GNU Linux-libre 4.19.286-gnu1
[releases.git] / kernel / time / alarmtimer.c
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/alarmtimer.h>
25 #include <linux/mutex.h>
26 #include <linux/platform_device.h>
27 #include <linux/posix-timers.h>
28 #include <linux/workqueue.h>
29 #include <linux/freezer.h>
30 #include <linux/compat.h>
31 #include <linux/module.h>
32
33 #include "posix-timers.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/alarmtimer.h>
37
38 /**
39  * struct alarm_base - Alarm timer bases
40  * @lock:               Lock for syncrhonized access to the base
41  * @timerqueue:         Timerqueue head managing the list of events
42  * @gettime:            Function to read the time correlating to the base
43  * @base_clockid:       clockid for the base
44  */
45 static struct alarm_base {
46         spinlock_t              lock;
47         struct timerqueue_head  timerqueue;
48         ktime_t                 (*gettime)(void);
49         clockid_t               base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 static struct wakeup_source *ws;
62
63 /* rtc timer and device for setting alarm wakeups at suspend */
64 static struct rtc_timer         rtctimer;
65 static struct rtc_device        *rtcdev;
66 static DEFINE_SPINLOCK(rtcdev_lock);
67
68 /**
69  * alarmtimer_get_rtcdev - Return selected rtcdevice
70  *
71  * This function returns the rtc device to use for wakealarms.
72  * If one has not already been chosen, it checks to see if a
73  * functional rtc device is available.
74  */
75 struct rtc_device *alarmtimer_get_rtcdev(void)
76 {
77         unsigned long flags;
78         struct rtc_device *ret;
79
80         spin_lock_irqsave(&rtcdev_lock, flags);
81         ret = rtcdev;
82         spin_unlock_irqrestore(&rtcdev_lock, flags);
83
84         return ret;
85 }
86 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
87
88 static int alarmtimer_rtc_add_device(struct device *dev,
89                                 struct class_interface *class_intf)
90 {
91         unsigned long flags;
92         struct rtc_device *rtc = to_rtc_device(dev);
93         struct wakeup_source *__ws;
94         int ret = 0;
95
96         if (rtcdev)
97                 return -EBUSY;
98
99         if (!rtc->ops->set_alarm)
100                 return -1;
101         if (!device_may_wakeup(rtc->dev.parent))
102                 return -1;
103
104         __ws = wakeup_source_register("alarmtimer");
105
106         spin_lock_irqsave(&rtcdev_lock, flags);
107         if (!rtcdev) {
108                 if (!try_module_get(rtc->owner)) {
109                         ret = -1;
110                         goto unlock;
111                 }
112
113                 rtcdev = rtc;
114                 /* hold a reference so it doesn't go away */
115                 get_device(dev);
116                 ws = __ws;
117                 __ws = NULL;
118         }
119 unlock:
120         spin_unlock_irqrestore(&rtcdev_lock, flags);
121
122         wakeup_source_unregister(__ws);
123
124         return ret;
125 }
126
127 static inline void alarmtimer_rtc_timer_init(void)
128 {
129         rtc_timer_init(&rtctimer, NULL, NULL);
130 }
131
132 static struct class_interface alarmtimer_rtc_interface = {
133         .add_dev = &alarmtimer_rtc_add_device,
134 };
135
136 static int alarmtimer_rtc_interface_setup(void)
137 {
138         alarmtimer_rtc_interface.class = rtc_class;
139         return class_interface_register(&alarmtimer_rtc_interface);
140 }
141 static void alarmtimer_rtc_interface_remove(void)
142 {
143         class_interface_unregister(&alarmtimer_rtc_interface);
144 }
145 #else
146 struct rtc_device *alarmtimer_get_rtcdev(void)
147 {
148         return NULL;
149 }
150 #define rtcdev (NULL)
151 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
152 static inline void alarmtimer_rtc_interface_remove(void) { }
153 static inline void alarmtimer_rtc_timer_init(void) { }
154 #endif
155
156 /**
157  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
158  * @base: pointer to the base where the timer is being run
159  * @alarm: pointer to alarm being enqueued.
160  *
161  * Adds alarm to a alarm_base timerqueue
162  *
163  * Must hold base->lock when calling.
164  */
165 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
166 {
167         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
168                 timerqueue_del(&base->timerqueue, &alarm->node);
169
170         timerqueue_add(&base->timerqueue, &alarm->node);
171         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
172 }
173
174 /**
175  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
176  * @base: pointer to the base where the timer is running
177  * @alarm: pointer to alarm being removed
178  *
179  * Removes alarm to a alarm_base timerqueue
180  *
181  * Must hold base->lock when calling.
182  */
183 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
184 {
185         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
186                 return;
187
188         timerqueue_del(&base->timerqueue, &alarm->node);
189         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
190 }
191
192
193 /**
194  * alarmtimer_fired - Handles alarm hrtimer being fired.
195  * @timer: pointer to hrtimer being run
196  *
197  * When a alarm timer fires, this runs through the timerqueue to
198  * see which alarms expired, and runs those. If there are more alarm
199  * timers queued for the future, we set the hrtimer to fire when
200  * when the next future alarm timer expires.
201  */
202 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
203 {
204         struct alarm *alarm = container_of(timer, struct alarm, timer);
205         struct alarm_base *base = &alarm_bases[alarm->type];
206         unsigned long flags;
207         int ret = HRTIMER_NORESTART;
208         int restart = ALARMTIMER_NORESTART;
209
210         spin_lock_irqsave(&base->lock, flags);
211         alarmtimer_dequeue(base, alarm);
212         spin_unlock_irqrestore(&base->lock, flags);
213
214         if (alarm->function)
215                 restart = alarm->function(alarm, base->gettime());
216
217         spin_lock_irqsave(&base->lock, flags);
218         if (restart != ALARMTIMER_NORESTART) {
219                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
220                 alarmtimer_enqueue(base, alarm);
221                 ret = HRTIMER_RESTART;
222         }
223         spin_unlock_irqrestore(&base->lock, flags);
224
225         trace_alarmtimer_fired(alarm, base->gettime());
226         return ret;
227
228 }
229
230 ktime_t alarm_expires_remaining(const struct alarm *alarm)
231 {
232         struct alarm_base *base = &alarm_bases[alarm->type];
233         return ktime_sub(alarm->node.expires, base->gettime());
234 }
235 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
236
237 #ifdef CONFIG_RTC_CLASS
238 /**
239  * alarmtimer_suspend - Suspend time callback
240  * @dev: unused
241  * @state: unused
242  *
243  * When we are going into suspend, we look through the bases
244  * to see which is the soonest timer to expire. We then
245  * set an rtc timer to fire that far into the future, which
246  * will wake us from suspend.
247  */
248 static int alarmtimer_suspend(struct device *dev)
249 {
250         ktime_t min, now, expires;
251         int i, ret, type;
252         struct rtc_device *rtc;
253         unsigned long flags;
254         struct rtc_time tm;
255
256         spin_lock_irqsave(&freezer_delta_lock, flags);
257         min = freezer_delta;
258         expires = freezer_expires;
259         type = freezer_alarmtype;
260         freezer_delta = 0;
261         spin_unlock_irqrestore(&freezer_delta_lock, flags);
262
263         rtc = alarmtimer_get_rtcdev();
264         /* If we have no rtcdev, just return */
265         if (!rtc)
266                 return 0;
267
268         /* Find the soonest timer to expire*/
269         for (i = 0; i < ALARM_NUMTYPE; i++) {
270                 struct alarm_base *base = &alarm_bases[i];
271                 struct timerqueue_node *next;
272                 ktime_t delta;
273
274                 spin_lock_irqsave(&base->lock, flags);
275                 next = timerqueue_getnext(&base->timerqueue);
276                 spin_unlock_irqrestore(&base->lock, flags);
277                 if (!next)
278                         continue;
279                 delta = ktime_sub(next->expires, base->gettime());
280                 if (!min || (delta < min)) {
281                         expires = next->expires;
282                         min = delta;
283                         type = i;
284                 }
285         }
286         if (min == 0)
287                 return 0;
288
289         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
290                 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
291                 return -EBUSY;
292         }
293
294         trace_alarmtimer_suspend(expires, type);
295
296         /* Setup an rtc timer to fire that far in the future */
297         rtc_timer_cancel(rtc, &rtctimer);
298         rtc_read_time(rtc, &tm);
299         now = rtc_tm_to_ktime(tm);
300         now = ktime_add(now, min);
301
302         /* Set alarm, if in the past reject suspend briefly to handle */
303         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
304         if (ret < 0)
305                 __pm_wakeup_event(ws, MSEC_PER_SEC);
306         return ret;
307 }
308
309 static int alarmtimer_resume(struct device *dev)
310 {
311         struct rtc_device *rtc;
312
313         rtc = alarmtimer_get_rtcdev();
314         if (rtc)
315                 rtc_timer_cancel(rtc, &rtctimer);
316         return 0;
317 }
318
319 #else
320 static int alarmtimer_suspend(struct device *dev)
321 {
322         return 0;
323 }
324
325 static int alarmtimer_resume(struct device *dev)
326 {
327         return 0;
328 }
329 #endif
330
331 static void
332 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
333              enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
334 {
335         timerqueue_init(&alarm->node);
336         alarm->timer.function = alarmtimer_fired;
337         alarm->function = function;
338         alarm->type = type;
339         alarm->state = ALARMTIMER_STATE_INACTIVE;
340 }
341
342 /**
343  * alarm_init - Initialize an alarm structure
344  * @alarm: ptr to alarm to be initialized
345  * @type: the type of the alarm
346  * @function: callback that is run when the alarm fires
347  */
348 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
349                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
350 {
351         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
352                      HRTIMER_MODE_ABS);
353         __alarm_init(alarm, type, function);
354 }
355 EXPORT_SYMBOL_GPL(alarm_init);
356
357 /**
358  * alarm_start - Sets an absolute alarm to fire
359  * @alarm: ptr to alarm to set
360  * @start: time to run the alarm
361  */
362 void alarm_start(struct alarm *alarm, ktime_t start)
363 {
364         struct alarm_base *base = &alarm_bases[alarm->type];
365         unsigned long flags;
366
367         spin_lock_irqsave(&base->lock, flags);
368         alarm->node.expires = start;
369         alarmtimer_enqueue(base, alarm);
370         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
371         spin_unlock_irqrestore(&base->lock, flags);
372
373         trace_alarmtimer_start(alarm, base->gettime());
374 }
375 EXPORT_SYMBOL_GPL(alarm_start);
376
377 /**
378  * alarm_start_relative - Sets a relative alarm to fire
379  * @alarm: ptr to alarm to set
380  * @start: time relative to now to run the alarm
381  */
382 void alarm_start_relative(struct alarm *alarm, ktime_t start)
383 {
384         struct alarm_base *base = &alarm_bases[alarm->type];
385
386         start = ktime_add_safe(start, base->gettime());
387         alarm_start(alarm, start);
388 }
389 EXPORT_SYMBOL_GPL(alarm_start_relative);
390
391 void alarm_restart(struct alarm *alarm)
392 {
393         struct alarm_base *base = &alarm_bases[alarm->type];
394         unsigned long flags;
395
396         spin_lock_irqsave(&base->lock, flags);
397         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
398         hrtimer_restart(&alarm->timer);
399         alarmtimer_enqueue(base, alarm);
400         spin_unlock_irqrestore(&base->lock, flags);
401 }
402 EXPORT_SYMBOL_GPL(alarm_restart);
403
404 /**
405  * alarm_try_to_cancel - Tries to cancel an alarm timer
406  * @alarm: ptr to alarm to be canceled
407  *
408  * Returns 1 if the timer was canceled, 0 if it was not running,
409  * and -1 if the callback was running
410  */
411 int alarm_try_to_cancel(struct alarm *alarm)
412 {
413         struct alarm_base *base = &alarm_bases[alarm->type];
414         unsigned long flags;
415         int ret;
416
417         spin_lock_irqsave(&base->lock, flags);
418         ret = hrtimer_try_to_cancel(&alarm->timer);
419         if (ret >= 0)
420                 alarmtimer_dequeue(base, alarm);
421         spin_unlock_irqrestore(&base->lock, flags);
422
423         trace_alarmtimer_cancel(alarm, base->gettime());
424         return ret;
425 }
426 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
427
428
429 /**
430  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
431  * @alarm: ptr to alarm to be canceled
432  *
433  * Returns 1 if the timer was canceled, 0 if it was not active.
434  */
435 int alarm_cancel(struct alarm *alarm)
436 {
437         for (;;) {
438                 int ret = alarm_try_to_cancel(alarm);
439                 if (ret >= 0)
440                         return ret;
441                 cpu_relax();
442         }
443 }
444 EXPORT_SYMBOL_GPL(alarm_cancel);
445
446
447 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
448 {
449         u64 overrun = 1;
450         ktime_t delta;
451
452         delta = ktime_sub(now, alarm->node.expires);
453
454         if (delta < 0)
455                 return 0;
456
457         if (unlikely(delta >= interval)) {
458                 s64 incr = ktime_to_ns(interval);
459
460                 overrun = ktime_divns(delta, incr);
461
462                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
463                                                         incr*overrun);
464
465                 if (alarm->node.expires > now)
466                         return overrun;
467                 /*
468                  * This (and the ktime_add() below) is the
469                  * correction for exact:
470                  */
471                 overrun++;
472         }
473
474         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
475         return overrun;
476 }
477 EXPORT_SYMBOL_GPL(alarm_forward);
478
479 static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
480 {
481         struct alarm_base *base = &alarm_bases[alarm->type];
482         ktime_t now = base->gettime();
483
484         if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
485                 /*
486                  * Same issue as with posix_timer_fn(). Timers which are
487                  * periodic but the signal is ignored can starve the system
488                  * with a very small interval. The real fix which was
489                  * promised in the context of posix_timer_fn() never
490                  * materialized, but someone should really work on it.
491                  *
492                  * To prevent DOS fake @now to be 1 jiffie out which keeps
493                  * the overrun accounting correct but creates an
494                  * inconsistency vs. timer_gettime(2).
495                  */
496                 ktime_t kj = NSEC_PER_SEC / HZ;
497
498                 if (interval < kj)
499                         now = ktime_add(now, kj);
500         }
501
502         return alarm_forward(alarm, now, interval);
503 }
504
505 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
506 {
507         return __alarm_forward_now(alarm, interval, false);
508 }
509 EXPORT_SYMBOL_GPL(alarm_forward_now);
510
511 #ifdef CONFIG_POSIX_TIMERS
512
513 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
514 {
515         struct alarm_base *base;
516         unsigned long flags;
517         ktime_t delta;
518
519         switch(type) {
520         case ALARM_REALTIME:
521                 base = &alarm_bases[ALARM_REALTIME];
522                 type = ALARM_REALTIME_FREEZER;
523                 break;
524         case ALARM_BOOTTIME:
525                 base = &alarm_bases[ALARM_BOOTTIME];
526                 type = ALARM_BOOTTIME_FREEZER;
527                 break;
528         default:
529                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
530                 return;
531         }
532
533         delta = ktime_sub(absexp, base->gettime());
534
535         spin_lock_irqsave(&freezer_delta_lock, flags);
536         if (!freezer_delta || (delta < freezer_delta)) {
537                 freezer_delta = delta;
538                 freezer_expires = absexp;
539                 freezer_alarmtype = type;
540         }
541         spin_unlock_irqrestore(&freezer_delta_lock, flags);
542 }
543
544 /**
545  * clock2alarm - helper that converts from clockid to alarmtypes
546  * @clockid: clockid.
547  */
548 static enum alarmtimer_type clock2alarm(clockid_t clockid)
549 {
550         if (clockid == CLOCK_REALTIME_ALARM)
551                 return ALARM_REALTIME;
552         if (clockid == CLOCK_BOOTTIME_ALARM)
553                 return ALARM_BOOTTIME;
554         return -1;
555 }
556
557 /**
558  * alarm_handle_timer - Callback for posix timers
559  * @alarm: alarm that fired
560  *
561  * Posix timer callback for expired alarm timers.
562  */
563 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
564                                                         ktime_t now)
565 {
566         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
567                                             it.alarm.alarmtimer);
568         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
569         unsigned long flags;
570         int si_private = 0;
571
572         spin_lock_irqsave(&ptr->it_lock, flags);
573
574         ptr->it_active = 0;
575         if (ptr->it_interval)
576                 si_private = ++ptr->it_requeue_pending;
577
578         if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
579                 /*
580                  * Handle ignored signals and rearm the timer. This will go
581                  * away once we handle ignored signals proper. Ensure that
582                  * small intervals cannot starve the system.
583                  */
584                 ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
585                 ++ptr->it_requeue_pending;
586                 ptr->it_active = 1;
587                 result = ALARMTIMER_RESTART;
588         }
589         spin_unlock_irqrestore(&ptr->it_lock, flags);
590
591         return result;
592 }
593
594 /**
595  * alarm_timer_rearm - Posix timer callback for rearming timer
596  * @timr:       Pointer to the posixtimer data struct
597  */
598 static void alarm_timer_rearm(struct k_itimer *timr)
599 {
600         struct alarm *alarm = &timr->it.alarm.alarmtimer;
601
602         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
603         alarm_start(alarm, alarm->node.expires);
604 }
605
606 /**
607  * alarm_timer_forward - Posix timer callback for forwarding timer
608  * @timr:       Pointer to the posixtimer data struct
609  * @now:        Current time to forward the timer against
610  */
611 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
612 {
613         struct alarm *alarm = &timr->it.alarm.alarmtimer;
614
615         return alarm_forward(alarm, timr->it_interval, now);
616 }
617
618 /**
619  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
620  * @timr:       Pointer to the posixtimer data struct
621  * @now:        Current time to calculate against
622  */
623 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
624 {
625         struct alarm *alarm = &timr->it.alarm.alarmtimer;
626
627         return ktime_sub(alarm->node.expires, now);
628 }
629
630 /**
631  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
632  * @timr:       Pointer to the posixtimer data struct
633  */
634 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
635 {
636         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
637 }
638
639 /**
640  * alarm_timer_arm - Posix timer callback to arm a timer
641  * @timr:       Pointer to the posixtimer data struct
642  * @expires:    The new expiry time
643  * @absolute:   Expiry value is absolute time
644  * @sigev_none: Posix timer does not deliver signals
645  */
646 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
647                             bool absolute, bool sigev_none)
648 {
649         struct alarm *alarm = &timr->it.alarm.alarmtimer;
650         struct alarm_base *base = &alarm_bases[alarm->type];
651
652         if (!absolute)
653                 expires = ktime_add_safe(expires, base->gettime());
654         if (sigev_none)
655                 alarm->node.expires = expires;
656         else
657                 alarm_start(&timr->it.alarm.alarmtimer, expires);
658 }
659
660 /**
661  * alarm_clock_getres - posix getres interface
662  * @which_clock: clockid
663  * @tp: timespec to fill
664  *
665  * Returns the granularity of underlying alarm base clock
666  */
667 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
668 {
669         if (!alarmtimer_get_rtcdev())
670                 return -EINVAL;
671
672         tp->tv_sec = 0;
673         tp->tv_nsec = hrtimer_resolution;
674         return 0;
675 }
676
677 /**
678  * alarm_clock_get - posix clock_get interface
679  * @which_clock: clockid
680  * @tp: timespec to fill.
681  *
682  * Provides the underlying alarm base time.
683  */
684 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
685 {
686         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
687
688         if (!alarmtimer_get_rtcdev())
689                 return -EINVAL;
690
691         *tp = ktime_to_timespec64(base->gettime());
692         return 0;
693 }
694
695 /**
696  * alarm_timer_create - posix timer_create interface
697  * @new_timer: k_itimer pointer to manage
698  *
699  * Initializes the k_itimer structure.
700  */
701 static int alarm_timer_create(struct k_itimer *new_timer)
702 {
703         enum  alarmtimer_type type;
704
705         if (!alarmtimer_get_rtcdev())
706                 return -EOPNOTSUPP;
707
708         if (!capable(CAP_WAKE_ALARM))
709                 return -EPERM;
710
711         type = clock2alarm(new_timer->it_clock);
712         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
713         return 0;
714 }
715
716 /**
717  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
718  * @alarm: ptr to alarm that fired
719  *
720  * Wakes up the task that set the alarmtimer
721  */
722 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
723                                                                 ktime_t now)
724 {
725         struct task_struct *task = (struct task_struct *)alarm->data;
726
727         alarm->data = NULL;
728         if (task)
729                 wake_up_process(task);
730         return ALARMTIMER_NORESTART;
731 }
732
733 /**
734  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
735  * @alarm: ptr to alarmtimer
736  * @absexp: absolute expiration time
737  *
738  * Sets the alarm timer and sleeps until it is fired or interrupted.
739  */
740 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
741                                 enum alarmtimer_type type)
742 {
743         struct restart_block *restart;
744         alarm->data = (void *)current;
745         do {
746                 set_current_state(TASK_INTERRUPTIBLE);
747                 alarm_start(alarm, absexp);
748                 if (likely(alarm->data))
749                         schedule();
750
751                 alarm_cancel(alarm);
752         } while (alarm->data && !signal_pending(current));
753
754         __set_current_state(TASK_RUNNING);
755
756         destroy_hrtimer_on_stack(&alarm->timer);
757
758         if (!alarm->data)
759                 return 0;
760
761         if (freezing(current))
762                 alarmtimer_freezerset(absexp, type);
763         restart = &current->restart_block;
764         if (restart->nanosleep.type != TT_NONE) {
765                 struct timespec64 rmt;
766                 ktime_t rem;
767
768                 rem = ktime_sub(absexp, alarm_bases[type].gettime());
769
770                 if (rem <= 0)
771                         return 0;
772                 rmt = ktime_to_timespec64(rem);
773
774                 return nanosleep_copyout(restart, &rmt);
775         }
776         return -ERESTART_RESTARTBLOCK;
777 }
778
779 static void
780 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
781                     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
782 {
783         hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
784                               HRTIMER_MODE_ABS);
785         __alarm_init(alarm, type, function);
786 }
787
788 /**
789  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
790  * @restart: ptr to restart block
791  *
792  * Handles restarted clock_nanosleep calls
793  */
794 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
795 {
796         enum  alarmtimer_type type = restart->nanosleep.clockid;
797         ktime_t exp = restart->nanosleep.expires;
798         struct alarm alarm;
799
800         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
801
802         return alarmtimer_do_nsleep(&alarm, exp, type);
803 }
804
805 /**
806  * alarm_timer_nsleep - alarmtimer nanosleep
807  * @which_clock: clockid
808  * @flags: determins abstime or relative
809  * @tsreq: requested sleep time (abs or rel)
810  * @rmtp: remaining sleep time saved
811  *
812  * Handles clock_nanosleep calls against _ALARM clockids
813  */
814 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
815                               const struct timespec64 *tsreq)
816 {
817         enum  alarmtimer_type type = clock2alarm(which_clock);
818         struct restart_block *restart = &current->restart_block;
819         struct alarm alarm;
820         ktime_t exp;
821         int ret = 0;
822
823         if (!alarmtimer_get_rtcdev())
824                 return -EOPNOTSUPP;
825
826         if (flags & ~TIMER_ABSTIME)
827                 return -EINVAL;
828
829         if (!capable(CAP_WAKE_ALARM))
830                 return -EPERM;
831
832         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
833
834         exp = timespec64_to_ktime(*tsreq);
835         /* Convert (if necessary) to absolute time */
836         if (flags != TIMER_ABSTIME) {
837                 ktime_t now = alarm_bases[type].gettime();
838
839                 exp = ktime_add_safe(now, exp);
840         }
841
842         ret = alarmtimer_do_nsleep(&alarm, exp, type);
843         if (ret != -ERESTART_RESTARTBLOCK)
844                 return ret;
845
846         /* abs timers don't set remaining time or restart */
847         if (flags == TIMER_ABSTIME)
848                 return -ERESTARTNOHAND;
849
850         restart->nanosleep.clockid = type;
851         restart->nanosleep.expires = exp;
852         set_restart_fn(restart, alarm_timer_nsleep_restart);
853         return ret;
854 }
855
856 const struct k_clock alarm_clock = {
857         .clock_getres           = alarm_clock_getres,
858         .clock_get              = alarm_clock_get,
859         .timer_create           = alarm_timer_create,
860         .timer_set              = common_timer_set,
861         .timer_del              = common_timer_del,
862         .timer_get              = common_timer_get,
863         .timer_arm              = alarm_timer_arm,
864         .timer_rearm            = alarm_timer_rearm,
865         .timer_forward          = alarm_timer_forward,
866         .timer_remaining        = alarm_timer_remaining,
867         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
868         .nsleep                 = alarm_timer_nsleep,
869 };
870 #endif /* CONFIG_POSIX_TIMERS */
871
872
873 /* Suspend hook structures */
874 static const struct dev_pm_ops alarmtimer_pm_ops = {
875         .suspend = alarmtimer_suspend,
876         .resume = alarmtimer_resume,
877 };
878
879 static struct platform_driver alarmtimer_driver = {
880         .driver = {
881                 .name = "alarmtimer",
882                 .pm = &alarmtimer_pm_ops,
883         }
884 };
885
886 /**
887  * alarmtimer_init - Initialize alarm timer code
888  *
889  * This function initializes the alarm bases and registers
890  * the posix clock ids.
891  */
892 static int __init alarmtimer_init(void)
893 {
894         struct platform_device *pdev;
895         int error = 0;
896         int i;
897
898         alarmtimer_rtc_timer_init();
899
900         /* Initialize alarm bases */
901         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
902         alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
903         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
904         alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
905         for (i = 0; i < ALARM_NUMTYPE; i++) {
906                 timerqueue_init_head(&alarm_bases[i].timerqueue);
907                 spin_lock_init(&alarm_bases[i].lock);
908         }
909
910         error = alarmtimer_rtc_interface_setup();
911         if (error)
912                 return error;
913
914         error = platform_driver_register(&alarmtimer_driver);
915         if (error)
916                 goto out_if;
917
918         pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
919         if (IS_ERR(pdev)) {
920                 error = PTR_ERR(pdev);
921                 goto out_drv;
922         }
923         return 0;
924
925 out_drv:
926         platform_driver_unregister(&alarmtimer_driver);
927 out_if:
928         alarmtimer_rtc_interface_remove();
929         return error;
930 }
931 device_initcall(alarmtimer_init);