GNU Linux-libre 4.14.266-gnu1
[releases.git] / kernel / time / alarmtimer.c
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/alarmtimer.h>
25 #include <linux/mutex.h>
26 #include <linux/platform_device.h>
27 #include <linux/posix-timers.h>
28 #include <linux/workqueue.h>
29 #include <linux/freezer.h>
30 #include <linux/compat.h>
31 #include <linux/module.h>
32
33 #include "posix-timers.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/alarmtimer.h>
37
38 /**
39  * struct alarm_base - Alarm timer bases
40  * @lock:               Lock for syncrhonized access to the base
41  * @timerqueue:         Timerqueue head managing the list of events
42  * @gettime:            Function to read the time correlating to the base
43  * @base_clockid:       clockid for the base
44  */
45 static struct alarm_base {
46         spinlock_t              lock;
47         struct timerqueue_head  timerqueue;
48         ktime_t                 (*gettime)(void);
49         clockid_t               base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 static struct wakeup_source *ws;
62
63 /* rtc timer and device for setting alarm wakeups at suspend */
64 static struct rtc_timer         rtctimer;
65 static struct rtc_device        *rtcdev;
66 static DEFINE_SPINLOCK(rtcdev_lock);
67
68 /**
69  * alarmtimer_get_rtcdev - Return selected rtcdevice
70  *
71  * This function returns the rtc device to use for wakealarms.
72  * If one has not already been chosen, it checks to see if a
73  * functional rtc device is available.
74  */
75 struct rtc_device *alarmtimer_get_rtcdev(void)
76 {
77         unsigned long flags;
78         struct rtc_device *ret;
79
80         spin_lock_irqsave(&rtcdev_lock, flags);
81         ret = rtcdev;
82         spin_unlock_irqrestore(&rtcdev_lock, flags);
83
84         return ret;
85 }
86 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
87
88 static int alarmtimer_rtc_add_device(struct device *dev,
89                                 struct class_interface *class_intf)
90 {
91         unsigned long flags;
92         struct rtc_device *rtc = to_rtc_device(dev);
93         struct wakeup_source *__ws;
94         int ret = 0;
95
96         if (rtcdev)
97                 return -EBUSY;
98
99         if (!rtc->ops->set_alarm)
100                 return -1;
101         if (!device_may_wakeup(rtc->dev.parent))
102                 return -1;
103
104         __ws = wakeup_source_register("alarmtimer");
105
106         spin_lock_irqsave(&rtcdev_lock, flags);
107         if (!rtcdev) {
108                 if (!try_module_get(rtc->owner)) {
109                         ret = -1;
110                         goto unlock;
111                 }
112
113                 rtcdev = rtc;
114                 /* hold a reference so it doesn't go away */
115                 get_device(dev);
116                 ws = __ws;
117                 __ws = NULL;
118         }
119 unlock:
120         spin_unlock_irqrestore(&rtcdev_lock, flags);
121
122         wakeup_source_unregister(__ws);
123
124         return ret;
125 }
126
127 static inline void alarmtimer_rtc_timer_init(void)
128 {
129         rtc_timer_init(&rtctimer, NULL, NULL);
130 }
131
132 static struct class_interface alarmtimer_rtc_interface = {
133         .add_dev = &alarmtimer_rtc_add_device,
134 };
135
136 static int alarmtimer_rtc_interface_setup(void)
137 {
138         alarmtimer_rtc_interface.class = rtc_class;
139         return class_interface_register(&alarmtimer_rtc_interface);
140 }
141 static void alarmtimer_rtc_interface_remove(void)
142 {
143         class_interface_unregister(&alarmtimer_rtc_interface);
144 }
145 #else
146 struct rtc_device *alarmtimer_get_rtcdev(void)
147 {
148         return NULL;
149 }
150 #define rtcdev (NULL)
151 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
152 static inline void alarmtimer_rtc_interface_remove(void) { }
153 static inline void alarmtimer_rtc_timer_init(void) { }
154 #endif
155
156 /**
157  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
158  * @base: pointer to the base where the timer is being run
159  * @alarm: pointer to alarm being enqueued.
160  *
161  * Adds alarm to a alarm_base timerqueue
162  *
163  * Must hold base->lock when calling.
164  */
165 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
166 {
167         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
168                 timerqueue_del(&base->timerqueue, &alarm->node);
169
170         timerqueue_add(&base->timerqueue, &alarm->node);
171         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
172 }
173
174 /**
175  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
176  * @base: pointer to the base where the timer is running
177  * @alarm: pointer to alarm being removed
178  *
179  * Removes alarm to a alarm_base timerqueue
180  *
181  * Must hold base->lock when calling.
182  */
183 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
184 {
185         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
186                 return;
187
188         timerqueue_del(&base->timerqueue, &alarm->node);
189         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
190 }
191
192
193 /**
194  * alarmtimer_fired - Handles alarm hrtimer being fired.
195  * @timer: pointer to hrtimer being run
196  *
197  * When a alarm timer fires, this runs through the timerqueue to
198  * see which alarms expired, and runs those. If there are more alarm
199  * timers queued for the future, we set the hrtimer to fire when
200  * when the next future alarm timer expires.
201  */
202 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
203 {
204         struct alarm *alarm = container_of(timer, struct alarm, timer);
205         struct alarm_base *base = &alarm_bases[alarm->type];
206         unsigned long flags;
207         int ret = HRTIMER_NORESTART;
208         int restart = ALARMTIMER_NORESTART;
209
210         spin_lock_irqsave(&base->lock, flags);
211         alarmtimer_dequeue(base, alarm);
212         spin_unlock_irqrestore(&base->lock, flags);
213
214         if (alarm->function)
215                 restart = alarm->function(alarm, base->gettime());
216
217         spin_lock_irqsave(&base->lock, flags);
218         if (restart != ALARMTIMER_NORESTART) {
219                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
220                 alarmtimer_enqueue(base, alarm);
221                 ret = HRTIMER_RESTART;
222         }
223         spin_unlock_irqrestore(&base->lock, flags);
224
225         trace_alarmtimer_fired(alarm, base->gettime());
226         return ret;
227
228 }
229
230 ktime_t alarm_expires_remaining(const struct alarm *alarm)
231 {
232         struct alarm_base *base = &alarm_bases[alarm->type];
233         return ktime_sub(alarm->node.expires, base->gettime());
234 }
235 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
236
237 #ifdef CONFIG_RTC_CLASS
238 /**
239  * alarmtimer_suspend - Suspend time callback
240  * @dev: unused
241  * @state: unused
242  *
243  * When we are going into suspend, we look through the bases
244  * to see which is the soonest timer to expire. We then
245  * set an rtc timer to fire that far into the future, which
246  * will wake us from suspend.
247  */
248 static int alarmtimer_suspend(struct device *dev)
249 {
250         ktime_t min, now, expires;
251         int i, ret, type;
252         struct rtc_device *rtc;
253         unsigned long flags;
254         struct rtc_time tm;
255
256         spin_lock_irqsave(&freezer_delta_lock, flags);
257         min = freezer_delta;
258         expires = freezer_expires;
259         type = freezer_alarmtype;
260         freezer_delta = 0;
261         spin_unlock_irqrestore(&freezer_delta_lock, flags);
262
263         rtc = alarmtimer_get_rtcdev();
264         /* If we have no rtcdev, just return */
265         if (!rtc)
266                 return 0;
267
268         /* Find the soonest timer to expire*/
269         for (i = 0; i < ALARM_NUMTYPE; i++) {
270                 struct alarm_base *base = &alarm_bases[i];
271                 struct timerqueue_node *next;
272                 ktime_t delta;
273
274                 spin_lock_irqsave(&base->lock, flags);
275                 next = timerqueue_getnext(&base->timerqueue);
276                 spin_unlock_irqrestore(&base->lock, flags);
277                 if (!next)
278                         continue;
279                 delta = ktime_sub(next->expires, base->gettime());
280                 if (!min || (delta < min)) {
281                         expires = next->expires;
282                         min = delta;
283                         type = i;
284                 }
285         }
286         if (min == 0)
287                 return 0;
288
289         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
290                 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
291                 return -EBUSY;
292         }
293
294         trace_alarmtimer_suspend(expires, type);
295
296         /* Setup an rtc timer to fire that far in the future */
297         rtc_timer_cancel(rtc, &rtctimer);
298         rtc_read_time(rtc, &tm);
299         now = rtc_tm_to_ktime(tm);
300         now = ktime_add(now, min);
301
302         /* Set alarm, if in the past reject suspend briefly to handle */
303         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
304         if (ret < 0)
305                 __pm_wakeup_event(ws, MSEC_PER_SEC);
306         return ret;
307 }
308
309 static int alarmtimer_resume(struct device *dev)
310 {
311         struct rtc_device *rtc;
312
313         rtc = alarmtimer_get_rtcdev();
314         if (rtc)
315                 rtc_timer_cancel(rtc, &rtctimer);
316         return 0;
317 }
318
319 #else
320 static int alarmtimer_suspend(struct device *dev)
321 {
322         return 0;
323 }
324
325 static int alarmtimer_resume(struct device *dev)
326 {
327         return 0;
328 }
329 #endif
330
331 static void
332 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
333              enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
334 {
335         timerqueue_init(&alarm->node);
336         alarm->timer.function = alarmtimer_fired;
337         alarm->function = function;
338         alarm->type = type;
339         alarm->state = ALARMTIMER_STATE_INACTIVE;
340 }
341
342 /**
343  * alarm_init - Initialize an alarm structure
344  * @alarm: ptr to alarm to be initialized
345  * @type: the type of the alarm
346  * @function: callback that is run when the alarm fires
347  */
348 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
349                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
350 {
351         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
352                      HRTIMER_MODE_ABS);
353         __alarm_init(alarm, type, function);
354 }
355 EXPORT_SYMBOL_GPL(alarm_init);
356
357 /**
358  * alarm_start - Sets an absolute alarm to fire
359  * @alarm: ptr to alarm to set
360  * @start: time to run the alarm
361  */
362 void alarm_start(struct alarm *alarm, ktime_t start)
363 {
364         struct alarm_base *base = &alarm_bases[alarm->type];
365         unsigned long flags;
366
367         spin_lock_irqsave(&base->lock, flags);
368         alarm->node.expires = start;
369         alarmtimer_enqueue(base, alarm);
370         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
371         spin_unlock_irqrestore(&base->lock, flags);
372
373         trace_alarmtimer_start(alarm, base->gettime());
374 }
375 EXPORT_SYMBOL_GPL(alarm_start);
376
377 /**
378  * alarm_start_relative - Sets a relative alarm to fire
379  * @alarm: ptr to alarm to set
380  * @start: time relative to now to run the alarm
381  */
382 void alarm_start_relative(struct alarm *alarm, ktime_t start)
383 {
384         struct alarm_base *base = &alarm_bases[alarm->type];
385
386         start = ktime_add_safe(start, base->gettime());
387         alarm_start(alarm, start);
388 }
389 EXPORT_SYMBOL_GPL(alarm_start_relative);
390
391 void alarm_restart(struct alarm *alarm)
392 {
393         struct alarm_base *base = &alarm_bases[alarm->type];
394         unsigned long flags;
395
396         spin_lock_irqsave(&base->lock, flags);
397         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
398         hrtimer_restart(&alarm->timer);
399         alarmtimer_enqueue(base, alarm);
400         spin_unlock_irqrestore(&base->lock, flags);
401 }
402 EXPORT_SYMBOL_GPL(alarm_restart);
403
404 /**
405  * alarm_try_to_cancel - Tries to cancel an alarm timer
406  * @alarm: ptr to alarm to be canceled
407  *
408  * Returns 1 if the timer was canceled, 0 if it was not running,
409  * and -1 if the callback was running
410  */
411 int alarm_try_to_cancel(struct alarm *alarm)
412 {
413         struct alarm_base *base = &alarm_bases[alarm->type];
414         unsigned long flags;
415         int ret;
416
417         spin_lock_irqsave(&base->lock, flags);
418         ret = hrtimer_try_to_cancel(&alarm->timer);
419         if (ret >= 0)
420                 alarmtimer_dequeue(base, alarm);
421         spin_unlock_irqrestore(&base->lock, flags);
422
423         trace_alarmtimer_cancel(alarm, base->gettime());
424         return ret;
425 }
426 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
427
428
429 /**
430  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
431  * @alarm: ptr to alarm to be canceled
432  *
433  * Returns 1 if the timer was canceled, 0 if it was not active.
434  */
435 int alarm_cancel(struct alarm *alarm)
436 {
437         for (;;) {
438                 int ret = alarm_try_to_cancel(alarm);
439                 if (ret >= 0)
440                         return ret;
441                 cpu_relax();
442         }
443 }
444 EXPORT_SYMBOL_GPL(alarm_cancel);
445
446
447 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
448 {
449         u64 overrun = 1;
450         ktime_t delta;
451
452         delta = ktime_sub(now, alarm->node.expires);
453
454         if (delta < 0)
455                 return 0;
456
457         if (unlikely(delta >= interval)) {
458                 s64 incr = ktime_to_ns(interval);
459
460                 overrun = ktime_divns(delta, incr);
461
462                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
463                                                         incr*overrun);
464
465                 if (alarm->node.expires > now)
466                         return overrun;
467                 /*
468                  * This (and the ktime_add() below) is the
469                  * correction for exact:
470                  */
471                 overrun++;
472         }
473
474         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
475         return overrun;
476 }
477 EXPORT_SYMBOL_GPL(alarm_forward);
478
479 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
480 {
481         struct alarm_base *base = &alarm_bases[alarm->type];
482
483         return alarm_forward(alarm, base->gettime(), interval);
484 }
485 EXPORT_SYMBOL_GPL(alarm_forward_now);
486
487 #ifdef CONFIG_POSIX_TIMERS
488
489 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
490 {
491         struct alarm_base *base;
492         unsigned long flags;
493         ktime_t delta;
494
495         switch(type) {
496         case ALARM_REALTIME:
497                 base = &alarm_bases[ALARM_REALTIME];
498                 type = ALARM_REALTIME_FREEZER;
499                 break;
500         case ALARM_BOOTTIME:
501                 base = &alarm_bases[ALARM_BOOTTIME];
502                 type = ALARM_BOOTTIME_FREEZER;
503                 break;
504         default:
505                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
506                 return;
507         }
508
509         delta = ktime_sub(absexp, base->gettime());
510
511         spin_lock_irqsave(&freezer_delta_lock, flags);
512         if (!freezer_delta || (delta < freezer_delta)) {
513                 freezer_delta = delta;
514                 freezer_expires = absexp;
515                 freezer_alarmtype = type;
516         }
517         spin_unlock_irqrestore(&freezer_delta_lock, flags);
518 }
519
520 /**
521  * clock2alarm - helper that converts from clockid to alarmtypes
522  * @clockid: clockid.
523  */
524 static enum alarmtimer_type clock2alarm(clockid_t clockid)
525 {
526         if (clockid == CLOCK_REALTIME_ALARM)
527                 return ALARM_REALTIME;
528         if (clockid == CLOCK_BOOTTIME_ALARM)
529                 return ALARM_BOOTTIME;
530         return -1;
531 }
532
533 /**
534  * alarm_handle_timer - Callback for posix timers
535  * @alarm: alarm that fired
536  *
537  * Posix timer callback for expired alarm timers.
538  */
539 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
540                                                         ktime_t now)
541 {
542         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
543                                             it.alarm.alarmtimer);
544         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
545         unsigned long flags;
546         int si_private = 0;
547
548         spin_lock_irqsave(&ptr->it_lock, flags);
549
550         ptr->it_active = 0;
551         if (ptr->it_interval)
552                 si_private = ++ptr->it_requeue_pending;
553
554         if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
555                 /*
556                  * Handle ignored signals and rearm the timer. This will go
557                  * away once we handle ignored signals proper.
558                  */
559                 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
560                 ++ptr->it_requeue_pending;
561                 ptr->it_active = 1;
562                 result = ALARMTIMER_RESTART;
563         }
564         spin_unlock_irqrestore(&ptr->it_lock, flags);
565
566         return result;
567 }
568
569 /**
570  * alarm_timer_rearm - Posix timer callback for rearming timer
571  * @timr:       Pointer to the posixtimer data struct
572  */
573 static void alarm_timer_rearm(struct k_itimer *timr)
574 {
575         struct alarm *alarm = &timr->it.alarm.alarmtimer;
576
577         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
578         alarm_start(alarm, alarm->node.expires);
579 }
580
581 /**
582  * alarm_timer_forward - Posix timer callback for forwarding timer
583  * @timr:       Pointer to the posixtimer data struct
584  * @now:        Current time to forward the timer against
585  */
586 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
587 {
588         struct alarm *alarm = &timr->it.alarm.alarmtimer;
589
590         return alarm_forward(alarm, timr->it_interval, now);
591 }
592
593 /**
594  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
595  * @timr:       Pointer to the posixtimer data struct
596  * @now:        Current time to calculate against
597  */
598 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
599 {
600         struct alarm *alarm = &timr->it.alarm.alarmtimer;
601
602         return ktime_sub(alarm->node.expires, now);
603 }
604
605 /**
606  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
607  * @timr:       Pointer to the posixtimer data struct
608  */
609 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
610 {
611         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
612 }
613
614 /**
615  * alarm_timer_arm - Posix timer callback to arm a timer
616  * @timr:       Pointer to the posixtimer data struct
617  * @expires:    The new expiry time
618  * @absolute:   Expiry value is absolute time
619  * @sigev_none: Posix timer does not deliver signals
620  */
621 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
622                             bool absolute, bool sigev_none)
623 {
624         struct alarm *alarm = &timr->it.alarm.alarmtimer;
625         struct alarm_base *base = &alarm_bases[alarm->type];
626
627         if (!absolute)
628                 expires = ktime_add_safe(expires, base->gettime());
629         if (sigev_none)
630                 alarm->node.expires = expires;
631         else
632                 alarm_start(&timr->it.alarm.alarmtimer, expires);
633 }
634
635 /**
636  * alarm_clock_getres - posix getres interface
637  * @which_clock: clockid
638  * @tp: timespec to fill
639  *
640  * Returns the granularity of underlying alarm base clock
641  */
642 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
643 {
644         if (!alarmtimer_get_rtcdev())
645                 return -EINVAL;
646
647         tp->tv_sec = 0;
648         tp->tv_nsec = hrtimer_resolution;
649         return 0;
650 }
651
652 /**
653  * alarm_clock_get - posix clock_get interface
654  * @which_clock: clockid
655  * @tp: timespec to fill.
656  *
657  * Provides the underlying alarm base time.
658  */
659 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
660 {
661         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
662
663         if (!alarmtimer_get_rtcdev())
664                 return -EINVAL;
665
666         *tp = ktime_to_timespec64(base->gettime());
667         return 0;
668 }
669
670 /**
671  * alarm_timer_create - posix timer_create interface
672  * @new_timer: k_itimer pointer to manage
673  *
674  * Initializes the k_itimer structure.
675  */
676 static int alarm_timer_create(struct k_itimer *new_timer)
677 {
678         enum  alarmtimer_type type;
679
680         if (!alarmtimer_get_rtcdev())
681                 return -EOPNOTSUPP;
682
683         if (!capable(CAP_WAKE_ALARM))
684                 return -EPERM;
685
686         type = clock2alarm(new_timer->it_clock);
687         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
688         return 0;
689 }
690
691 /**
692  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
693  * @alarm: ptr to alarm that fired
694  *
695  * Wakes up the task that set the alarmtimer
696  */
697 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
698                                                                 ktime_t now)
699 {
700         struct task_struct *task = (struct task_struct *)alarm->data;
701
702         alarm->data = NULL;
703         if (task)
704                 wake_up_process(task);
705         return ALARMTIMER_NORESTART;
706 }
707
708 /**
709  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
710  * @alarm: ptr to alarmtimer
711  * @absexp: absolute expiration time
712  *
713  * Sets the alarm timer and sleeps until it is fired or interrupted.
714  */
715 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
716                                 enum alarmtimer_type type)
717 {
718         struct restart_block *restart;
719         alarm->data = (void *)current;
720         do {
721                 set_current_state(TASK_INTERRUPTIBLE);
722                 alarm_start(alarm, absexp);
723                 if (likely(alarm->data))
724                         schedule();
725
726                 alarm_cancel(alarm);
727         } while (alarm->data && !signal_pending(current));
728
729         __set_current_state(TASK_RUNNING);
730
731         destroy_hrtimer_on_stack(&alarm->timer);
732
733         if (!alarm->data)
734                 return 0;
735
736         if (freezing(current))
737                 alarmtimer_freezerset(absexp, type);
738         restart = &current->restart_block;
739         if (restart->nanosleep.type != TT_NONE) {
740                 struct timespec64 rmt;
741                 ktime_t rem;
742
743                 rem = ktime_sub(absexp, alarm_bases[type].gettime());
744
745                 if (rem <= 0)
746                         return 0;
747                 rmt = ktime_to_timespec64(rem);
748
749                 return nanosleep_copyout(restart, &rmt);
750         }
751         return -ERESTART_RESTARTBLOCK;
752 }
753
754 static void
755 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
756                     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
757 {
758         hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
759                               HRTIMER_MODE_ABS);
760         __alarm_init(alarm, type, function);
761 }
762
763 /**
764  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
765  * @restart: ptr to restart block
766  *
767  * Handles restarted clock_nanosleep calls
768  */
769 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
770 {
771         enum  alarmtimer_type type = restart->nanosleep.clockid;
772         ktime_t exp = restart->nanosleep.expires;
773         struct alarm alarm;
774
775         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
776
777         return alarmtimer_do_nsleep(&alarm, exp, type);
778 }
779
780 /**
781  * alarm_timer_nsleep - alarmtimer nanosleep
782  * @which_clock: clockid
783  * @flags: determins abstime or relative
784  * @tsreq: requested sleep time (abs or rel)
785  * @rmtp: remaining sleep time saved
786  *
787  * Handles clock_nanosleep calls against _ALARM clockids
788  */
789 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
790                               const struct timespec64 *tsreq)
791 {
792         enum  alarmtimer_type type = clock2alarm(which_clock);
793         struct restart_block *restart = &current->restart_block;
794         struct alarm alarm;
795         ktime_t exp;
796         int ret = 0;
797
798         if (!alarmtimer_get_rtcdev())
799                 return -EOPNOTSUPP;
800
801         if (flags & ~TIMER_ABSTIME)
802                 return -EINVAL;
803
804         if (!capable(CAP_WAKE_ALARM))
805                 return -EPERM;
806
807         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
808
809         exp = timespec64_to_ktime(*tsreq);
810         /* Convert (if necessary) to absolute time */
811         if (flags != TIMER_ABSTIME) {
812                 ktime_t now = alarm_bases[type].gettime();
813
814                 exp = ktime_add_safe(now, exp);
815         }
816
817         ret = alarmtimer_do_nsleep(&alarm, exp, type);
818         if (ret != -ERESTART_RESTARTBLOCK)
819                 return ret;
820
821         /* abs timers don't set remaining time or restart */
822         if (flags == TIMER_ABSTIME)
823                 return -ERESTARTNOHAND;
824
825         restart->nanosleep.clockid = type;
826         restart->nanosleep.expires = exp;
827         set_restart_fn(restart, alarm_timer_nsleep_restart);
828         return ret;
829 }
830
831 const struct k_clock alarm_clock = {
832         .clock_getres           = alarm_clock_getres,
833         .clock_get              = alarm_clock_get,
834         .timer_create           = alarm_timer_create,
835         .timer_set              = common_timer_set,
836         .timer_del              = common_timer_del,
837         .timer_get              = common_timer_get,
838         .timer_arm              = alarm_timer_arm,
839         .timer_rearm            = alarm_timer_rearm,
840         .timer_forward          = alarm_timer_forward,
841         .timer_remaining        = alarm_timer_remaining,
842         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
843         .nsleep                 = alarm_timer_nsleep,
844 };
845 #endif /* CONFIG_POSIX_TIMERS */
846
847
848 /* Suspend hook structures */
849 static const struct dev_pm_ops alarmtimer_pm_ops = {
850         .suspend = alarmtimer_suspend,
851         .resume = alarmtimer_resume,
852 };
853
854 static struct platform_driver alarmtimer_driver = {
855         .driver = {
856                 .name = "alarmtimer",
857                 .pm = &alarmtimer_pm_ops,
858         }
859 };
860
861 /**
862  * alarmtimer_init - Initialize alarm timer code
863  *
864  * This function initializes the alarm bases and registers
865  * the posix clock ids.
866  */
867 static int __init alarmtimer_init(void)
868 {
869         struct platform_device *pdev;
870         int error = 0;
871         int i;
872
873         alarmtimer_rtc_timer_init();
874
875         /* Initialize alarm bases */
876         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
877         alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
878         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
879         alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
880         for (i = 0; i < ALARM_NUMTYPE; i++) {
881                 timerqueue_init_head(&alarm_bases[i].timerqueue);
882                 spin_lock_init(&alarm_bases[i].lock);
883         }
884
885         error = alarmtimer_rtc_interface_setup();
886         if (error)
887                 return error;
888
889         error = platform_driver_register(&alarmtimer_driver);
890         if (error)
891                 goto out_if;
892
893         pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
894         if (IS_ERR(pdev)) {
895                 error = PTR_ERR(pdev);
896                 goto out_drv;
897         }
898         return 0;
899
900 out_drv:
901         platform_driver_unregister(&alarmtimer_driver);
902 out_if:
903         alarmtimer_rtc_interface_remove();
904         return error;
905 }
906 device_initcall(alarmtimer_init);