(&iter->rt_runtime_lock);
688         }
689         raw_spin_unlock(&rt_b->rt_runtime_lock);
690 }
691
692 /*
693  * Ensure this RQ takes back all the runtime it lend to its neighbours.
694  */
695 static void __disable_runtime(struct rq *rq)
696 {
697         struct root_domain *rd = rq->rd;
698         rt_rq_iter_t iter;
699         struct rt_rq *rt_rq;
700
701         if (unlikely(!scheduler_running))
702                 return;
703
704         for_each_rt_rq(rt_rq, iter, rq) {
705                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
706                 s64 want;
707                 int i;
708
709                 raw_spin_lock(&rt_b->rt_runtime_lock);
710                 raw_spin_lock(&rt_rq->rt_runtime_lock);
711                 /*
712                  * Either we're all inf and nobody needs to borrow, or we're
713                  * already disabled and thus have nothing to do, or we have
714                  * exactly the right amount of runtime to take out.
715                  */
716                 if (rt_rq->rt_runtime == RUNTIME_INF ||
717                                 rt_rq->rt_runtime == rt_b->rt_runtime)
718                         goto balanced;
719                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
720
721                 /*
722                  * Calculate the difference between what we started out with
723                  * and what we current have, that's the amount of runtime
724                  * we lend and now have to reclaim.
725                  */
726                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
727
728                 /*
729                  * Greedy reclaim, take back as much as we can.
730                  */
731                 for_each_cpu(i, rd->span) {
732                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
733                         s64 diff;
734
735                         /*
736                          * Can't reclaim from ourselves or disabled runqueues.
737                          */
738                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
739                                 continue;
740
741                         raw_spin_lock(&iter->rt_runtime_lock);
742                         if (want > 0) {
743                                 diff = min_t(s64, iter->rt_runtime, want);
744                                 iter->rt_runtime -= diff;
745                                 want -= diff;
746                         } else {
747                                 iter->rt_runtime -= want;
748                                 want -= want;
749                         }
750                         raw_spin_unlock(&iter->rt_runtime_lock);
751
752                         if (!want)
753                                 break;
754                 }
755
756                 raw_spin_lock(&rt_rq->rt_runtime_lock);
757                 /*
758                  * We cannot be left wanting - that would mean some runtime
759                  * leaked out of the system.
760                  */
761                 BUG_ON(want);
762 balanced:
763                 /*
764                  * Disable all the borrow logic by pretending we have inf
765                  * runtime - in which case borrowing doesn't make sense.
766                  */
767                 rt_rq->rt_runtime = RUNTIME_INF;
768                 rt_rq->rt_throttled = 0;
769                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
770                 raw_spin_unlock(&rt_b->rt_runtime_lock);
771
772                 /* Make rt_rq available for pick_next_task() */
773                 sched_rt_rq_enqueue(rt_rq);
774         }
775 }
776
777 static void __enable_runtime(struct rq *rq)
778 {
779         rt_rq_iter_t iter;
780         struct rt_rq *rt_rq;
781
782         if (unlikely(!scheduler_running))
783                 return;
784
785         /*
786          * Reset each runqueue's bandwidth settings
787          */
788         for_each_rt_rq(rt_rq, iter, rq) {
789                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
790
791                 raw_spin_lock(&rt_b->rt_runtime_lock);
792                 raw_spin_lock(&rt_rq->rt_runtime_lock);
793                 rt_rq->rt_runtime = rt_b->rt_runtime;
794                 rt_rq->rt_time = 0;
795                 rt_rq->rt_throttled = 0;
796                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
797                 raw_spin_unlock(&rt_b->rt_runtime_lock);
798         }
799 }
800
801 static void balance_runtime(struct rt_rq *rt_rq)
802 {
803         if (!sched_feat(RT_RUNTIME_SHARE))
804                 return;
805
806         if (rt_rq->rt_time > rt_rq->rt_runtime) {
807                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
808                 do_balance_runtime(rt_rq);
809                 raw_spin_lock(&rt_rq->rt_runtime_lock);
810         }
811 }
812 #else /* !CONFIG_SMP */
813 static inline void balance_runtime(struct rt_rq *rt_rq) {}
814 #endif /* CONFIG_SMP */
815
816 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
817 {
818         int i, idle = 1, throttled = 0;
819         const struct cpumask *span;
820
821         span = sched_rt_period_mask();
822 #ifdef CONFIG_RT_GROUP_SCHED
823         /*
824          * FIXME: isolated CPUs should really leave the root task group,
825          * whether they are isolcpus or were isolated via cpusets, lest
826          * the timer run on a CPU which does not service all runqueues,
827          * potentially leaving other CPUs indefinitely throttled.  If
828          * isolation is really required, the user will turn the throttle
829          * off to kill the perturbations it causes anyway.  Meanwhile,
830          * this maintains functionality for boot and/or troubleshooting.
831          */
832         if (rt_b == &root_task_group.rt_bandwidth)
833                 span = cpu_online_mask;
834 #endif
835         for_each_cpu(i, span) {
836                 int enqueue = 0;
837                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
838                 struct rq *rq = rq_of_rt_rq(rt_rq);
839                 int skip;
840
841                 /*
842                  * When span == cpu_online_mask, taking each rq->lock
843                  * can be time-consuming. Try to avoid it when possible.
844                  */
845                 raw_spin_lock(&rt_rq->rt_runtime_lock);
846                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
847                         rt_rq->rt_runtime = rt_b->rt_runtime;
848                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
849                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
850                 if (skip)
851                         continue;
852
853                 raw_spin_lock(&rq->lock);
854                 update_rq_clock(rq);
855
856                 if (rt_rq->rt_time) {
857                         u64 runtime;
858
859                         raw_spin_lock(&rt_rq->rt_runtime_lock);
860                         if (rt_rq->rt_throttled)
861                                 balance_runtime(rt_rq);
862                         runtime = rt_rq->rt_runtime;
863                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
864                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
865                                 rt_rq->rt_throttled = 0;
866                                 enqueue = 1;
867
868                                 /*
869                                  * When we're idle and a woken (rt) task is
870                                  * throttled check_preempt_curr() will set
871                                  * skip_update and the time between the wakeup
872                                  * and this unthrottle will get accounted as
873                                  * 'runtime'.
874                                  */
875                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
876                                         rq_clock_cancel_skipupdate(rq);
877                         }
878                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
879                                 idle = 0;
880                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
881                 } else if (rt_rq->rt_nr_running) {
882                         idle = 0;
883                         if (!rt_rq_throttled(rt_rq))
884                                 enqueue = 1;
885                 }
886                 if (rt_rq->rt_throttled)
887                         throttled = 1;
888
889                 if (enqueue)
890                         sched_rt_rq_enqueue(rt_rq);
891                 raw_spin_unlock(&rq->lock);
892         }
893
894         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
895                 return 1;
896
897         return idle;
898 }
899
900 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
901 {
902 #ifdef CONFIG_RT_GROUP_SCHED
903         struct rt_rq *rt_rq = group_rt_rq(rt_se);
904
905         if (rt_rq)
906                 return rt_rq->highest_prio.curr;
907 #endif
908
909         return rt_task_of(rt_se)->prio;
910 }
911
912 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
913 {
914         u64 runtime = sched_rt_runtime(rt_rq);
915
916         if (rt_rq->rt_throttled)
917                 return rt_rq_throttled(rt_rq);
918
919         if (runtime >= sched_rt_period(rt_rq))
920                 return 0;
921
922         balance_runtime(rt_rq);
923         runtime = sched_rt_runtime(rt_rq);
924         if (runtime == RUNTIME_INF)
925                 return 0;
926
927         if (rt_rq->rt_time > runtime) {
928                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
929
930                 /*
931                  * Don't actually throttle groups that have no runtime assigned
932                  * but accrue some time due to boosting.
933                  */
934                 if (likely(rt_b->rt_runtime)) {
935                         rt_rq->rt_throttled = 1;
936                         printk_deferred_once("sched: RT throttling activated\n");
937                 } else {
938                         /*
939                          * In case we did anyway, make it go away,
940                          * replenishment is a joke, since it will replenish us
941                          * with exactly 0 ns.
942                          */
943                         rt_rq->rt_time = 0;
944                 }
945
946                 if (rt_rq_throttled(rt_rq)) {
947                         sched_rt_rq_dequeue(rt_rq);
948                         return 1;
949                 }
950         }
951
952         return 0;
953 }
954
955 /*
956  * Update the current task's runtime statistics. Skip current tasks that
957  * are not in our scheduling class.
958  */
959 static void update_curr_rt(struct rq *rq)
960 {
961         struct task_struct *curr = rq->curr;
962         struct sched_rt_entity *rt_se = &curr->rt;
963         u64 delta_exec;
964         u64 now;
965
966         if (curr->sched_class != &rt_sched_class)
967                 return;
968
969         now = rq_clock_task(rq);
970         delta_exec = now - curr->se.exec_start;
971         if (unlikely((s64)delta_exec <= 0))
972                 return;
973
974         schedstat_set(curr->se.statistics.exec_max,
975                       max(curr->se.statistics.exec_max, delta_exec));
976
977         curr->se.sum_exec_runtime += delta_exec;
978         account_group_exec_runtime(curr, delta_exec);
979
980         curr->se.exec_start = now;
981         cgroup_account_cputime(curr, delta_exec);
982
983         if (!rt_bandwidth_enabled())
984                 return;
985
986         for_each_sched_rt_entity(rt_se) {
987                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
988                 int exceeded;
989
990                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
991                         raw_spin_lock(&rt_rq->rt_runtime_lock);
992                         rt_rq->rt_time += delta_exec;
993                         exceeded = sched_rt_runtime_exceeded(rt_rq);
994                         if (exceeded)
995                                 resched_curr(rq);
996                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
997                         if (exceeded)
998                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
999                 }
1000         }
1001 }
1002
1003 static void
1004 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1005 {
1006         struct rq *rq = rq_of_rt_rq(rt_rq);
1007
1008         BUG_ON(&rq->rt != rt_rq);
1009
1010         if (!rt_rq->rt_queued)
1011                 return;
1012
1013         BUG_ON(!rq->nr_running);
1014
1015         sub_nr_running(rq, count);
1016         rt_rq->rt_queued = 0;
1017
1018 }
1019
1020 static void
1021 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1022 {
1023         struct rq *rq = rq_of_rt_rq(rt_rq);
1024
1025         BUG_ON(&rq->rt != rt_rq);
1026
1027         if (rt_rq->rt_queued)
1028                 return;
1029
1030         if (rt_rq_throttled(rt_rq))
1031                 return;
1032
1033         if (rt_rq->rt_nr_running) {
1034                 add_nr_running(rq, rt_rq->rt_nr_running);
1035                 rt_rq->rt_queued = 1;
1036         }
1037
1038         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1039         cpufreq_update_util(rq, 0);
1040 }
1041
1042 #if defined CONFIG_SMP
1043
1044 static void
1045 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1046 {
1047         struct rq *rq = rq_of_rt_rq(rt_rq);
1048
1049 #ifdef CONFIG_RT_GROUP_SCHED
1050         /*
1051          * Change rq's cpupri only if rt_rq is the top queue.
1052          */
1053         if (&rq->rt != rt_rq)
1054                 return;
1055 #endif
1056         if (rq->online && prio < prev_prio)
1057                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1058 }
1059
1060 static void
1061 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1062 {
1063         struct rq *rq = rq_of_rt_rq(rt_rq);
1064
1065 #ifdef CONFIG_RT_GROUP_SCHED
1066         /*
1067          * Change rq's cpupri only if rt_rq is the top queue.
1068          */
1069         if (&rq->rt != rt_rq)
1070                 return;
1071 #endif
1072         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1073                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1074 }
1075
1076 #else /* CONFIG_SMP */
1077
1078 static inline
1079 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1080 static inline
1081 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1082
1083 #endif /* CONFIG_SMP */
1084
1085 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1086 static void
1087 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1088 {
1089         int prev_prio = rt_rq->highest_prio.curr;
1090
1091         if (prio < prev_prio)
1092                 rt_rq->highest_prio.curr = prio;
1093
1094         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1095 }
1096
1097 static void
1098 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1099 {
1100         int prev_prio = rt_rq->highest_prio.curr;
1101
1102         if (rt_rq->rt_nr_running) {
1103
1104                 WARN_ON(prio < prev_prio);
1105
1106                 /*
1107                  * This may have been our highest task, and therefore
1108                  * we may have some recomputation to do
1109                  */
1110                 if (prio == prev_prio) {
1111                         struct rt_prio_array *array = &rt_rq->active;
1112
1113                         rt_rq->highest_prio.curr =
1114                                 sched_find_first_bit(array->bitmap);
1115                 }
1116
1117         } else
1118                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1119
1120         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1121 }
1122
1123 #else
1124
1125 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1126 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1127
1128 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1129
1130 #ifdef CONFIG_RT_GROUP_SCHED
1131
1132 static void
1133 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1134 {
1135         if (rt_se_boosted(rt_se))
1136                 rt_rq->rt_nr_boosted++;
1137
1138         if (rt_rq->tg)
1139                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1140 }
1141
1142 static void
1143 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1144 {
1145         if (rt_se_boosted(rt_se))
1146                 rt_rq->rt_nr_boosted--;
1147
1148         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1149 }
1150
1151 #else /* CONFIG_RT_GROUP_SCHED */
1152
1153 static void
1154 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1155 {
1156         start_rt_bandwidth(&def_rt_bandwidth);
1157 }
1158
1159 static inline
1160 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1161
1162 #endif /* CONFIG_RT_GROUP_SCHED */
1163
1164 static inline
1165 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1166 {
1167         struct rt_rq *group_rq = group_rt_rq(rt_se);
1168
1169         if (group_rq)
1170                 return group_rq->rt_nr_running;
1171         else
1172                 return 1;
1173 }
1174
1175 static inline
1176 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1177 {
1178         struct rt_rq *group_rq = group_rt_rq(rt_se);
1179         struct task_struct *tsk;
1180
1181         if (group_rq)
1182                 return group_rq->rr_nr_running;
1183
1184         tsk = rt_task_of(rt_se);
1185
1186         return (tsk->policy == SCHED_RR) ? 1 : 0;
1187 }
1188
1189 static inline
1190 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1191 {
1192         int prio = rt_se_prio(rt_se);
1193
1194         WARN_ON(!rt_prio(prio));
1195         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1196         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1197
1198         inc_rt_prio(rt_rq, prio);
1199         inc_rt_migration(rt_se, rt_rq);
1200         inc_rt_group(rt_se, rt_rq);
1201 }
1202
1203 static inline
1204 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1205 {
1206         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1207         WARN_ON(!rt_rq->rt_nr_running);
1208         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1209         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1210
1211         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1212         dec_rt_migration(rt_se, rt_rq);
1213         dec_rt_group(rt_se, rt_rq);
1214 }
1215
1216 /*
1217  * Change rt_se->run_list location unless SAVE && !MOVE
1218  *
1219  * assumes ENQUEUE/DEQUEUE flags match
1220  */
1221 static inline bool move_entity(unsigned int flags)
1222 {
1223         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1224                 return false;
1225
1226         return true;
1227 }
1228
1229 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1230 {
1231         list_del_init(&rt_se->run_list);
1232
1233         if (list_empty(array->queue + rt_se_prio(rt_se)))
1234                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1235
1236         rt_se->on_list = 0;
1237 }
1238
1239 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1240 {
1241         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1242         struct rt_prio_array *array = &rt_rq->active;
1243         struct rt_rq *group_rq = group_rt_rq(rt_se);
1244         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1245
1246         /*
1247          * Don't enqueue the group if its throttled, or when empty.
1248          * The latter is a consequence of the former when a child group
1249          * get throttled and the current group doesn't have any other
1250          * active members.
1251          */
1252         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1253                 if (rt_se->on_list)
1254                         __delist_rt_entity(rt_se, array);
1255                 return;
1256         }
1257
1258         if (move_entity(flags)) {
1259                 WARN_ON_ONCE(rt_se->on_list);
1260                 if (flags & ENQUEUE_HEAD)
1261                         list_add(&rt_se->run_list, queue);
1262                 else
1263                         list_add_tail(&rt_se->run_list, queue);
1264
1265                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1266                 rt_se->on_list = 1;
1267         }
1268         rt_se->on_rq = 1;
1269
1270         inc_rt_tasks(rt_se, rt_rq);
1271 }
1272
1273 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1274 {
1275         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1276         struct rt_prio_array *array = &rt_rq->active;
1277
1278         if (move_entity(flags)) {
1279                 WARN_ON_ONCE(!rt_se->on_list);
1280                 __delist_rt_entity(rt_se, array);
1281         }
1282         rt_se->on_rq = 0;
1283
1284         dec_rt_tasks(rt_se, rt_rq);
1285 }
1286
1287 /*
1288  * Because the prio of an upper entry depends on the lower
1289  * entries, we must remove entries top - down.
1290  */
1291 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1292 {
1293         struct sched_rt_entity *back = NULL;
1294         unsigned int rt_nr_running;
1295
1296         for_each_sched_rt_entity(rt_se) {
1297                 rt_se->back = back;
1298                 back = rt_se;
1299         }
1300
1301         rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1302
1303         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1304                 if (on_rt_rq(rt_se))
1305                         __dequeue_rt_entity(rt_se, flags);
1306         }
1307
1308         dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1309 }
1310
1311 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1312 {
1313         struct rq *rq = rq_of_rt_se(rt_se);
1314
1315         dequeue_rt_stack(rt_se, flags);
1316         for_each_sched_rt_entity(rt_se)
1317                 __enqueue_rt_entity(rt_se, flags);
1318         enqueue_top_rt_rq(&rq->rt);
1319 }
1320
1321 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1322 {
1323         struct rq *rq = rq_of_rt_se(rt_se);
1324
1325         dequeue_rt_stack(rt_se, flags);
1326
1327         for_each_sched_rt_entity(rt_se) {
1328                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1329
1330                 if (rt_rq && rt_rq->rt_nr_running)
1331                         __enqueue_rt_entity(rt_se, flags);
1332         }
1333         enqueue_top_rt_rq(&rq->rt);
1334 }
1335
1336 /*
1337  * Adding/removing a task to/from a priority array:
1338  */
1339 static void
1340 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1341 {
1342         struct sched_rt_entity *rt_se = &p->rt;
1343
1344         if (flags & ENQUEUE_WAKEUP)
1345                 rt_se->timeout = 0;
1346
1347         enqueue_rt_entity(rt_se, flags);
1348
1349         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1350                 enqueue_pushable_task(rq, p);
1351 }
1352
1353 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1354 {
1355         struct sched_rt_entity *rt_se = &p->rt;
1356
1357         update_curr_rt(rq);
1358         dequeue_rt_entity(rt_se, flags);
1359
1360         dequeue_pushable_task(rq, p);
1361 }
1362
1363 /*
1364  * Put task to the head or the end of the run list without the overhead of
1365  * dequeue followed by enqueue.
1366  */
1367 static void
1368 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1369 {
1370         if (on_rt_rq(rt_se)) {
1371                 struct rt_prio_array *array = &rt_rq->active;
1372                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1373
1374                 if (head)
1375                         list_move(&rt_se->run_list, queue);
1376                 else
1377                         list_move_tail(&rt_se->run_list, queue);
1378         }
1379 }
1380
1381 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1382 {
1383         struct sched_rt_entity *rt_se = &p->rt;
1384         struct rt_rq *rt_rq;
1385
1386         for_each_sched_rt_entity(rt_se) {
1387                 rt_rq = rt_rq_of_se(rt_se);
1388                 requeue_rt_entity(rt_rq, rt_se, head);
1389         }
1390 }
1391
1392 static void yield_task_rt(struct rq *rq)
1393 {
1394         requeue_task_rt(rq, rq->curr, 0);
1395 }
1396
1397 #ifdef CONFIG_SMP
1398 static int find_lowest_rq(struct task_struct *task);
1399
1400 static int
1401 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1402 {
1403         struct task_struct *curr;
1404         struct rq *rq;
1405
1406         /* For anything but wake ups, just return the task_cpu */
1407         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1408                 goto out;
1409
1410         rq = cpu_rq(cpu);
1411
1412         rcu_read_lock();
1413         curr = READ_ONCE(rq->curr); /* unlocked access */
1414
1415         /*
1416          * If the current task on @p's runqueue is an RT task, then
1417          * try to see if we can wake this RT task up on another
1418          * runqueue. Otherwise simply start this RT task
1419          * on its current runqueue.
1420          *
1421          * We want to avoid overloading runqueues. If the woken
1422          * task is a higher priority, then it will stay on this CPU
1423          * and the lower prio task should be moved to another CPU.
1424          * Even though this will probably make the lower prio task
1425          * lose its cache, we do not want to bounce a higher task
1426          * around just because it gave up its CPU, perhaps for a
1427          * lock?
1428          *
1429          * For equal prio tasks, we just let the scheduler sort it out.
1430          *
1431          * Otherwise, just let it ride on the affined RQ and the
1432          * post-schedule router will push the preempted task away
1433          *
1434          * This test is optimistic, if we get it wrong the load-balancer
1435          * will have to sort it out.
1436          */
1437         if (curr && unlikely(rt_task(curr)) &&
1438             (curr->nr_cpus_allowed < 2 ||
1439              curr->prio <= p->prio)) {
1440                 int target = find_lowest_rq(p);
1441
1442                 /*
1443                  * Don't bother moving it if the destination CPU is
1444                  * not running a lower priority task.
1445                  */
1446                 if (target != -1 &&
1447                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1448                         cpu = target;
1449         }
1450         rcu_read_unlock();
1451
1452 out:
1453         return cpu;
1454 }
1455
1456 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1457 {
1458         /*
1459          * Current can't be migrated, useless to reschedule,
1460          * let's hope p can move out.
1461          */
1462         if (rq->curr->nr_cpus_allowed == 1 ||
1463             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1464                 return;
1465
1466         /*
1467          * p is migratable, so let's not schedule it and
1468          * see if it is pushed or pulled somewhere else.
1469          */
1470         if (p->nr_cpus_allowed != 1
1471             && cpupri_find(&rq->rd->cpupri, p, NULL))
1472                 return;
1473
1474         /*
1475          * There appear to be other CPUs that can accept
1476          * the current task but none can run 'p', so lets reschedule
1477          * to try and push the current task away:
1478          */
1479         requeue_task_rt(rq, p, 1);
1480         resched_curr(rq);
1481 }
1482
1483 #endif /* CONFIG_SMP */
1484
1485 /*
1486  * Preempt the current task with a newly woken task if needed:
1487  */
1488 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1489 {
1490         if (p->prio < rq->curr->prio) {
1491                 resched_curr(rq);
1492                 return;
1493         }
1494
1495 #ifdef CONFIG_SMP
1496         /*
1497          * If:
1498          *
1499          * - the newly woken task is of equal priority to the current task
1500          * - the newly woken task is non-migratable while current is migratable
1501          * - current will be preempted on the next reschedule
1502          *
1503          * we should check to see if current can readily move to a different
1504          * cpu.  If so, we will reschedule to allow the push logic to try
1505          * to move current somewhere else, making room for our non-migratable
1506          * task.
1507          */
1508         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1509                 check_preempt_equal_prio(rq, p);
1510 #endif
1511 }
1512
1513 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1514                                                    struct rt_rq *rt_rq)
1515 {
1516         struct rt_prio_array *array = &rt_rq->active;
1517         struct sched_rt_entity *next = NULL;
1518         struct list_head *queue;
1519         int idx;
1520
1521         idx = sched_find_first_bit(array->bitmap);
1522         BUG_ON(idx >= MAX_RT_PRIO);
1523
1524         queue = array->queue + idx;
1525         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1526
1527         return next;
1528 }
1529
1530 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1531 {
1532         struct sched_rt_entity *rt_se;
1533         struct task_struct *p;
1534         struct rt_rq *rt_rq  = &rq->rt;
1535
1536         do {
1537                 rt_se = pick_next_rt_entity(rq, rt_rq);
1538                 BUG_ON(!rt_se);
1539                 rt_rq = group_rt_rq(rt_se);
1540         } while (rt_rq);
1541
1542         p = rt_task_of(rt_se);
1543         p->se.exec_start = rq_clock_task(rq);
1544
1545         return p;
1546 }
1547
1548 static struct task_struct *
1549 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1550 {
1551         struct task_struct *p;
1552         struct rt_rq *rt_rq = &rq->rt;
1553
1554         if (need_pull_rt_task(rq, prev)) {
1555                 /*
1556                  * This is OK, because current is on_cpu, which avoids it being
1557                  * picked for load-balance and preemption/IRQs are still
1558                  * disabled avoiding further scheduler activity on it and we're
1559                  * being very careful to re-start the picking loop.
1560                  */
1561                 rq_unpin_lock(rq, rf);
1562                 pull_rt_task(rq);
1563                 rq_repin_lock(rq, rf);
1564                 /*
1565                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1566                  * means a dl or stop task can slip in, in which case we need
1567                  * to re-start task selection.
1568                  */
1569                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1570                              rq->dl.dl_nr_running))
1571                         return RETRY_TASK;
1572         }
1573
1574         /*
1575          * We may dequeue prev's rt_rq in put_prev_task().
1576          * So, we update time before rt_nr_running check.
1577          */
1578         if (prev->sched_class == &rt_sched_class)
1579                 update_curr_rt(rq);
1580
1581         if (!rt_rq->rt_queued)
1582                 return NULL;
1583
1584         put_prev_task(rq, prev);
1585
1586         p = _pick_next_task_rt(rq);
1587
1588         /* The running task is never eligible for pushing */
1589         dequeue_pushable_task(rq, p);
1590
1591         rt_queue_push_tasks(rq);
1592
1593         /*
1594          * If prev task was rt, put_prev_task() has already updated the
1595          * utilization. We only care of the case where we start to schedule a
1596          * rt task
1597          */
1598         if (rq->curr->sched_class != &rt_sched_class)
1599                 update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
1600
1601         return p;
1602 }
1603
1604 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1605 {
1606         update_curr_rt(rq);
1607
1608         update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
1609
1610         /*
1611          * The previous task needs to be made eligible for pushing
1612          * if it is still active
1613          */
1614         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1615                 enqueue_pushable_task(rq, p);
1616 }
1617
1618 #ifdef CONFIG_SMP
1619
1620 /* Only try algorithms three times */
1621 #define RT_MAX_TRIES 3
1622
1623 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1624 {
1625         if (!task_running(rq, p) &&
1626             cpumask_test_cpu(cpu, &p->cpus_allowed))
1627                 return 1;
1628
1629         return 0;
1630 }
1631
1632 /*
1633  * Return the highest pushable rq's task, which is suitable to be executed
1634  * on the CPU, NULL otherwise
1635  */
1636 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1637 {
1638         struct plist_head *head = &rq->rt.pushable_tasks;
1639         struct task_struct *p;
1640
1641         if (!has_pushable_tasks(rq))
1642                 return NULL;
1643
1644         plist_for_each_entry(p, head, pushable_tasks) {
1645                 if (pick_rt_task(rq, p, cpu))
1646                         return p;
1647         }
1648
1649         return NULL;
1650 }
1651
1652 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1653
1654 static int find_lowest_rq(struct task_struct *task)
1655 {
1656         struct sched_domain *sd;
1657         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1658         int this_cpu = smp_processor_id();
1659         int cpu      = task_cpu(task);
1660
1661         /* Make sure the mask is initialized first */
1662         if (unlikely(!lowest_mask))
1663                 return -1;
1664
1665         if (task->nr_cpus_allowed == 1)
1666                 return -1; /* No other targets possible */
1667
1668         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1669                 return -1; /* No targets found */
1670
1671         /*
1672          * At this point we have built a mask of CPUs representing the
1673          * lowest priority tasks in the system.  Now we want to elect
1674          * the best one based on our affinity and topology.
1675          *
1676          * We prioritize the last CPU that the task executed on since
1677          * it is most likely cache-hot in that location.
1678          */
1679         if (cpumask_test_cpu(cpu, lowest_mask))
1680                 return cpu;
1681
1682         /*
1683          * Otherwise, we consult the sched_domains span maps to figure
1684          * out which CPU is logically closest to our hot cache data.
1685          */
1686         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1687                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1688
1689         rcu_read_lock();
1690         for_each_domain(cpu, sd) {
1691                 if (sd->flags & SD_WAKE_AFFINE) {
1692                         int best_cpu;
1693
1694                         /*
1695                          * "this_cpu" is cheaper to preempt than a
1696                          * remote processor.
1697                          */
1698                         if (this_cpu != -1 &&
1699                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1700                                 rcu_read_unlock();
1701                                 return this_cpu;
1702                         }
1703
1704                         best_cpu = cpumask_first_and(lowest_mask,
1705                                                      sched_domain_span(sd));
1706                         if (best_cpu < nr_cpu_ids) {
1707                                 rcu_read_unlock();
1708                                 return best_cpu;
1709                         }
1710                 }
1711         }
1712         rcu_read_unlock();
1713
1714         /*
1715          * And finally, if there were no matches within the domains
1716          * just give the caller *something* to work with from the compatible
1717          * locations.
1718          */
1719         if (this_cpu != -1)
1720                 return this_cpu;
1721
1722         cpu = cpumask_any(lowest_mask);
1723         if (cpu < nr_cpu_ids)
1724                 return cpu;
1725
1726         return -1;
1727 }
1728
1729 /* Will lock the rq it finds */
1730 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1731 {
1732         struct rq *lowest_rq = NULL;
1733         int tries;
1734         int cpu;
1735
1736         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1737                 cpu = find_lowest_rq(task);
1738
1739                 if ((cpu == -1) || (cpu == rq->cpu))
1740                         break;
1741
1742                 lowest_rq = cpu_rq(cpu);
1743
1744                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1745                         /*
1746                          * Target rq has tasks of equal or higher priority,
1747                          * retrying does not release any lock and is unlikely
1748                          * to yield a different result.
1749                          */
1750                         lowest_rq = NULL;
1751                         break;
1752                 }
1753
1754                 /* if the prio of this runqueue changed, try again */
1755                 if (double_lock_balance(rq, lowest_rq)) {
1756                         /*
1757                          * We had to unlock the run queue. In
1758                          * the mean time, task could have
1759                          * migrated already or had its affinity changed.
1760                          * Also make sure that it wasn't scheduled on its rq.
1761                          */
1762                         if (unlikely(task_rq(task) != rq ||
1763                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1764                                      task_running(rq, task) ||
1765                                      !rt_task(task) ||
1766                                      !task_on_rq_queued(task))) {
1767
1768                                 double_unlock_balance(rq, lowest_rq);
1769                                 lowest_rq = NULL;
1770                                 break;
1771                         }
1772                 }
1773
1774                 /* If this rq is still suitable use it. */
1775                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1776                         break;
1777
1778                 /* try again */
1779                 double_unlock_balance(rq, lowest_rq);
1780                 lowest_rq = NULL;
1781         }
1782
1783         return lowest_rq;
1784 }
1785
1786 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1787 {
1788         struct task_struct *p;
1789
1790         if (!has_pushable_tasks(rq))
1791                 return NULL;
1792
1793         p = plist_first_entry(&rq->rt.pushable_tasks,
1794                               struct task_struct, pushable_tasks);
1795
1796         BUG_ON(rq->cpu != task_cpu(p));
1797         BUG_ON(task_current(rq, p));
1798         BUG_ON(p->nr_cpus_allowed <= 1);
1799
1800         BUG_ON(!task_on_rq_queued(p));
1801         BUG_ON(!rt_task(p));
1802
1803         return p;
1804 }
1805
1806 /*
1807  * If the current CPU has more than one RT task, see if the non
1808  * running task can migrate over to a CPU that is running a task
1809  * of lesser priority.
1810  */
1811 static int push_rt_task(struct rq *rq)
1812 {
1813         struct task_struct *next_task;
1814         struct rq *lowest_rq;
1815         int ret = 0;
1816
1817         if (!rq->rt.overloaded)
1818                 return 0;
1819
1820         next_task = pick_next_pushable_task(rq);
1821         if (!next_task)
1822                 return 0;
1823
1824 retry:
1825         if (unlikely(next_task == rq->curr)) {
1826                 WARN_ON(1);
1827                 return 0;
1828         }
1829
1830         /*
1831          * It's possible that the next_task slipped in of
1832          * higher priority than current. If that's the case
1833          * just reschedule current.
1834          */
1835         if (unlikely(next_task->prio < rq->curr->prio)) {
1836                 resched_curr(rq);
1837                 return 0;
1838         }
1839
1840         /* We might release rq lock */
1841         get_task_struct(next_task);
1842
1843         /* find_lock_lowest_rq locks the rq if found */
1844         lowest_rq = find_lock_lowest_rq(next_task, rq);
1845         if (!lowest_rq) {
1846                 struct task_struct *task;
1847                 /*
1848                  * find_lock_lowest_rq releases rq->lock
1849                  * so it is possible that next_task has migrated.
1850                  *
1851                  * We need to make sure that the task is still on the same
1852                  * run-queue and is also still the next task eligible for
1853                  * pushing.
1854                  */
1855                 task = pick_next_pushable_task(rq);
1856                 if (task == next_task) {
1857                         /*
1858                          * The task hasn't migrated, and is still the next
1859                          * eligible task, but we failed to find a run-queue
1860                          * to push it to.  Do not retry in this case, since
1861                          * other CPUs will pull from us when ready.
1862                          */
1863                         goto out;
1864                 }
1865
1866                 if (!task)
1867                         /* No more tasks, just exit */
1868                         goto out;
1869
1870                 /*
1871                  * Something has shifted, try again.
1872                  */
1873                 put_task_struct(next_task);
1874                 next_task = task;
1875                 goto retry;
1876         }
1877
1878         deactivate_task(rq, next_task, 0);
1879         set_task_cpu(next_task, lowest_rq->cpu);
1880         activate_task(lowest_rq, next_task, 0);
1881         ret = 1;
1882
1883         resched_curr(lowest_rq);
1884
1885         double_unlock_balance(rq, lowest_rq);
1886
1887 out:
1888         put_task_struct(next_task);
1889
1890         return ret;
1891 }
1892
1893 static void push_rt_tasks(struct rq *rq)
1894 {
1895         /* push_rt_task will return true if it moved an RT */
1896         while (push_rt_task(rq))
1897                 ;
1898 }
1899
1900 #ifdef HAVE_RT_PUSH_IPI
1901
1902 /*
1903  * When a high priority task schedules out from a CPU and a lower priority
1904  * task is scheduled in, a check is made to see if there's any RT tasks
1905  * on other CPUs that are waiting to run because a higher priority RT task
1906  * is currently running on its CPU. In this case, the CPU with multiple RT
1907  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1908  * up that may be able to run one of its non-running queued RT tasks.
1909  *
1910  * All CPUs with overloaded RT tasks need to be notified as there is currently
1911  * no way to know which of these CPUs have the highest priority task waiting
1912  * to run. Instead of trying to take a spinlock on each of these CPUs,
1913  * which has shown to cause large latency when done on machines with many
1914  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1915  * RT tasks waiting to run.
1916  *
1917  * Just sending an IPI to each of the CPUs is also an issue, as on large
1918  * count CPU machines, this can cause an IPI storm on a CPU, especially
1919  * if its the only CPU with multiple RT tasks queued, and a large number
1920  * of CPUs scheduling a lower priority task at the same time.
1921  *
1922  * Each root domain has its own irq work function that can iterate over
1923  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1924  * tassk must be checked if there's one or many CPUs that are lowering
1925  * their priority, there's a single irq work iterator that will try to
1926  * push off RT tasks that are waiting to run.
1927  *
1928  * When a CPU schedules a lower priority task, it will kick off the
1929  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1930  * As it only takes the first CPU that schedules a lower priority task
1931  * to start the process, the rto_start variable is incremented and if
1932  * the atomic result is one, then that CPU will try to take the rto_lock.
1933  * This prevents high contention on the lock as the process handles all
1934  * CPUs scheduling lower priority tasks.
1935  *
1936  * All CPUs that are scheduling a lower priority task will increment the
1937  * rt_loop_next variable. This will make sure that the irq work iterator
1938  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1939  * priority task, even if the iterator is in the middle of a scan. Incrementing
1940  * the rt_loop_next will cause the iterator to perform another scan.
1941  *
1942  */
1943 static int rto_next_cpu(struct root_domain *rd)
1944 {
1945         int next;
1946         int cpu;
1947
1948         /*
1949          * When starting the IPI RT pushing, the rto_cpu is set to -1,
1950          * rt_next_cpu() will simply return the first CPU found in
1951          * the rto_mask.
1952          *
1953          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1954          * will return the next CPU found in the rto_mask.
1955          *
1956          * If there are no more CPUs left in the rto_mask, then a check is made
1957          * against rto_loop and rto_loop_next. rto_loop is only updated with
1958          * the rto_lock held, but any CPU may increment the rto_loop_next
1959          * without any locking.
1960          */
1961         for (;;) {
1962
1963                 /* When rto_cpu is -1 this acts like cpumask_first() */
1964                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1965
1966                 rd->rto_cpu = cpu;
1967
1968                 if (cpu < nr_cpu_ids)
1969                         return cpu;
1970
1971                 rd->rto_cpu = -1;
1972
1973                 /*
1974                  * ACQUIRE ensures we see the @rto_mask changes
1975                  * made prior to the @next value observed.
1976                  *
1977                  * Matches WMB in rt_set_overload().
1978                  */
1979                 next = atomic_read_acquire(&rd->rto_loop_next);
1980
1981                 if (rd->rto_loop == next)
1982                         break;
1983
1984                 rd->rto_loop = next;
1985         }
1986
1987         return -1;
1988 }
1989
1990 static inline bool rto_start_trylock(atomic_t *v)
1991 {
1992         return !atomic_cmpxchg_acquire(v, 0, 1);
1993 }
1994
1995 static inline void rto_start_unlock(atomic_t *v)
1996 {
1997         atomic_set_release(v, 0);
1998 }
1999
2000 static void tell_cpu_to_push(struct rq *rq)
2001 {
2002         int cpu = -1;
2003
2004         /* Keep the loop going if the IPI is currently active */
2005         atomic_inc(&rq->rd->rto_loop_next);
2006
2007         /* Only one CPU can initiate a loop at a time */
2008         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2009                 return;
2010
2011         raw_spin_lock(&rq->rd->rto_lock);
2012
2013         /*
2014          * The rto_cpu is updated under the lock, if it has a valid CPU
2015          * then the IPI is still running and will continue due to the
2016          * update to loop_next, and nothing needs to be done here.
2017          * Otherwise it is finishing up and an ipi needs to be sent.
2018          */
2019         if (rq->rd->rto_cpu < 0)
2020                 cpu = rto_next_cpu(rq->rd);
2021
2022         raw_spin_unlock(&rq->rd->rto_lock);
2023
2024         rto_start_unlock(&rq->rd->rto_loop_start);
2025
2026         if (cpu >= 0) {
2027                 /* Make sure the rd does not get freed while pushing */
2028                 sched_get_rd(rq->rd);
2029                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2030         }
2031 }
2032
2033 /* Called from hardirq context */
2034 void rto_push_irq_work_func(struct irq_work *work)
2035 {
2036         struct root_domain *rd =
2037                 container_of(work, struct root_domain, rto_push_work);
2038         struct rq *rq;
2039         int cpu;
2040
2041         rq = this_rq();
2042
2043         /*
2044          * We do not need to grab the lock to check for has_pushable_tasks.
2045          * When it gets updated, a check is made if a push is possible.
2046          */
2047         if (has_pushable_tasks(rq)) {
2048                 raw_spin_lock(&rq->lock);
2049                 push_rt_tasks(rq);
2050                 raw_spin_unlock(&rq->lock);
2051         }
2052
2053         raw_spin_lock(&rd->rto_lock);
2054
2055         /* Pass the IPI to the next rt overloaded queue */
2056         cpu = rto_next_cpu(rd);
2057
2058         raw_spin_unlock(&rd->rto_lock);
2059
2060         if (cpu < 0) {
2061                 sched_put_rd(rd);
2062                 return;
2063         }
2064
2065         /* Try the next RT overloaded CPU */
2066         irq_work_queue_on(&rd->rto_push_work, cpu);
2067 }
2068 #endif /* HAVE_RT_PUSH_IPI */
2069
2070 static void pull_rt_task(struct rq *this_rq)
2071 {
2072         int this_cpu = this_rq->cpu, cpu;
2073         bool resched = false;
2074         struct task_struct *p;
2075         struct rq *src_rq;
2076         int rt_overload_count = rt_overloaded(this_rq);
2077
2078         if (likely(!rt_overload_count))
2079                 return;
2080
2081         /*
2082          * Match the barrier from rt_set_overloaded; this guarantees that if we
2083          * see overloaded we must also see the rto_mask bit.
2084          */
2085         smp_rmb();
2086
2087         /* If we are the only overloaded CPU do nothing */
2088         if (rt_overload_count == 1 &&
2089             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2090                 return;
2091
2092 #ifdef HAVE_RT_PUSH_IPI
2093         if (sched_feat(RT_PUSH_IPI)) {
2094                 tell_cpu_to_push(this_rq);
2095                 return;
2096         }
2097 #endif
2098
2099         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2100                 if (this_cpu == cpu)
2101                         continue;
2102
2103                 src_rq = cpu_rq(cpu);
2104
2105                 /*
2106                  * Don't bother taking the src_rq->lock if the next highest
2107                  * task is known to be lower-priority than our current task.
2108                  * This may look racy, but if this value is about to go
2109                  * logically higher, the src_rq will push this task away.
2110                  * And if its going logically lower, we do not care
2111                  */
2112                 if (src_rq->rt.highest_prio.next >=
2113                     this_rq->rt.highest_prio.curr)
2114                         continue;
2115
2116                 /*
2117                  * We can potentially drop this_rq's lock in
2118                  * double_lock_balance, and another CPU could
2119                  * alter this_rq
2120                  */
2121                 double_lock_balance(this_rq, src_rq);
2122
2123                 /*
2124                  * We can pull only a task, which is pushable
2125                  * on its rq, and no others.
2126                  */
2127                 p = pick_highest_pushable_task(src_rq, this_cpu);
2128
2129                 /*
2130                  * Do we have an RT task that preempts
2131                  * the to-be-scheduled task?
2132                  */
2133                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2134                         WARN_ON(p == src_rq->curr);
2135                         WARN_ON(!task_on_rq_queued(p));
2136
2137                         /*
2138                          * There's a chance that p is higher in priority
2139                          * than what's currently running on its CPU.
2140                          * This is just that p is wakeing up and hasn't
2141                          * had a chance to schedule. We only pull
2142                          * p if it is lower in priority than the
2143                          * current task on the run queue
2144                          */
2145                         if (p->prio < src_rq->curr->prio)
2146                                 goto skip;
2147
2148                         resched = true;
2149
2150                         deactivate_task(src_rq, p, 0);
2151                         set_task_cpu(p, this_cpu);
2152                         activate_task(this_rq, p, 0);
2153                         /*
2154                          * We continue with the search, just in
2155                          * case there's an even higher prio task
2156                          * in another runqueue. (low likelihood
2157                          * but possible)
2158                          */
2159                 }
2160 skip:
2161                 double_unlock_balance(this_rq, src_rq);
2162         }
2163
2164         if (resched)
2165                 resched_curr(this_rq);
2166 }
2167
2168 /*
2169  * If we are not running and we are not going to reschedule soon, we should
2170  * try to push tasks away now
2171  */
2172 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2173 {
2174         if (!task_running(rq, p) &&
2175             !test_tsk_need_resched(rq->curr) &&
2176             p->nr_cpus_allowed > 1 &&
2177             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2178             (rq->curr->nr_cpus_allowed < 2 ||
2179              rq->curr->prio <= p->prio))
2180                 push_rt_tasks(rq);
2181 }
2182
2183 /* Assumes rq->lock is held */
2184 static void rq_online_rt(struct rq *rq)
2185 {
2186         if (rq->rt.overloaded)
2187                 rt_set_overload(rq);
2188
2189         __enable_runtime(rq);
2190
2191         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2192 }
2193
2194 /* Assumes rq->lock is held */
2195 static void rq_offline_rt(struct rq *rq)
2196 {
2197         if (rq->rt.overloaded)
2198                 rt_clear_overload(rq);
2199
2200         __disable_runtime(rq);
2201
2202         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2203 }
2204
2205 /*
2206  * When switch from the rt queue, we bring ourselves to a position
2207  * that we might want to pull RT tasks from other runqueues.
2208  */
2209 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2210 {
2211         /*
2212          * If there are other RT tasks then we will reschedule
2213          * and the scheduling of the other RT tasks will handle
2214          * the balancing. But if we are the last RT task
2215          * we may need to handle the pulling of RT tasks
2216          * now.
2217          */
2218         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2219                 return;
2220
2221         rt_queue_pull_task(rq);
2222 }
2223
2224 void __init init_sched_rt_class(void)
2225 {
2226         unsigned int i;
2227
2228         for_each_possible_cpu(i) {
2229                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2230                                         GFP_KERNEL, cpu_to_node(i));
2231         }
2232 }
2233 #endif /* CONFIG_SMP */
2234
2235 /*
2236  * When switching a task to RT, we may overload the runqueue
2237  * with RT tasks. In this case we try to push them off to
2238  * other runqueues.
2239  */
2240 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2241 {
2242         /*
2243          * If we are already running, then there's nothing
2244          * that needs to be done. But if we are not running
2245          * we may need to preempt the current running task.
2246          * If that current running task is also an RT task
2247          * then see if we can move to another run queue.
2248          */
2249         if (task_on_rq_queued(p) && rq->curr != p) {
2250 #ifdef CONFIG_SMP
2251                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2252                         rt_queue_push_tasks(rq);
2253 #endif /* CONFIG_SMP */
2254                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2255                         resched_curr(rq);
2256         }
2257 }
2258
2259 /*
2260  * Priority of the task has changed. This may cause
2261  * us to initiate a push or pull.
2262  */
2263 static void
2264 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2265 {
2266         if (!task_on_rq_queued(p))
2267                 return;
2268
2269         if (rq->curr == p) {
2270 #ifdef CONFIG_SMP
2271                 /*
2272                  * If our priority decreases while running, we
2273                  * may need to pull tasks to this runqueue.
2274                  */
2275                 if (oldprio < p->prio)
2276                         rt_queue_pull_task(rq);
2277
2278                 /*
2279                  * If there's a higher priority task waiting to run
2280                  * then reschedule.
2281                  */
2282                 if (p->prio > rq->rt.highest_prio.curr)
2283                         resched_curr(rq);
2284 #else
2285                 /* For UP simply resched on drop of prio */
2286                 if (oldprio < p->prio)
2287                         resched_curr(rq);
2288 #endif /* CONFIG_SMP */
2289         } else {
2290                 /*
2291                  * This task is not running, but if it is
2292                  * greater than the current running task
2293                  * then reschedule.
2294                  */
2295                 if (p->prio < rq->curr->prio)
2296                         resched_curr(rq);
2297         }
2298 }
2299
2300 #ifdef CONFIG_POSIX_TIMERS
2301 static void watchdog(struct rq *rq, struct task_struct *p)
2302 {
2303         unsigned long soft, hard;
2304
2305         /* max may change after cur was read, this will be fixed next tick */
2306         soft = task_rlimit(p, RLIMIT_RTTIME);
2307         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2308
2309         if (soft != RLIM_INFINITY) {
2310                 unsigned long next;
2311
2312                 if (p->rt.watchdog_stamp != jiffies) {
2313                         p->rt.timeout++;
2314                         p->rt.watchdog_stamp = jiffies;
2315                 }
2316
2317                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2318                 if (p->rt.timeout > next)
2319                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2320         }
2321 }
2322 #else
2323 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2324 #endif
2325
2326 /*
2327  * scheduler tick hitting a task of our scheduling class.
2328  *
2329  * NOTE: This function can be called remotely by the tick offload that
2330  * goes along full dynticks. Therefore no local assumption can be made
2331  * and everything must be accessed through the @rq and @curr passed in
2332  * parameters.
2333  */
2334 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2335 {
2336         struct sched_rt_entity *rt_se = &p->rt;
2337
2338         update_curr_rt(rq);
2339         update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
2340
2341         watchdog(rq, p);
2342
2343         /*
2344          * RR tasks need a special form of timeslice management.
2345          * FIFO tasks have no timeslices.
2346          */
2347         if (p->policy != SCHED_RR)
2348                 return;
2349
2350         if (--p->rt.time_slice)
2351                 return;
2352
2353         p->rt.time_slice = sched_rr_timeslice;
2354
2355         /*
2356          * Requeue to the end of queue if we (and all of our ancestors) are not
2357          * the only element on the queue
2358          */
2359         for_each_sched_rt_entity(rt_se) {
2360                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2361                         requeue_task_rt(rq, p, 0);
2362                         resched_curr(rq);
2363                         return;
2364                 }
2365         }
2366 }
2367
2368 static void set_curr_task_rt(struct rq *rq)
2369 {
2370         struct task_struct *p = rq->curr;
2371
2372         p->se.exec_start = rq_clock_task(rq);
2373
2374         /* The running task is never eligible for pushing */
2375         dequeue_pushable_task(rq, p);
2376 }
2377
2378 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2379 {
2380         /*
2381          * Time slice is 0 for SCHED_FIFO tasks
2382          */
2383         if (task->policy == SCHED_RR)
2384                 return sched_rr_timeslice;
2385         else
2386                 return 0;
2387 }
2388
2389 const struct sched_class rt_sched_class = {
2390         .next                   = &fair_sched_class,
2391         .enqueue_task           = enqueue_task_rt,
2392         .dequeue_task           = dequeue_task_rt,
2393         .yield_task             = yield_task_rt,
2394
2395         .check_preempt_curr     = check_preempt_curr_rt,
2396
2397         .pick_next_task         = pick_next_task_rt,
2398         .put_prev_task          = put_prev_task_rt,
2399
2400 #ifdef CONFIG_SMP
2401         .select_task_rq         = select_task_rq_rt,
2402
2403         .set_cpus_allowed       = set_cpus_allowed_common,
2404         .rq_online              = rq_online_rt,
2405         .rq_offline             = rq_offline_rt,
2406         .task_woken             = task_woken_rt,
2407         .switched_from          = switched_from_rt,
2408 #endif
2409
2410         .set_curr_task          = set_curr_task_rt,
2411         .task_tick              = task_tick_rt,
2412
2413         .get_rr_interval        = get_rr_interval_rt,
2414
2415         .prio_changed           = prio_changed_rt,
2416         .switched_to            = switched_to_rt,
2417
2418         .update_curr            = update_curr_rt,
2419 };
2420
2421 #ifdef CONFIG_RT_GROUP_SCHED
2422 /*
2423  * Ensure that the real time constraints are schedulable.
2424  */
2425 static DEFINE_MUTEX(rt_constraints_mutex);
2426
2427 /* Must be called with tasklist_lock held */
2428 static inline int tg_has_rt_tasks(struct task_group *tg)
2429 {
2430         struct task_struct *g, *p;
2431
2432         /*
2433          * Autogroups do not have RT tasks; see autogroup_create().
2434          */
2435         if (task_group_is_autogroup(tg))
2436                 return 0;
2437
2438         for_each_process_thread(g, p) {
2439                 if (rt_task(p) && task_group(p) == tg)
2440                         return 1;
2441         }
2442
2443         return 0;
2444 }
2445
2446 struct rt_schedulable_data {
2447         struct task_group *tg;
2448         u64 rt_period;
2449         u64 rt_runtime;
2450 };
2451
2452 static int tg_rt_schedulable(struct task_group *tg, void *data)
2453 {
2454         struct rt_schedulable_data *d = data;
2455         struct task_group *child;
2456         unsigned long total, sum = 0;
2457         u64 period, runtime;
2458
2459         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2460         runtime = tg->rt_bandwidth.rt_runtime;
2461
2462         if (tg == d->tg) {
2463                 period = d->rt_period;
2464                 runtime = d->rt_runtime;
2465         }
2466
2467         /*
2468          * Cannot have more runtime than the period.
2469          */
2470         if (runtime > period && runtime != RUNTIME_INF)
2471                 return -EINVAL;
2472
2473         /*
2474          * Ensure we don't starve existing RT tasks.
2475          */
2476         if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2477                 return -EBUSY;
2478
2479         total = to_ratio(period, runtime);
2480
2481         /*
2482          * Nobody can have more than the global setting allows.
2483          */
2484         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2485                 return -EINVAL;
2486
2487         /*
2488          * The sum of our children's runtime should not exceed our own.
2489          */
2490         list_for_each_entry_rcu(child, &tg->children, siblings) {
2491                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2492                 runtime = child->rt_bandwidth.rt_runtime;
2493
2494                 if (child == d->tg) {
2495                         period = d->rt_period;
2496                         runtime = d->rt_runtime;
2497                 }
2498
2499                 sum += to_ratio(period, runtime);
2500         }
2501
2502         if (sum > total)
2503                 return -EINVAL;
2504
2505         return 0;
2506 }
2507
2508 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2509 {
2510         int ret;
2511
2512         struct rt_schedulable_data data = {
2513                 .tg = tg,
2514                 .rt_period = period,
2515                 .rt_runtime = runtime,
2516         };
2517
2518         rcu_read_lock();
2519         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2520         rcu_read_unlock();
2521
2522         return ret;
2523 }
2524
2525 static int tg_set_rt_bandwidth(struct task_group *tg,
2526                 u64 rt_period, u64 rt_runtime)
2527 {
2528         int i, err = 0;
2529
2530         /*
2531          * Disallowing the root group RT runtime is BAD, it would disallow the
2532          * kernel creating (and or operating) RT threads.
2533          */
2534         if (tg == &root_task_group && rt_runtime == 0)
2535                 return -EINVAL;
2536
2537         /* No period doesn't make any sense. */
2538         if (rt_period == 0)
2539                 return -EINVAL;
2540
2541         mutex_lock(&rt_constraints_mutex);
2542         read_lock(&tasklist_lock);
2543         err = __rt_schedulable(tg, rt_period, rt_runtime);
2544         if (err)
2545                 goto unlock;
2546
2547         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2548         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2549         tg->rt_bandwidth.rt_runtime = rt_runtime;
2550
2551         for_each_possible_cpu(i) {
2552                 struct rt_rq *rt_rq = tg->rt_rq[i];
2553
2554                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2555                 rt_rq->rt_runtime = rt_runtime;
2556                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2557         }
2558         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2559 unlock:
2560         read_unlock(&tasklist_lock);
2561         mutex_unlock(&rt_constraints_mutex);
2562
2563         return err;
2564 }
2565
2566 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2567 {
2568         u64 rt_runtime, rt_period;
2569
2570         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2571         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2572         if (rt_runtime_us < 0)
2573                 rt_runtime = RUNTIME_INF;
2574         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2575                 return -EINVAL;
2576
2577         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2578 }
2579
2580 long sched_group_rt_runtime(struct task_group *tg)
2581 {
2582         u64 rt_runtime_us;
2583
2584         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2585                 return -1;
2586
2587         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2588         do_div(rt_runtime_us, NSEC_PER_USEC);
2589         return rt_runtime_us;
2590 }
2591
2592 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2593 {
2594         u64 rt_runtime, rt_period;
2595
2596         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2597                 return -EINVAL;
2598
2599         rt_period = rt_period_us * NSEC_PER_USEC;
2600         rt_runtime = tg->rt_bandwidth.rt_runtime;
2601
2602         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2603 }
2604
2605 long sched_group_rt_period(struct task_group *tg)
2606 {
2607         u64 rt_period_us;
2608
2609         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2610         do_div(rt_period_us, NSEC_PER_USEC);
2611         return rt_period_us;
2612 }
2613
2614 static int sched_rt_global_constraints(void)
2615 {
2616         int ret = 0;
2617
2618         mutex_lock(&rt_constraints_mutex);
2619         read_lock(&tasklist_lock);
2620         ret = __rt_schedulable(NULL, 0, 0);
2621         read_unlock(&tasklist_lock);
2622         mutex_unlock(&rt_constraints_mutex);
2623
2624         return ret;
2625 }
2626
2627 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2628 {
2629         /* Don't accept realtime tasks when there is no way for them to run */
2630         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2631                 return 0;
2632
2633         return 1;
2634 }
2635
2636 #else /* !CONFIG_RT_GROUP_SCHED */
2637 static int sched_rt_global_constraints(void)
2638 {
2639         unsigned long flags;
2640         int i;
2641
2642         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2643         for_each_possible_cpu(i) {
2644                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2645
2646                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2647                 rt_rq->rt_runtime = global_rt_runtime();
2648                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2649         }
2650         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2651
2652         return 0;
2653 }
2654 #endif /* CONFIG_RT_GROUP_SCHED */
2655
2656 static int sched_rt_global_validate(void)
2657 {
2658         if (sysctl_sched_rt_period <= 0)
2659                 return -EINVAL;
2660
2661         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2662                 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2663                 return -EINVAL;
2664
2665         return 0;
2666 }
2667
2668 static void sched_rt_do_global(void)
2669 {
2670         unsigned long flags;
2671
2672         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2673         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2674         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2675         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2676 }
2677
2678 int sched_rt_handler(struct ctl_table *table, int write,
2679                 void __user *buffer, size_t *lenp,
2680                 loff_t *ppos)
2681 {
2682         int old_period, old_runtime;
2683         static DEFINE_MUTEX(mutex);
2684         int ret;
2685
2686         mutex_lock(&mutex);
2687         old_period = sysctl_sched_rt_period;
2688         old_runtime = sysctl_sched_rt_runtime;
2689
2690         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2691
2692         if (!ret && write) {
2693                 ret = sched_rt_global_validate();
2694                 if (ret)
2695                         goto undo;
2696
2697                 ret = sched_dl_global_validate();
2698                 if (ret)
2699                         goto undo;
2700
2701                 ret = sched_rt_global_constraints();
2702                 if (ret)
2703                         goto undo;
2704
2705                 sched_rt_do_global();
2706                 sched_dl_do_global();
2707         }
2708         if (0) {
2709 undo:
2710                 sysctl_sched_rt_period = old_period;
2711                 sysctl_sched_rt_runtime = old_runtime;
2712         }
2713         mutex_unlock(&mutex);
2714
2715         return ret;
2716 }
2717
2718 int sched_rr_handler(struct ctl_table *table, int write,
2719                 void __user *buffer, size_t *lenp,
2720                 loff_t *ppos)
2721 {
2722         int ret;
2723         static DEFINE_MUTEX(mutex);
2724
2725         mutex_lock(&mutex);
2726         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2727         /*
2728          * Make sure that internally we keep jiffies.
2729          * Also, writing zero resets the timeslice to default:
2730          */
2731         if (!ret && write) {
2732                 sched_rr_timeslice =
2733                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2734                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2735         }
2736         mutex_unlock(&mutex);
2737
2738         return ret;
2739 }
2740
2741 #ifdef CONFIG_SCHED_DEBUG
2742 void print_rt_stats(struct seq_file *m, int cpu)
2743 {
2744         rt_rq_iter_t iter;
2745         struct rt_rq *rt_rq;
2746
2747         rcu_read_lock();
2748         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2749                 print_rt_rq(m, cpu, rt_rq);
2750         rcu_read_unlock();
2751 }
2752 #endif /* CONFIG_SCHED_DEBUG */