GNU Linux-libre 4.19.264-gnu1
[releases.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/clock.h>
21 #include <linux/syscore_ops.h>
22 #include <linux/clocksource.h>
23 #include <linux/jiffies.h>
24 #include <linux/time.h>
25 #include <linux/timex.h>
26 #include <linux/tick.h>
27 #include <linux/stop_machine.h>
28 #include <linux/pvclock_gtod.h>
29 #include <linux/compiler.h>
30
31 #include "tick-internal.h"
32 #include "ntp_internal.h"
33 #include "timekeeping_internal.h"
34
35 #define TK_CLEAR_NTP            (1 << 0)
36 #define TK_MIRROR               (1 << 1)
37 #define TK_CLOCK_WAS_SET        (1 << 2)
38
39 enum timekeeping_adv_mode {
40         /* Update timekeeper when a tick has passed */
41         TK_ADV_TICK,
42
43         /* Update timekeeper on a direct frequency change */
44         TK_ADV_FREQ
45 };
46
47 /*
48  * The most important data for readout fits into a single 64 byte
49  * cache line.
50  */
51 static struct {
52         seqcount_t              seq;
53         struct timekeeper       timekeeper;
54 } tk_core ____cacheline_aligned = {
55         .seq = SEQCNT_ZERO(tk_core.seq),
56 };
57
58 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
59 static struct timekeeper shadow_timekeeper;
60
61 /**
62  * struct tk_fast - NMI safe timekeeper
63  * @seq:        Sequence counter for protecting updates. The lowest bit
64  *              is the index for the tk_read_base array
65  * @base:       tk_read_base array. Access is indexed by the lowest bit of
66  *              @seq.
67  *
68  * See @update_fast_timekeeper() below.
69  */
70 struct tk_fast {
71         seqcount_t              seq;
72         struct tk_read_base     base[2];
73 };
74
75 /* Suspend-time cycles value for halted fast timekeeper. */
76 static u64 cycles_at_suspend;
77
78 static u64 dummy_clock_read(struct clocksource *cs)
79 {
80         return cycles_at_suspend;
81 }
82
83 static struct clocksource dummy_clock = {
84         .read = dummy_clock_read,
85 };
86
87 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
88         .base[0] = { .clock = &dummy_clock, },
89         .base[1] = { .clock = &dummy_clock, },
90 };
91
92 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
93         .base[0] = { .clock = &dummy_clock, },
94         .base[1] = { .clock = &dummy_clock, },
95 };
96
97 /* flag for if timekeeping is suspended */
98 int __read_mostly timekeeping_suspended;
99
100 static inline void tk_normalize_xtime(struct timekeeper *tk)
101 {
102         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
103                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
104                 tk->xtime_sec++;
105         }
106         while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
107                 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
108                 tk->raw_sec++;
109         }
110 }
111
112 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
113 {
114         struct timespec64 ts;
115
116         ts.tv_sec = tk->xtime_sec;
117         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
118         return ts;
119 }
120
121 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
122 {
123         tk->xtime_sec = ts->tv_sec;
124         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
125 }
126
127 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
128 {
129         tk->xtime_sec += ts->tv_sec;
130         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
131         tk_normalize_xtime(tk);
132 }
133
134 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
135 {
136         struct timespec64 tmp;
137
138         /*
139          * Verify consistency of: offset_real = -wall_to_monotonic
140          * before modifying anything
141          */
142         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
143                                         -tk->wall_to_monotonic.tv_nsec);
144         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
145         tk->wall_to_monotonic = wtm;
146         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
147         tk->offs_real = timespec64_to_ktime(tmp);
148         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
149 }
150
151 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
152 {
153         tk->offs_boot = ktime_add(tk->offs_boot, delta);
154 }
155
156 /*
157  * tk_clock_read - atomic clocksource read() helper
158  *
159  * This helper is necessary to use in the read paths because, while the
160  * seqlock ensures we don't return a bad value while structures are updated,
161  * it doesn't protect from potential crashes. There is the possibility that
162  * the tkr's clocksource may change between the read reference, and the
163  * clock reference passed to the read function.  This can cause crashes if
164  * the wrong clocksource is passed to the wrong read function.
165  * This isn't necessary to use when holding the timekeeper_lock or doing
166  * a read of the fast-timekeeper tkrs (which is protected by its own locking
167  * and update logic).
168  */
169 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
170 {
171         struct clocksource *clock = READ_ONCE(tkr->clock);
172
173         return clock->read(clock);
174 }
175
176 #ifdef CONFIG_DEBUG_TIMEKEEPING
177 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
178
179 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
180 {
181
182         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
183         const char *name = tk->tkr_mono.clock->name;
184
185         if (offset > max_cycles) {
186                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
187                                 offset, name, max_cycles);
188                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
189         } else {
190                 if (offset > (max_cycles >> 1)) {
191                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
192                                         offset, name, max_cycles >> 1);
193                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
194                 }
195         }
196
197         if (tk->underflow_seen) {
198                 if (jiffies - tk->last_warning > WARNING_FREQ) {
199                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
200                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
201                         printk_deferred("         Your kernel is probably still fine.\n");
202                         tk->last_warning = jiffies;
203                 }
204                 tk->underflow_seen = 0;
205         }
206
207         if (tk->overflow_seen) {
208                 if (jiffies - tk->last_warning > WARNING_FREQ) {
209                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
210                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
211                         printk_deferred("         Your kernel is probably still fine.\n");
212                         tk->last_warning = jiffies;
213                 }
214                 tk->overflow_seen = 0;
215         }
216 }
217
218 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
219 {
220         struct timekeeper *tk = &tk_core.timekeeper;
221         u64 now, last, mask, max, delta;
222         unsigned int seq;
223
224         /*
225          * Since we're called holding a seqlock, the data may shift
226          * under us while we're doing the calculation. This can cause
227          * false positives, since we'd note a problem but throw the
228          * results away. So nest another seqlock here to atomically
229          * grab the points we are checking with.
230          */
231         do {
232                 seq = read_seqcount_begin(&tk_core.seq);
233                 now = tk_clock_read(tkr);
234                 last = tkr->cycle_last;
235                 mask = tkr->mask;
236                 max = tkr->clock->max_cycles;
237         } while (read_seqcount_retry(&tk_core.seq, seq));
238
239         delta = clocksource_delta(now, last, mask);
240
241         /*
242          * Try to catch underflows by checking if we are seeing small
243          * mask-relative negative values.
244          */
245         if (unlikely((~delta & mask) < (mask >> 3))) {
246                 tk->underflow_seen = 1;
247                 delta = 0;
248         }
249
250         /* Cap delta value to the max_cycles values to avoid mult overflows */
251         if (unlikely(delta > max)) {
252                 tk->overflow_seen = 1;
253                 delta = tkr->clock->max_cycles;
254         }
255
256         return delta;
257 }
258 #else
259 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
260 {
261 }
262 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
263 {
264         u64 cycle_now, delta;
265
266         /* read clocksource */
267         cycle_now = tk_clock_read(tkr);
268
269         /* calculate the delta since the last update_wall_time */
270         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
271
272         return delta;
273 }
274 #endif
275
276 /**
277  * tk_setup_internals - Set up internals to use clocksource clock.
278  *
279  * @tk:         The target timekeeper to setup.
280  * @clock:              Pointer to clocksource.
281  *
282  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
283  * pair and interval request.
284  *
285  * Unless you're the timekeeping code, you should not be using this!
286  */
287 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
288 {
289         u64 interval;
290         u64 tmp, ntpinterval;
291         struct clocksource *old_clock;
292
293         ++tk->cs_was_changed_seq;
294         old_clock = tk->tkr_mono.clock;
295         tk->tkr_mono.clock = clock;
296         tk->tkr_mono.mask = clock->mask;
297         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
298
299         tk->tkr_raw.clock = clock;
300         tk->tkr_raw.mask = clock->mask;
301         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
302
303         /* Do the ns -> cycle conversion first, using original mult */
304         tmp = NTP_INTERVAL_LENGTH;
305         tmp <<= clock->shift;
306         ntpinterval = tmp;
307         tmp += clock->mult/2;
308         do_div(tmp, clock->mult);
309         if (tmp == 0)
310                 tmp = 1;
311
312         interval = (u64) tmp;
313         tk->cycle_interval = interval;
314
315         /* Go back from cycles -> shifted ns */
316         tk->xtime_interval = interval * clock->mult;
317         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
318         tk->raw_interval = interval * clock->mult;
319
320          /* if changing clocks, convert xtime_nsec shift units */
321         if (old_clock) {
322                 int shift_change = clock->shift - old_clock->shift;
323                 if (shift_change < 0) {
324                         tk->tkr_mono.xtime_nsec >>= -shift_change;
325                         tk->tkr_raw.xtime_nsec >>= -shift_change;
326                 } else {
327                         tk->tkr_mono.xtime_nsec <<= shift_change;
328                         tk->tkr_raw.xtime_nsec <<= shift_change;
329                 }
330         }
331
332         tk->tkr_mono.shift = clock->shift;
333         tk->tkr_raw.shift = clock->shift;
334
335         tk->ntp_error = 0;
336         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
337         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
338
339         /*
340          * The timekeeper keeps its own mult values for the currently
341          * active clocksource. These value will be adjusted via NTP
342          * to counteract clock drifting.
343          */
344         tk->tkr_mono.mult = clock->mult;
345         tk->tkr_raw.mult = clock->mult;
346         tk->ntp_err_mult = 0;
347         tk->skip_second_overflow = 0;
348 }
349
350 /* Timekeeper helper functions. */
351
352 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
353 static u32 default_arch_gettimeoffset(void) { return 0; }
354 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
355 #else
356 static inline u32 arch_gettimeoffset(void) { return 0; }
357 #endif
358
359 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
360 {
361         u64 nsec;
362
363         nsec = delta * tkr->mult + tkr->xtime_nsec;
364         nsec >>= tkr->shift;
365
366         /* If arch requires, add in get_arch_timeoffset() */
367         return nsec + arch_gettimeoffset();
368 }
369
370 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
371 {
372         u64 delta;
373
374         delta = timekeeping_get_delta(tkr);
375         return timekeeping_delta_to_ns(tkr, delta);
376 }
377
378 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
379 {
380         u64 delta;
381
382         /* calculate the delta since the last update_wall_time */
383         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
384         return timekeeping_delta_to_ns(tkr, delta);
385 }
386
387 /**
388  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
389  * @tkr: Timekeeping readout base from which we take the update
390  *
391  * We want to use this from any context including NMI and tracing /
392  * instrumenting the timekeeping code itself.
393  *
394  * Employ the latch technique; see @raw_write_seqcount_latch.
395  *
396  * So if a NMI hits the update of base[0] then it will use base[1]
397  * which is still consistent. In the worst case this can result is a
398  * slightly wrong timestamp (a few nanoseconds). See
399  * @ktime_get_mono_fast_ns.
400  */
401 static void update_fast_timekeeper(const struct tk_read_base *tkr,
402                                    struct tk_fast *tkf)
403 {
404         struct tk_read_base *base = tkf->base;
405
406         /* Force readers off to base[1] */
407         raw_write_seqcount_latch(&tkf->seq);
408
409         /* Update base[0] */
410         memcpy(base, tkr, sizeof(*base));
411
412         /* Force readers back to base[0] */
413         raw_write_seqcount_latch(&tkf->seq);
414
415         /* Update base[1] */
416         memcpy(base + 1, base, sizeof(*base));
417 }
418
419 /**
420  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
421  *
422  * This timestamp is not guaranteed to be monotonic across an update.
423  * The timestamp is calculated by:
424  *
425  *      now = base_mono + clock_delta * slope
426  *
427  * So if the update lowers the slope, readers who are forced to the
428  * not yet updated second array are still using the old steeper slope.
429  *
430  * tmono
431  * ^
432  * |    o  n
433  * |   o n
434  * |  u
435  * | o
436  * |o
437  * |12345678---> reader order
438  *
439  * o = old slope
440  * u = update
441  * n = new slope
442  *
443  * So reader 6 will observe time going backwards versus reader 5.
444  *
445  * While other CPUs are likely to be able observe that, the only way
446  * for a CPU local observation is when an NMI hits in the middle of
447  * the update. Timestamps taken from that NMI context might be ahead
448  * of the following timestamps. Callers need to be aware of that and
449  * deal with it.
450  */
451 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
452 {
453         struct tk_read_base *tkr;
454         unsigned int seq;
455         u64 now;
456
457         do {
458                 seq = raw_read_seqcount_latch(&tkf->seq);
459                 tkr = tkf->base + (seq & 0x01);
460                 now = ktime_to_ns(tkr->base);
461
462                 now += timekeeping_delta_to_ns(tkr,
463                                 clocksource_delta(
464                                         tk_clock_read(tkr),
465                                         tkr->cycle_last,
466                                         tkr->mask));
467         } while (read_seqcount_retry(&tkf->seq, seq));
468
469         return now;
470 }
471
472 u64 ktime_get_mono_fast_ns(void)
473 {
474         return __ktime_get_fast_ns(&tk_fast_mono);
475 }
476 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
477
478 u64 ktime_get_raw_fast_ns(void)
479 {
480         return __ktime_get_fast_ns(&tk_fast_raw);
481 }
482 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
483
484 /**
485  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
486  *
487  * To keep it NMI safe since we're accessing from tracing, we're not using a
488  * separate timekeeper with updates to monotonic clock and boot offset
489  * protected with seqlocks. This has the following minor side effects:
490  *
491  * (1) Its possible that a timestamp be taken after the boot offset is updated
492  * but before the timekeeper is updated. If this happens, the new boot offset
493  * is added to the old timekeeping making the clock appear to update slightly
494  * earlier:
495  *    CPU 0                                        CPU 1
496  *    timekeeping_inject_sleeptime64()
497  *    __timekeeping_inject_sleeptime(tk, delta);
498  *                                                 timestamp();
499  *    timekeeping_update(tk, TK_CLEAR_NTP...);
500  *
501  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
502  * partially updated.  Since the tk->offs_boot update is a rare event, this
503  * should be a rare occurrence which postprocessing should be able to handle.
504  */
505 u64 notrace ktime_get_boot_fast_ns(void)
506 {
507         struct timekeeper *tk = &tk_core.timekeeper;
508
509         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
510 }
511 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
512
513
514 /*
515  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
516  */
517 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
518 {
519         struct tk_read_base *tkr;
520         unsigned int seq;
521         u64 now;
522
523         do {
524                 seq = raw_read_seqcount_latch(&tkf->seq);
525                 tkr = tkf->base + (seq & 0x01);
526                 now = ktime_to_ns(tkr->base_real);
527
528                 now += timekeeping_delta_to_ns(tkr,
529                                 clocksource_delta(
530                                         tk_clock_read(tkr),
531                                         tkr->cycle_last,
532                                         tkr->mask));
533         } while (read_seqcount_retry(&tkf->seq, seq));
534
535         return now;
536 }
537
538 /**
539  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
540  */
541 u64 ktime_get_real_fast_ns(void)
542 {
543         return __ktime_get_real_fast_ns(&tk_fast_mono);
544 }
545 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
546
547 /**
548  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
549  * @tk: Timekeeper to snapshot.
550  *
551  * It generally is unsafe to access the clocksource after timekeeping has been
552  * suspended, so take a snapshot of the readout base of @tk and use it as the
553  * fast timekeeper's readout base while suspended.  It will return the same
554  * number of cycles every time until timekeeping is resumed at which time the
555  * proper readout base for the fast timekeeper will be restored automatically.
556  */
557 static void halt_fast_timekeeper(const struct timekeeper *tk)
558 {
559         static struct tk_read_base tkr_dummy;
560         const struct tk_read_base *tkr = &tk->tkr_mono;
561
562         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
563         cycles_at_suspend = tk_clock_read(tkr);
564         tkr_dummy.clock = &dummy_clock;
565         tkr_dummy.base_real = tkr->base + tk->offs_real;
566         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
567
568         tkr = &tk->tkr_raw;
569         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
570         tkr_dummy.clock = &dummy_clock;
571         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
572 }
573
574 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
575
576 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
577 {
578         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
579 }
580
581 /**
582  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
583  */
584 int pvclock_gtod_register_notifier(struct notifier_block *nb)
585 {
586         struct timekeeper *tk = &tk_core.timekeeper;
587         unsigned long flags;
588         int ret;
589
590         raw_spin_lock_irqsave(&timekeeper_lock, flags);
591         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
592         update_pvclock_gtod(tk, true);
593         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
594
595         return ret;
596 }
597 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
598
599 /**
600  * pvclock_gtod_unregister_notifier - unregister a pvclock
601  * timedata update listener
602  */
603 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
604 {
605         unsigned long flags;
606         int ret;
607
608         raw_spin_lock_irqsave(&timekeeper_lock, flags);
609         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
610         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
611
612         return ret;
613 }
614 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
615
616 /*
617  * tk_update_leap_state - helper to update the next_leap_ktime
618  */
619 static inline void tk_update_leap_state(struct timekeeper *tk)
620 {
621         tk->next_leap_ktime = ntp_get_next_leap();
622         if (tk->next_leap_ktime != KTIME_MAX)
623                 /* Convert to monotonic time */
624                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
625 }
626
627 /*
628  * Update the ktime_t based scalar nsec members of the timekeeper
629  */
630 static inline void tk_update_ktime_data(struct timekeeper *tk)
631 {
632         u64 seconds;
633         u32 nsec;
634
635         /*
636          * The xtime based monotonic readout is:
637          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
638          * The ktime based monotonic readout is:
639          *      nsec = base_mono + now();
640          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
641          */
642         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
643         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
644         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
645
646         /*
647          * The sum of the nanoseconds portions of xtime and
648          * wall_to_monotonic can be greater/equal one second. Take
649          * this into account before updating tk->ktime_sec.
650          */
651         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
652         if (nsec >= NSEC_PER_SEC)
653                 seconds++;
654         tk->ktime_sec = seconds;
655
656         /* Update the monotonic raw base */
657         tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
658 }
659
660 /* must hold timekeeper_lock */
661 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
662 {
663         if (action & TK_CLEAR_NTP) {
664                 tk->ntp_error = 0;
665                 ntp_clear();
666         }
667
668         tk_update_leap_state(tk);
669         tk_update_ktime_data(tk);
670
671         update_vsyscall(tk);
672         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
673
674         tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
675         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
676         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
677
678         if (action & TK_CLOCK_WAS_SET)
679                 tk->clock_was_set_seq++;
680         /*
681          * The mirroring of the data to the shadow-timekeeper needs
682          * to happen last here to ensure we don't over-write the
683          * timekeeper structure on the next update with stale data
684          */
685         if (action & TK_MIRROR)
686                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
687                        sizeof(tk_core.timekeeper));
688 }
689
690 /**
691  * timekeeping_forward_now - update clock to the current time
692  *
693  * Forward the current clock to update its state since the last call to
694  * update_wall_time(). This is useful before significant clock changes,
695  * as it avoids having to deal with this time offset explicitly.
696  */
697 static void timekeeping_forward_now(struct timekeeper *tk)
698 {
699         u64 cycle_now, delta;
700
701         cycle_now = tk_clock_read(&tk->tkr_mono);
702         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
703         tk->tkr_mono.cycle_last = cycle_now;
704         tk->tkr_raw.cycle_last  = cycle_now;
705
706         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
707
708         /* If arch requires, add in get_arch_timeoffset() */
709         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
710
711
712         tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
713
714         /* If arch requires, add in get_arch_timeoffset() */
715         tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
716
717         tk_normalize_xtime(tk);
718 }
719
720 /**
721  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
722  * @ts:         pointer to the timespec to be set
723  *
724  * Returns the time of day in a timespec64 (WARN if suspended).
725  */
726 void ktime_get_real_ts64(struct timespec64 *ts)
727 {
728         struct timekeeper *tk = &tk_core.timekeeper;
729         unsigned long seq;
730         u64 nsecs;
731
732         WARN_ON(timekeeping_suspended);
733
734         do {
735                 seq = read_seqcount_begin(&tk_core.seq);
736
737                 ts->tv_sec = tk->xtime_sec;
738                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
739
740         } while (read_seqcount_retry(&tk_core.seq, seq));
741
742         ts->tv_nsec = 0;
743         timespec64_add_ns(ts, nsecs);
744 }
745 EXPORT_SYMBOL(ktime_get_real_ts64);
746
747 ktime_t ktime_get(void)
748 {
749         struct timekeeper *tk = &tk_core.timekeeper;
750         unsigned int seq;
751         ktime_t base;
752         u64 nsecs;
753
754         WARN_ON(timekeeping_suspended);
755
756         do {
757                 seq = read_seqcount_begin(&tk_core.seq);
758                 base = tk->tkr_mono.base;
759                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
760
761         } while (read_seqcount_retry(&tk_core.seq, seq));
762
763         return ktime_add_ns(base, nsecs);
764 }
765 EXPORT_SYMBOL_GPL(ktime_get);
766
767 u32 ktime_get_resolution_ns(void)
768 {
769         struct timekeeper *tk = &tk_core.timekeeper;
770         unsigned int seq;
771         u32 nsecs;
772
773         WARN_ON(timekeeping_suspended);
774
775         do {
776                 seq = read_seqcount_begin(&tk_core.seq);
777                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
778         } while (read_seqcount_retry(&tk_core.seq, seq));
779
780         return nsecs;
781 }
782 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
783
784 static ktime_t *offsets[TK_OFFS_MAX] = {
785         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
786         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
787         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
788 };
789
790 ktime_t ktime_get_with_offset(enum tk_offsets offs)
791 {
792         struct timekeeper *tk = &tk_core.timekeeper;
793         unsigned int seq;
794         ktime_t base, *offset = offsets[offs];
795         u64 nsecs;
796
797         WARN_ON(timekeeping_suspended);
798
799         do {
800                 seq = read_seqcount_begin(&tk_core.seq);
801                 base = ktime_add(tk->tkr_mono.base, *offset);
802                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
803
804         } while (read_seqcount_retry(&tk_core.seq, seq));
805
806         return ktime_add_ns(base, nsecs);
807
808 }
809 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
810
811 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
812 {
813         struct timekeeper *tk = &tk_core.timekeeper;
814         unsigned int seq;
815         ktime_t base, *offset = offsets[offs];
816         u64 nsecs;
817
818         WARN_ON(timekeeping_suspended);
819
820         do {
821                 seq = read_seqcount_begin(&tk_core.seq);
822                 base = ktime_add(tk->tkr_mono.base, *offset);
823                 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
824
825         } while (read_seqcount_retry(&tk_core.seq, seq));
826
827         return ktime_add_ns(base, nsecs);
828 }
829 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
830
831 /**
832  * ktime_mono_to_any() - convert mononotic time to any other time
833  * @tmono:      time to convert.
834  * @offs:       which offset to use
835  */
836 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
837 {
838         ktime_t *offset = offsets[offs];
839         unsigned long seq;
840         ktime_t tconv;
841
842         do {
843                 seq = read_seqcount_begin(&tk_core.seq);
844                 tconv = ktime_add(tmono, *offset);
845         } while (read_seqcount_retry(&tk_core.seq, seq));
846
847         return tconv;
848 }
849 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
850
851 /**
852  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
853  */
854 ktime_t ktime_get_raw(void)
855 {
856         struct timekeeper *tk = &tk_core.timekeeper;
857         unsigned int seq;
858         ktime_t base;
859         u64 nsecs;
860
861         do {
862                 seq = read_seqcount_begin(&tk_core.seq);
863                 base = tk->tkr_raw.base;
864                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
865
866         } while (read_seqcount_retry(&tk_core.seq, seq));
867
868         return ktime_add_ns(base, nsecs);
869 }
870 EXPORT_SYMBOL_GPL(ktime_get_raw);
871
872 /**
873  * ktime_get_ts64 - get the monotonic clock in timespec64 format
874  * @ts:         pointer to timespec variable
875  *
876  * The function calculates the monotonic clock from the realtime
877  * clock and the wall_to_monotonic offset and stores the result
878  * in normalized timespec64 format in the variable pointed to by @ts.
879  */
880 void ktime_get_ts64(struct timespec64 *ts)
881 {
882         struct timekeeper *tk = &tk_core.timekeeper;
883         struct timespec64 tomono;
884         unsigned int seq;
885         u64 nsec;
886
887         WARN_ON(timekeeping_suspended);
888
889         do {
890                 seq = read_seqcount_begin(&tk_core.seq);
891                 ts->tv_sec = tk->xtime_sec;
892                 nsec = timekeeping_get_ns(&tk->tkr_mono);
893                 tomono = tk->wall_to_monotonic;
894
895         } while (read_seqcount_retry(&tk_core.seq, seq));
896
897         ts->tv_sec += tomono.tv_sec;
898         ts->tv_nsec = 0;
899         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
900 }
901 EXPORT_SYMBOL_GPL(ktime_get_ts64);
902
903 /**
904  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
905  *
906  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
907  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
908  * works on both 32 and 64 bit systems. On 32 bit systems the readout
909  * covers ~136 years of uptime which should be enough to prevent
910  * premature wrap arounds.
911  */
912 time64_t ktime_get_seconds(void)
913 {
914         struct timekeeper *tk = &tk_core.timekeeper;
915
916         WARN_ON(timekeeping_suspended);
917         return tk->ktime_sec;
918 }
919 EXPORT_SYMBOL_GPL(ktime_get_seconds);
920
921 /**
922  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
923  *
924  * Returns the wall clock seconds since 1970. This replaces the
925  * get_seconds() interface which is not y2038 safe on 32bit systems.
926  *
927  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
928  * 32bit systems the access must be protected with the sequence
929  * counter to provide "atomic" access to the 64bit tk->xtime_sec
930  * value.
931  */
932 time64_t ktime_get_real_seconds(void)
933 {
934         struct timekeeper *tk = &tk_core.timekeeper;
935         time64_t seconds;
936         unsigned int seq;
937
938         if (IS_ENABLED(CONFIG_64BIT))
939                 return tk->xtime_sec;
940
941         do {
942                 seq = read_seqcount_begin(&tk_core.seq);
943                 seconds = tk->xtime_sec;
944
945         } while (read_seqcount_retry(&tk_core.seq, seq));
946
947         return seconds;
948 }
949 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
950
951 /**
952  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
953  * but without the sequence counter protect. This internal function
954  * is called just when timekeeping lock is already held.
955  */
956 time64_t __ktime_get_real_seconds(void)
957 {
958         struct timekeeper *tk = &tk_core.timekeeper;
959
960         return tk->xtime_sec;
961 }
962
963 /**
964  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
965  * @systime_snapshot:   pointer to struct receiving the system time snapshot
966  */
967 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
968 {
969         struct timekeeper *tk = &tk_core.timekeeper;
970         unsigned long seq;
971         ktime_t base_raw;
972         ktime_t base_real;
973         u64 nsec_raw;
974         u64 nsec_real;
975         u64 now;
976
977         WARN_ON_ONCE(timekeeping_suspended);
978
979         do {
980                 seq = read_seqcount_begin(&tk_core.seq);
981                 now = tk_clock_read(&tk->tkr_mono);
982                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
983                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
984                 base_real = ktime_add(tk->tkr_mono.base,
985                                       tk_core.timekeeper.offs_real);
986                 base_raw = tk->tkr_raw.base;
987                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
988                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
989         } while (read_seqcount_retry(&tk_core.seq, seq));
990
991         systime_snapshot->cycles = now;
992         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
993         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
994 }
995 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
996
997 /* Scale base by mult/div checking for overflow */
998 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
999 {
1000         u64 tmp, rem;
1001
1002         tmp = div64_u64_rem(*base, div, &rem);
1003
1004         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1005             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1006                 return -EOVERFLOW;
1007         tmp *= mult;
1008
1009         rem = div64_u64(rem * mult, div);
1010         *base = tmp + rem;
1011         return 0;
1012 }
1013
1014 /**
1015  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1016  * @history:                    Snapshot representing start of history
1017  * @partial_history_cycles:     Cycle offset into history (fractional part)
1018  * @total_history_cycles:       Total history length in cycles
1019  * @discontinuity:              True indicates clock was set on history period
1020  * @ts:                         Cross timestamp that should be adjusted using
1021  *      partial/total ratio
1022  *
1023  * Helper function used by get_device_system_crosststamp() to correct the
1024  * crosstimestamp corresponding to the start of the current interval to the
1025  * system counter value (timestamp point) provided by the driver. The
1026  * total_history_* quantities are the total history starting at the provided
1027  * reference point and ending at the start of the current interval. The cycle
1028  * count between the driver timestamp point and the start of the current
1029  * interval is partial_history_cycles.
1030  */
1031 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1032                                          u64 partial_history_cycles,
1033                                          u64 total_history_cycles,
1034                                          bool discontinuity,
1035                                          struct system_device_crosststamp *ts)
1036 {
1037         struct timekeeper *tk = &tk_core.timekeeper;
1038         u64 corr_raw, corr_real;
1039         bool interp_forward;
1040         int ret;
1041
1042         if (total_history_cycles == 0 || partial_history_cycles == 0)
1043                 return 0;
1044
1045         /* Interpolate shortest distance from beginning or end of history */
1046         interp_forward = partial_history_cycles > total_history_cycles / 2;
1047         partial_history_cycles = interp_forward ?
1048                 total_history_cycles - partial_history_cycles :
1049                 partial_history_cycles;
1050
1051         /*
1052          * Scale the monotonic raw time delta by:
1053          *      partial_history_cycles / total_history_cycles
1054          */
1055         corr_raw = (u64)ktime_to_ns(
1056                 ktime_sub(ts->sys_monoraw, history->raw));
1057         ret = scale64_check_overflow(partial_history_cycles,
1058                                      total_history_cycles, &corr_raw);
1059         if (ret)
1060                 return ret;
1061
1062         /*
1063          * If there is a discontinuity in the history, scale monotonic raw
1064          *      correction by:
1065          *      mult(real)/mult(raw) yielding the realtime correction
1066          * Otherwise, calculate the realtime correction similar to monotonic
1067          *      raw calculation
1068          */
1069         if (discontinuity) {
1070                 corr_real = mul_u64_u32_div
1071                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1072         } else {
1073                 corr_real = (u64)ktime_to_ns(
1074                         ktime_sub(ts->sys_realtime, history->real));
1075                 ret = scale64_check_overflow(partial_history_cycles,
1076                                              total_history_cycles, &corr_real);
1077                 if (ret)
1078                         return ret;
1079         }
1080
1081         /* Fixup monotonic raw and real time time values */
1082         if (interp_forward) {
1083                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1084                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1085         } else {
1086                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1087                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1088         }
1089
1090         return 0;
1091 }
1092
1093 /*
1094  * cycle_between - true if test occurs chronologically between before and after
1095  */
1096 static bool cycle_between(u64 before, u64 test, u64 after)
1097 {
1098         if (test > before && test < after)
1099                 return true;
1100         if (test < before && before > after)
1101                 return true;
1102         return false;
1103 }
1104
1105 /**
1106  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1107  * @get_time_fn:        Callback to get simultaneous device time and
1108  *      system counter from the device driver
1109  * @ctx:                Context passed to get_time_fn()
1110  * @history_begin:      Historical reference point used to interpolate system
1111  *      time when counter provided by the driver is before the current interval
1112  * @xtstamp:            Receives simultaneously captured system and device time
1113  *
1114  * Reads a timestamp from a device and correlates it to system time
1115  */
1116 int get_device_system_crosststamp(int (*get_time_fn)
1117                                   (ktime_t *device_time,
1118                                    struct system_counterval_t *sys_counterval,
1119                                    void *ctx),
1120                                   void *ctx,
1121                                   struct system_time_snapshot *history_begin,
1122                                   struct system_device_crosststamp *xtstamp)
1123 {
1124         struct system_counterval_t system_counterval;
1125         struct timekeeper *tk = &tk_core.timekeeper;
1126         u64 cycles, now, interval_start;
1127         unsigned int clock_was_set_seq = 0;
1128         ktime_t base_real, base_raw;
1129         u64 nsec_real, nsec_raw;
1130         u8 cs_was_changed_seq;
1131         unsigned long seq;
1132         bool do_interp;
1133         int ret;
1134
1135         do {
1136                 seq = read_seqcount_begin(&tk_core.seq);
1137                 /*
1138                  * Try to synchronously capture device time and a system
1139                  * counter value calling back into the device driver
1140                  */
1141                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1142                 if (ret)
1143                         return ret;
1144
1145                 /*
1146                  * Verify that the clocksource associated with the captured
1147                  * system counter value is the same as the currently installed
1148                  * timekeeper clocksource
1149                  */
1150                 if (tk->tkr_mono.clock != system_counterval.cs)
1151                         return -ENODEV;
1152                 cycles = system_counterval.cycles;
1153
1154                 /*
1155                  * Check whether the system counter value provided by the
1156                  * device driver is on the current timekeeping interval.
1157                  */
1158                 now = tk_clock_read(&tk->tkr_mono);
1159                 interval_start = tk->tkr_mono.cycle_last;
1160                 if (!cycle_between(interval_start, cycles, now)) {
1161                         clock_was_set_seq = tk->clock_was_set_seq;
1162                         cs_was_changed_seq = tk->cs_was_changed_seq;
1163                         cycles = interval_start;
1164                         do_interp = true;
1165                 } else {
1166                         do_interp = false;
1167                 }
1168
1169                 base_real = ktime_add(tk->tkr_mono.base,
1170                                       tk_core.timekeeper.offs_real);
1171                 base_raw = tk->tkr_raw.base;
1172
1173                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1174                                                      system_counterval.cycles);
1175                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1176                                                     system_counterval.cycles);
1177         } while (read_seqcount_retry(&tk_core.seq, seq));
1178
1179         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1180         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1181
1182         /*
1183          * Interpolate if necessary, adjusting back from the start of the
1184          * current interval
1185          */
1186         if (do_interp) {
1187                 u64 partial_history_cycles, total_history_cycles;
1188                 bool discontinuity;
1189
1190                 /*
1191                  * Check that the counter value occurs after the provided
1192                  * history reference and that the history doesn't cross a
1193                  * clocksource change
1194                  */
1195                 if (!history_begin ||
1196                     !cycle_between(history_begin->cycles,
1197                                    system_counterval.cycles, cycles) ||
1198                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1199                         return -EINVAL;
1200                 partial_history_cycles = cycles - system_counterval.cycles;
1201                 total_history_cycles = cycles - history_begin->cycles;
1202                 discontinuity =
1203                         history_begin->clock_was_set_seq != clock_was_set_seq;
1204
1205                 ret = adjust_historical_crosststamp(history_begin,
1206                                                     partial_history_cycles,
1207                                                     total_history_cycles,
1208                                                     discontinuity, xtstamp);
1209                 if (ret)
1210                         return ret;
1211         }
1212
1213         return 0;
1214 }
1215 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1216
1217 /**
1218  * do_settimeofday64 - Sets the time of day.
1219  * @ts:     pointer to the timespec64 variable containing the new time
1220  *
1221  * Sets the time of day to the new time and update NTP and notify hrtimers
1222  */
1223 int do_settimeofday64(const struct timespec64 *ts)
1224 {
1225         struct timekeeper *tk = &tk_core.timekeeper;
1226         struct timespec64 ts_delta, xt;
1227         unsigned long flags;
1228         int ret = 0;
1229
1230         if (!timespec64_valid_settod(ts))
1231                 return -EINVAL;
1232
1233         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1234         write_seqcount_begin(&tk_core.seq);
1235
1236         timekeeping_forward_now(tk);
1237
1238         xt = tk_xtime(tk);
1239         ts_delta = timespec64_sub(*ts, xt);
1240
1241         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1242                 ret = -EINVAL;
1243                 goto out;
1244         }
1245
1246         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1247
1248         tk_set_xtime(tk, ts);
1249 out:
1250         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1251
1252         write_seqcount_end(&tk_core.seq);
1253         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1254
1255         /* signal hrtimers about time change */
1256         clock_was_set();
1257
1258         return ret;
1259 }
1260 EXPORT_SYMBOL(do_settimeofday64);
1261
1262 /**
1263  * timekeeping_inject_offset - Adds or subtracts from the current time.
1264  * @tv:         pointer to the timespec variable containing the offset
1265  *
1266  * Adds or subtracts an offset value from the current time.
1267  */
1268 static int timekeeping_inject_offset(const struct timespec64 *ts)
1269 {
1270         struct timekeeper *tk = &tk_core.timekeeper;
1271         unsigned long flags;
1272         struct timespec64 tmp;
1273         int ret = 0;
1274
1275         if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1276                 return -EINVAL;
1277
1278         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1279         write_seqcount_begin(&tk_core.seq);
1280
1281         timekeeping_forward_now(tk);
1282
1283         /* Make sure the proposed value is valid */
1284         tmp = timespec64_add(tk_xtime(tk), *ts);
1285         if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1286             !timespec64_valid_settod(&tmp)) {
1287                 ret = -EINVAL;
1288                 goto error;
1289         }
1290
1291         tk_xtime_add(tk, ts);
1292         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1293
1294 error: /* even if we error out, we forwarded the time, so call update */
1295         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1296
1297         write_seqcount_end(&tk_core.seq);
1298         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1299
1300         /* signal hrtimers about time change */
1301         clock_was_set();
1302
1303         return ret;
1304 }
1305
1306 /*
1307  * Indicates if there is an offset between the system clock and the hardware
1308  * clock/persistent clock/rtc.
1309  */
1310 int persistent_clock_is_local;
1311
1312 /*
1313  * Adjust the time obtained from the CMOS to be UTC time instead of
1314  * local time.
1315  *
1316  * This is ugly, but preferable to the alternatives.  Otherwise we
1317  * would either need to write a program to do it in /etc/rc (and risk
1318  * confusion if the program gets run more than once; it would also be
1319  * hard to make the program warp the clock precisely n hours)  or
1320  * compile in the timezone information into the kernel.  Bad, bad....
1321  *
1322  *                                              - TYT, 1992-01-01
1323  *
1324  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1325  * as real UNIX machines always do it. This avoids all headaches about
1326  * daylight saving times and warping kernel clocks.
1327  */
1328 void timekeeping_warp_clock(void)
1329 {
1330         if (sys_tz.tz_minuteswest != 0) {
1331                 struct timespec64 adjust;
1332
1333                 persistent_clock_is_local = 1;
1334                 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1335                 adjust.tv_nsec = 0;
1336                 timekeeping_inject_offset(&adjust);
1337         }
1338 }
1339
1340 /**
1341  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1342  *
1343  */
1344 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1345 {
1346         tk->tai_offset = tai_offset;
1347         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1348 }
1349
1350 /**
1351  * change_clocksource - Swaps clocksources if a new one is available
1352  *
1353  * Accumulates current time interval and initializes new clocksource
1354  */
1355 static int change_clocksource(void *data)
1356 {
1357         struct timekeeper *tk = &tk_core.timekeeper;
1358         struct clocksource *new, *old;
1359         unsigned long flags;
1360
1361         new = (struct clocksource *) data;
1362
1363         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1364         write_seqcount_begin(&tk_core.seq);
1365
1366         timekeeping_forward_now(tk);
1367         /*
1368          * If the cs is in module, get a module reference. Succeeds
1369          * for built-in code (owner == NULL) as well.
1370          */
1371         if (try_module_get(new->owner)) {
1372                 if (!new->enable || new->enable(new) == 0) {
1373                         old = tk->tkr_mono.clock;
1374                         tk_setup_internals(tk, new);
1375                         if (old->disable)
1376                                 old->disable(old);
1377                         module_put(old->owner);
1378                 } else {
1379                         module_put(new->owner);
1380                 }
1381         }
1382         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1383
1384         write_seqcount_end(&tk_core.seq);
1385         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1386
1387         return 0;
1388 }
1389
1390 /**
1391  * timekeeping_notify - Install a new clock source
1392  * @clock:              pointer to the clock source
1393  *
1394  * This function is called from clocksource.c after a new, better clock
1395  * source has been registered. The caller holds the clocksource_mutex.
1396  */
1397 int timekeeping_notify(struct clocksource *clock)
1398 {
1399         struct timekeeper *tk = &tk_core.timekeeper;
1400
1401         if (tk->tkr_mono.clock == clock)
1402                 return 0;
1403         stop_machine(change_clocksource, clock, NULL);
1404         tick_clock_notify();
1405         return tk->tkr_mono.clock == clock ? 0 : -1;
1406 }
1407
1408 /**
1409  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1410  * @ts:         pointer to the timespec64 to be set
1411  *
1412  * Returns the raw monotonic time (completely un-modified by ntp)
1413  */
1414 void ktime_get_raw_ts64(struct timespec64 *ts)
1415 {
1416         struct timekeeper *tk = &tk_core.timekeeper;
1417         unsigned long seq;
1418         u64 nsecs;
1419
1420         do {
1421                 seq = read_seqcount_begin(&tk_core.seq);
1422                 ts->tv_sec = tk->raw_sec;
1423                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1424
1425         } while (read_seqcount_retry(&tk_core.seq, seq));
1426
1427         ts->tv_nsec = 0;
1428         timespec64_add_ns(ts, nsecs);
1429 }
1430 EXPORT_SYMBOL(ktime_get_raw_ts64);
1431
1432
1433 /**
1434  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1435  */
1436 int timekeeping_valid_for_hres(void)
1437 {
1438         struct timekeeper *tk = &tk_core.timekeeper;
1439         unsigned long seq;
1440         int ret;
1441
1442         do {
1443                 seq = read_seqcount_begin(&tk_core.seq);
1444
1445                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1446
1447         } while (read_seqcount_retry(&tk_core.seq, seq));
1448
1449         return ret;
1450 }
1451
1452 /**
1453  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1454  */
1455 u64 timekeeping_max_deferment(void)
1456 {
1457         struct timekeeper *tk = &tk_core.timekeeper;
1458         unsigned long seq;
1459         u64 ret;
1460
1461         do {
1462                 seq = read_seqcount_begin(&tk_core.seq);
1463
1464                 ret = tk->tkr_mono.clock->max_idle_ns;
1465
1466         } while (read_seqcount_retry(&tk_core.seq, seq));
1467
1468         return ret;
1469 }
1470
1471 /**
1472  * read_persistent_clock -  Return time from the persistent clock.
1473  *
1474  * Weak dummy function for arches that do not yet support it.
1475  * Reads the time from the battery backed persistent clock.
1476  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1477  *
1478  *  XXX - Do be sure to remove it once all arches implement it.
1479  */
1480 void __weak read_persistent_clock(struct timespec *ts)
1481 {
1482         ts->tv_sec = 0;
1483         ts->tv_nsec = 0;
1484 }
1485
1486 void __weak read_persistent_clock64(struct timespec64 *ts64)
1487 {
1488         struct timespec ts;
1489
1490         read_persistent_clock(&ts);
1491         *ts64 = timespec_to_timespec64(ts);
1492 }
1493
1494 /**
1495  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1496  *                                        from the boot.
1497  *
1498  * Weak dummy function for arches that do not yet support it.
1499  * wall_time    - current time as returned by persistent clock
1500  * boot_offset  - offset that is defined as wall_time - boot_time
1501  * The default function calculates offset based on the current value of
1502  * local_clock(). This way architectures that support sched_clock() but don't
1503  * support dedicated boot time clock will provide the best estimate of the
1504  * boot time.
1505  */
1506 void __weak __init
1507 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1508                                      struct timespec64 *boot_offset)
1509 {
1510         read_persistent_clock64(wall_time);
1511         *boot_offset = ns_to_timespec64(local_clock());
1512 }
1513
1514 /*
1515  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1516  *
1517  * The flag starts of false and is only set when a suspend reaches
1518  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1519  * timekeeper clocksource is not stopping across suspend and has been
1520  * used to update sleep time. If the timekeeper clocksource has stopped
1521  * then the flag stays true and is used by the RTC resume code to decide
1522  * whether sleeptime must be injected and if so the flag gets false then.
1523  *
1524  * If a suspend fails before reaching timekeeping_resume() then the flag
1525  * stays false and prevents erroneous sleeptime injection.
1526  */
1527 static bool suspend_timing_needed;
1528
1529 /* Flag for if there is a persistent clock on this platform */
1530 static bool persistent_clock_exists;
1531
1532 /*
1533  * timekeeping_init - Initializes the clocksource and common timekeeping values
1534  */
1535 void __init timekeeping_init(void)
1536 {
1537         struct timespec64 wall_time, boot_offset, wall_to_mono;
1538         struct timekeeper *tk = &tk_core.timekeeper;
1539         struct clocksource *clock;
1540         unsigned long flags;
1541
1542         read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1543         if (timespec64_valid_settod(&wall_time) &&
1544             timespec64_to_ns(&wall_time) > 0) {
1545                 persistent_clock_exists = true;
1546         } else if (timespec64_to_ns(&wall_time) != 0) {
1547                 pr_warn("Persistent clock returned invalid value");
1548                 wall_time = (struct timespec64){0};
1549         }
1550
1551         if (timespec64_compare(&wall_time, &boot_offset) < 0)
1552                 boot_offset = (struct timespec64){0};
1553
1554         /*
1555          * We want set wall_to_mono, so the following is true:
1556          * wall time + wall_to_mono = boot time
1557          */
1558         wall_to_mono = timespec64_sub(boot_offset, wall_time);
1559
1560         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1561         write_seqcount_begin(&tk_core.seq);
1562         ntp_init();
1563
1564         clock = clocksource_default_clock();
1565         if (clock->enable)
1566                 clock->enable(clock);
1567         tk_setup_internals(tk, clock);
1568
1569         tk_set_xtime(tk, &wall_time);
1570         tk->raw_sec = 0;
1571
1572         tk_set_wall_to_mono(tk, wall_to_mono);
1573
1574         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1575
1576         write_seqcount_end(&tk_core.seq);
1577         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1578 }
1579
1580 /* time in seconds when suspend began for persistent clock */
1581 static struct timespec64 timekeeping_suspend_time;
1582
1583 /**
1584  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1585  * @delta: pointer to a timespec delta value
1586  *
1587  * Takes a timespec offset measuring a suspend interval and properly
1588  * adds the sleep offset to the timekeeping variables.
1589  */
1590 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1591                                            const struct timespec64 *delta)
1592 {
1593         if (!timespec64_valid_strict(delta)) {
1594                 printk_deferred(KERN_WARNING
1595                                 "__timekeeping_inject_sleeptime: Invalid "
1596                                 "sleep delta value!\n");
1597                 return;
1598         }
1599         tk_xtime_add(tk, delta);
1600         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1601         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1602         tk_debug_account_sleep_time(delta);
1603 }
1604
1605 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1606 /**
1607  * We have three kinds of time sources to use for sleep time
1608  * injection, the preference order is:
1609  * 1) non-stop clocksource
1610  * 2) persistent clock (ie: RTC accessible when irqs are off)
1611  * 3) RTC
1612  *
1613  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1614  * If system has neither 1) nor 2), 3) will be used finally.
1615  *
1616  *
1617  * If timekeeping has injected sleeptime via either 1) or 2),
1618  * 3) becomes needless, so in this case we don't need to call
1619  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1620  * means.
1621  */
1622 bool timekeeping_rtc_skipresume(void)
1623 {
1624         return !suspend_timing_needed;
1625 }
1626
1627 /**
1628  * 1) can be determined whether to use or not only when doing
1629  * timekeeping_resume() which is invoked after rtc_suspend(),
1630  * so we can't skip rtc_suspend() surely if system has 1).
1631  *
1632  * But if system has 2), 2) will definitely be used, so in this
1633  * case we don't need to call rtc_suspend(), and this is what
1634  * timekeeping_rtc_skipsuspend() means.
1635  */
1636 bool timekeeping_rtc_skipsuspend(void)
1637 {
1638         return persistent_clock_exists;
1639 }
1640
1641 /**
1642  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1643  * @delta: pointer to a timespec64 delta value
1644  *
1645  * This hook is for architectures that cannot support read_persistent_clock64
1646  * because their RTC/persistent clock is only accessible when irqs are enabled.
1647  * and also don't have an effective nonstop clocksource.
1648  *
1649  * This function should only be called by rtc_resume(), and allows
1650  * a suspend offset to be injected into the timekeeping values.
1651  */
1652 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1653 {
1654         struct timekeeper *tk = &tk_core.timekeeper;
1655         unsigned long flags;
1656
1657         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1658         write_seqcount_begin(&tk_core.seq);
1659
1660         suspend_timing_needed = false;
1661
1662         timekeeping_forward_now(tk);
1663
1664         __timekeeping_inject_sleeptime(tk, delta);
1665
1666         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1667
1668         write_seqcount_end(&tk_core.seq);
1669         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1670
1671         /* signal hrtimers about time change */
1672         clock_was_set();
1673 }
1674 #endif
1675
1676 /**
1677  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1678  */
1679 void timekeeping_resume(void)
1680 {
1681         struct timekeeper *tk = &tk_core.timekeeper;
1682         struct clocksource *clock = tk->tkr_mono.clock;
1683         unsigned long flags;
1684         struct timespec64 ts_new, ts_delta;
1685         u64 cycle_now, nsec;
1686         bool inject_sleeptime = false;
1687
1688         read_persistent_clock64(&ts_new);
1689
1690         clockevents_resume();
1691         clocksource_resume();
1692
1693         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1694         write_seqcount_begin(&tk_core.seq);
1695
1696         /*
1697          * After system resumes, we need to calculate the suspended time and
1698          * compensate it for the OS time. There are 3 sources that could be
1699          * used: Nonstop clocksource during suspend, persistent clock and rtc
1700          * device.
1701          *
1702          * One specific platform may have 1 or 2 or all of them, and the
1703          * preference will be:
1704          *      suspend-nonstop clocksource -> persistent clock -> rtc
1705          * The less preferred source will only be tried if there is no better
1706          * usable source. The rtc part is handled separately in rtc core code.
1707          */
1708         cycle_now = tk_clock_read(&tk->tkr_mono);
1709         nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1710         if (nsec > 0) {
1711                 ts_delta = ns_to_timespec64(nsec);
1712                 inject_sleeptime = true;
1713         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1714                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1715                 inject_sleeptime = true;
1716         }
1717
1718         if (inject_sleeptime) {
1719                 suspend_timing_needed = false;
1720                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1721         }
1722
1723         /* Re-base the last cycle value */
1724         tk->tkr_mono.cycle_last = cycle_now;
1725         tk->tkr_raw.cycle_last  = cycle_now;
1726
1727         tk->ntp_error = 0;
1728         timekeeping_suspended = 0;
1729         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1730         write_seqcount_end(&tk_core.seq);
1731         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1732
1733         touch_softlockup_watchdog();
1734
1735         tick_resume();
1736         hrtimers_resume();
1737 }
1738
1739 int timekeeping_suspend(void)
1740 {
1741         struct timekeeper *tk = &tk_core.timekeeper;
1742         unsigned long flags;
1743         struct timespec64               delta, delta_delta;
1744         static struct timespec64        old_delta;
1745         struct clocksource *curr_clock;
1746         u64 cycle_now;
1747
1748         read_persistent_clock64(&timekeeping_suspend_time);
1749
1750         /*
1751          * On some systems the persistent_clock can not be detected at
1752          * timekeeping_init by its return value, so if we see a valid
1753          * value returned, update the persistent_clock_exists flag.
1754          */
1755         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1756                 persistent_clock_exists = true;
1757
1758         suspend_timing_needed = true;
1759
1760         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1761         write_seqcount_begin(&tk_core.seq);
1762         timekeeping_forward_now(tk);
1763         timekeeping_suspended = 1;
1764
1765         /*
1766          * Since we've called forward_now, cycle_last stores the value
1767          * just read from the current clocksource. Save this to potentially
1768          * use in suspend timing.
1769          */
1770         curr_clock = tk->tkr_mono.clock;
1771         cycle_now = tk->tkr_mono.cycle_last;
1772         clocksource_start_suspend_timing(curr_clock, cycle_now);
1773
1774         if (persistent_clock_exists) {
1775                 /*
1776                  * To avoid drift caused by repeated suspend/resumes,
1777                  * which each can add ~1 second drift error,
1778                  * try to compensate so the difference in system time
1779                  * and persistent_clock time stays close to constant.
1780                  */
1781                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1782                 delta_delta = timespec64_sub(delta, old_delta);
1783                 if (abs(delta_delta.tv_sec) >= 2) {
1784                         /*
1785                          * if delta_delta is too large, assume time correction
1786                          * has occurred and set old_delta to the current delta.
1787                          */
1788                         old_delta = delta;
1789                 } else {
1790                         /* Otherwise try to adjust old_system to compensate */
1791                         timekeeping_suspend_time =
1792                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1793                 }
1794         }
1795
1796         timekeeping_update(tk, TK_MIRROR);
1797         halt_fast_timekeeper(tk);
1798         write_seqcount_end(&tk_core.seq);
1799         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1800
1801         tick_suspend();
1802         clocksource_suspend();
1803         clockevents_suspend();
1804
1805         return 0;
1806 }
1807
1808 /* sysfs resume/suspend bits for timekeeping */
1809 static struct syscore_ops timekeeping_syscore_ops = {
1810         .resume         = timekeeping_resume,
1811         .suspend        = timekeeping_suspend,
1812 };
1813
1814 static int __init timekeeping_init_ops(void)
1815 {
1816         register_syscore_ops(&timekeeping_syscore_ops);
1817         return 0;
1818 }
1819 device_initcall(timekeeping_init_ops);
1820
1821 /*
1822  * Apply a multiplier adjustment to the timekeeper
1823  */
1824 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1825                                                          s64 offset,
1826                                                          s32 mult_adj)
1827 {
1828         s64 interval = tk->cycle_interval;
1829
1830         if (mult_adj == 0) {
1831                 return;
1832         } else if (mult_adj == -1) {
1833                 interval = -interval;
1834                 offset = -offset;
1835         } else if (mult_adj != 1) {
1836                 interval *= mult_adj;
1837                 offset *= mult_adj;
1838         }
1839
1840         /*
1841          * So the following can be confusing.
1842          *
1843          * To keep things simple, lets assume mult_adj == 1 for now.
1844          *
1845          * When mult_adj != 1, remember that the interval and offset values
1846          * have been appropriately scaled so the math is the same.
1847          *
1848          * The basic idea here is that we're increasing the multiplier
1849          * by one, this causes the xtime_interval to be incremented by
1850          * one cycle_interval. This is because:
1851          *      xtime_interval = cycle_interval * mult
1852          * So if mult is being incremented by one:
1853          *      xtime_interval = cycle_interval * (mult + 1)
1854          * Its the same as:
1855          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1856          * Which can be shortened to:
1857          *      xtime_interval += cycle_interval
1858          *
1859          * So offset stores the non-accumulated cycles. Thus the current
1860          * time (in shifted nanoseconds) is:
1861          *      now = (offset * adj) + xtime_nsec
1862          * Now, even though we're adjusting the clock frequency, we have
1863          * to keep time consistent. In other words, we can't jump back
1864          * in time, and we also want to avoid jumping forward in time.
1865          *
1866          * So given the same offset value, we need the time to be the same
1867          * both before and after the freq adjustment.
1868          *      now = (offset * adj_1) + xtime_nsec_1
1869          *      now = (offset * adj_2) + xtime_nsec_2
1870          * So:
1871          *      (offset * adj_1) + xtime_nsec_1 =
1872          *              (offset * adj_2) + xtime_nsec_2
1873          * And we know:
1874          *      adj_2 = adj_1 + 1
1875          * So:
1876          *      (offset * adj_1) + xtime_nsec_1 =
1877          *              (offset * (adj_1+1)) + xtime_nsec_2
1878          *      (offset * adj_1) + xtime_nsec_1 =
1879          *              (offset * adj_1) + offset + xtime_nsec_2
1880          * Canceling the sides:
1881          *      xtime_nsec_1 = offset + xtime_nsec_2
1882          * Which gives us:
1883          *      xtime_nsec_2 = xtime_nsec_1 - offset
1884          * Which simplfies to:
1885          *      xtime_nsec -= offset
1886          */
1887         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1888                 /* NTP adjustment caused clocksource mult overflow */
1889                 WARN_ON_ONCE(1);
1890                 return;
1891         }
1892
1893         tk->tkr_mono.mult += mult_adj;
1894         tk->xtime_interval += interval;
1895         tk->tkr_mono.xtime_nsec -= offset;
1896 }
1897
1898 /*
1899  * Adjust the timekeeper's multiplier to the correct frequency
1900  * and also to reduce the accumulated error value.
1901  */
1902 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1903 {
1904         u32 mult;
1905
1906         /*
1907          * Determine the multiplier from the current NTP tick length.
1908          * Avoid expensive division when the tick length doesn't change.
1909          */
1910         if (likely(tk->ntp_tick == ntp_tick_length())) {
1911                 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1912         } else {
1913                 tk->ntp_tick = ntp_tick_length();
1914                 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1915                                  tk->xtime_remainder, tk->cycle_interval);
1916         }
1917
1918         /*
1919          * If the clock is behind the NTP time, increase the multiplier by 1
1920          * to catch up with it. If it's ahead and there was a remainder in the
1921          * tick division, the clock will slow down. Otherwise it will stay
1922          * ahead until the tick length changes to a non-divisible value.
1923          */
1924         tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1925         mult += tk->ntp_err_mult;
1926
1927         timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1928
1929         if (unlikely(tk->tkr_mono.clock->maxadj &&
1930                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1931                         > tk->tkr_mono.clock->maxadj))) {
1932                 printk_once(KERN_WARNING
1933                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1934                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1935                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1936         }
1937
1938         /*
1939          * It may be possible that when we entered this function, xtime_nsec
1940          * was very small.  Further, if we're slightly speeding the clocksource
1941          * in the code above, its possible the required corrective factor to
1942          * xtime_nsec could cause it to underflow.
1943          *
1944          * Now, since we have already accumulated the second and the NTP
1945          * subsystem has been notified via second_overflow(), we need to skip
1946          * the next update.
1947          */
1948         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1949                 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1950                                                         tk->tkr_mono.shift;
1951                 tk->xtime_sec--;
1952                 tk->skip_second_overflow = 1;
1953         }
1954 }
1955
1956 /**
1957  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1958  *
1959  * Helper function that accumulates the nsecs greater than a second
1960  * from the xtime_nsec field to the xtime_secs field.
1961  * It also calls into the NTP code to handle leapsecond processing.
1962  *
1963  */
1964 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1965 {
1966         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1967         unsigned int clock_set = 0;
1968
1969         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1970                 int leap;
1971
1972                 tk->tkr_mono.xtime_nsec -= nsecps;
1973                 tk->xtime_sec++;
1974
1975                 /*
1976                  * Skip NTP update if this second was accumulated before,
1977                  * i.e. xtime_nsec underflowed in timekeeping_adjust()
1978                  */
1979                 if (unlikely(tk->skip_second_overflow)) {
1980                         tk->skip_second_overflow = 0;
1981                         continue;
1982                 }
1983
1984                 /* Figure out if its a leap sec and apply if needed */
1985                 leap = second_overflow(tk->xtime_sec);
1986                 if (unlikely(leap)) {
1987                         struct timespec64 ts;
1988
1989                         tk->xtime_sec += leap;
1990
1991                         ts.tv_sec = leap;
1992                         ts.tv_nsec = 0;
1993                         tk_set_wall_to_mono(tk,
1994                                 timespec64_sub(tk->wall_to_monotonic, ts));
1995
1996                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1997
1998                         clock_set = TK_CLOCK_WAS_SET;
1999                 }
2000         }
2001         return clock_set;
2002 }
2003
2004 /**
2005  * logarithmic_accumulation - shifted accumulation of cycles
2006  *
2007  * This functions accumulates a shifted interval of cycles into
2008  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2009  * loop.
2010  *
2011  * Returns the unconsumed cycles.
2012  */
2013 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2014                                     u32 shift, unsigned int *clock_set)
2015 {
2016         u64 interval = tk->cycle_interval << shift;
2017         u64 snsec_per_sec;
2018
2019         /* If the offset is smaller than a shifted interval, do nothing */
2020         if (offset < interval)
2021                 return offset;
2022
2023         /* Accumulate one shifted interval */
2024         offset -= interval;
2025         tk->tkr_mono.cycle_last += interval;
2026         tk->tkr_raw.cycle_last  += interval;
2027
2028         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2029         *clock_set |= accumulate_nsecs_to_secs(tk);
2030
2031         /* Accumulate raw time */
2032         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2033         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2034         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2035                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2036                 tk->raw_sec++;
2037         }
2038
2039         /* Accumulate error between NTP and clock interval */
2040         tk->ntp_error += tk->ntp_tick << shift;
2041         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2042                                                 (tk->ntp_error_shift + shift);
2043
2044         return offset;
2045 }
2046
2047 /*
2048  * timekeeping_advance - Updates the timekeeper to the current time and
2049  * current NTP tick length
2050  */
2051 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2052 {
2053         struct timekeeper *real_tk = &tk_core.timekeeper;
2054         struct timekeeper *tk = &shadow_timekeeper;
2055         u64 offset;
2056         int shift = 0, maxshift;
2057         unsigned int clock_set = 0;
2058         unsigned long flags;
2059
2060         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2061
2062         /* Make sure we're fully resumed: */
2063         if (unlikely(timekeeping_suspended))
2064                 goto out;
2065
2066 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2067         offset = real_tk->cycle_interval;
2068
2069         if (mode != TK_ADV_TICK)
2070                 goto out;
2071 #else
2072         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2073                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2074
2075         /* Check if there's really nothing to do */
2076         if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2077                 goto out;
2078 #endif
2079
2080         /* Do some additional sanity checking */
2081         timekeeping_check_update(tk, offset);
2082
2083         /*
2084          * With NO_HZ we may have to accumulate many cycle_intervals
2085          * (think "ticks") worth of time at once. To do this efficiently,
2086          * we calculate the largest doubling multiple of cycle_intervals
2087          * that is smaller than the offset.  We then accumulate that
2088          * chunk in one go, and then try to consume the next smaller
2089          * doubled multiple.
2090          */
2091         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2092         shift = max(0, shift);
2093         /* Bound shift to one less than what overflows tick_length */
2094         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2095         shift = min(shift, maxshift);
2096         while (offset >= tk->cycle_interval) {
2097                 offset = logarithmic_accumulation(tk, offset, shift,
2098                                                         &clock_set);
2099                 if (offset < tk->cycle_interval<<shift)
2100                         shift--;
2101         }
2102
2103         /* Adjust the multiplier to correct NTP error */
2104         timekeeping_adjust(tk, offset);
2105
2106         /*
2107          * Finally, make sure that after the rounding
2108          * xtime_nsec isn't larger than NSEC_PER_SEC
2109          */
2110         clock_set |= accumulate_nsecs_to_secs(tk);
2111
2112         write_seqcount_begin(&tk_core.seq);
2113         /*
2114          * Update the real timekeeper.
2115          *
2116          * We could avoid this memcpy by switching pointers, but that
2117          * requires changes to all other timekeeper usage sites as
2118          * well, i.e. move the timekeeper pointer getter into the
2119          * spinlocked/seqcount protected sections. And we trade this
2120          * memcpy under the tk_core.seq against one before we start
2121          * updating.
2122          */
2123         timekeeping_update(tk, clock_set);
2124         memcpy(real_tk, tk, sizeof(*tk));
2125         /* The memcpy must come last. Do not put anything here! */
2126         write_seqcount_end(&tk_core.seq);
2127 out:
2128         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2129         if (clock_set)
2130                 /* Have to call _delayed version, since in irq context*/
2131                 clock_was_set_delayed();
2132 }
2133
2134 /**
2135  * update_wall_time - Uses the current clocksource to increment the wall time
2136  *
2137  */
2138 void update_wall_time(void)
2139 {
2140         timekeeping_advance(TK_ADV_TICK);
2141 }
2142
2143 /**
2144  * getboottime64 - Return the real time of system boot.
2145  * @ts:         pointer to the timespec64 to be set
2146  *
2147  * Returns the wall-time of boot in a timespec64.
2148  *
2149  * This is based on the wall_to_monotonic offset and the total suspend
2150  * time. Calls to settimeofday will affect the value returned (which
2151  * basically means that however wrong your real time clock is at boot time,
2152  * you get the right time here).
2153  */
2154 void getboottime64(struct timespec64 *ts)
2155 {
2156         struct timekeeper *tk = &tk_core.timekeeper;
2157         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2158
2159         *ts = ktime_to_timespec64(t);
2160 }
2161 EXPORT_SYMBOL_GPL(getboottime64);
2162
2163 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2164 {
2165         struct timekeeper *tk = &tk_core.timekeeper;
2166         unsigned long seq;
2167
2168         do {
2169                 seq = read_seqcount_begin(&tk_core.seq);
2170
2171                 *ts = tk_xtime(tk);
2172         } while (read_seqcount_retry(&tk_core.seq, seq));
2173 }
2174 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2175
2176 void ktime_get_coarse_ts64(struct timespec64 *ts)
2177 {
2178         struct timekeeper *tk = &tk_core.timekeeper;
2179         struct timespec64 now, mono;
2180         unsigned long seq;
2181
2182         do {
2183                 seq = read_seqcount_begin(&tk_core.seq);
2184
2185                 now = tk_xtime(tk);
2186                 mono = tk->wall_to_monotonic;
2187         } while (read_seqcount_retry(&tk_core.seq, seq));
2188
2189         set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2190                                 now.tv_nsec + mono.tv_nsec);
2191 }
2192 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2193
2194 /*
2195  * Must hold jiffies_lock
2196  */
2197 void do_timer(unsigned long ticks)
2198 {
2199         jiffies_64 += ticks;
2200         calc_global_load(ticks);
2201 }
2202
2203 /**
2204  * ktime_get_update_offsets_now - hrtimer helper
2205  * @cwsseq:     pointer to check and store the clock was set sequence number
2206  * @offs_real:  pointer to storage for monotonic -> realtime offset
2207  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2208  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2209  *
2210  * Returns current monotonic time and updates the offsets if the
2211  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2212  * different.
2213  *
2214  * Called from hrtimer_interrupt() or retrigger_next_event()
2215  */
2216 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2217                                      ktime_t *offs_boot, ktime_t *offs_tai)
2218 {
2219         struct timekeeper *tk = &tk_core.timekeeper;
2220         unsigned int seq;
2221         ktime_t base;
2222         u64 nsecs;
2223
2224         do {
2225                 seq = read_seqcount_begin(&tk_core.seq);
2226
2227                 base = tk->tkr_mono.base;
2228                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2229                 base = ktime_add_ns(base, nsecs);
2230
2231                 if (*cwsseq != tk->clock_was_set_seq) {
2232                         *cwsseq = tk->clock_was_set_seq;
2233                         *offs_real = tk->offs_real;
2234                         *offs_boot = tk->offs_boot;
2235                         *offs_tai = tk->offs_tai;
2236                 }
2237
2238                 /* Handle leapsecond insertion adjustments */
2239                 if (unlikely(base >= tk->next_leap_ktime))
2240                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2241
2242         } while (read_seqcount_retry(&tk_core.seq, seq));
2243
2244         return base;
2245 }
2246
2247 /**
2248  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2249  */
2250 static int timekeeping_validate_timex(const struct timex *txc)
2251 {
2252         if (txc->modes & ADJ_ADJTIME) {
2253                 /* singleshot must not be used with any other mode bits */
2254                 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2255                         return -EINVAL;
2256                 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2257                     !capable(CAP_SYS_TIME))
2258                         return -EPERM;
2259         } else {
2260                 /* In order to modify anything, you gotta be super-user! */
2261                 if (txc->modes && !capable(CAP_SYS_TIME))
2262                         return -EPERM;
2263                 /*
2264                  * if the quartz is off by more than 10% then
2265                  * something is VERY wrong!
2266                  */
2267                 if (txc->modes & ADJ_TICK &&
2268                     (txc->tick <  900000/USER_HZ ||
2269                      txc->tick > 1100000/USER_HZ))
2270                         return -EINVAL;
2271         }
2272
2273         if (txc->modes & ADJ_SETOFFSET) {
2274                 /* In order to inject time, you gotta be super-user! */
2275                 if (!capable(CAP_SYS_TIME))
2276                         return -EPERM;
2277
2278                 /*
2279                  * Validate if a timespec/timeval used to inject a time
2280                  * offset is valid.  Offsets can be postive or negative, so
2281                  * we don't check tv_sec. The value of the timeval/timespec
2282                  * is the sum of its fields,but *NOTE*:
2283                  * The field tv_usec/tv_nsec must always be non-negative and
2284                  * we can't have more nanoseconds/microseconds than a second.
2285                  */
2286                 if (txc->time.tv_usec < 0)
2287                         return -EINVAL;
2288
2289                 if (txc->modes & ADJ_NANO) {
2290                         if (txc->time.tv_usec >= NSEC_PER_SEC)
2291                                 return -EINVAL;
2292                 } else {
2293                         if (txc->time.tv_usec >= USEC_PER_SEC)
2294                                 return -EINVAL;
2295                 }
2296         }
2297
2298         /*
2299          * Check for potential multiplication overflows that can
2300          * only happen on 64-bit systems:
2301          */
2302         if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2303                 if (LLONG_MIN / PPM_SCALE > txc->freq)
2304                         return -EINVAL;
2305                 if (LLONG_MAX / PPM_SCALE < txc->freq)
2306                         return -EINVAL;
2307         }
2308
2309         return 0;
2310 }
2311
2312 /**
2313  * random_get_entropy_fallback - Returns the raw clock source value,
2314  * used by random.c for platforms with no valid random_get_entropy().
2315  */
2316 unsigned long random_get_entropy_fallback(void)
2317 {
2318         struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2319         struct clocksource *clock = READ_ONCE(tkr->clock);
2320
2321         if (unlikely(timekeeping_suspended || !clock))
2322                 return 0;
2323         return clock->read(clock);
2324 }
2325 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2326
2327 /**
2328  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2329  */
2330 int do_adjtimex(struct timex *txc)
2331 {
2332         struct timekeeper *tk = &tk_core.timekeeper;
2333         unsigned long flags;
2334         struct timespec64 ts;
2335         s32 orig_tai, tai;
2336         int ret;
2337
2338         /* Validate the data before disabling interrupts */
2339         ret = timekeeping_validate_timex(txc);
2340         if (ret)
2341                 return ret;
2342
2343         if (txc->modes & ADJ_SETOFFSET) {
2344                 struct timespec64 delta;
2345                 delta.tv_sec  = txc->time.tv_sec;
2346                 delta.tv_nsec = txc->time.tv_usec;
2347                 if (!(txc->modes & ADJ_NANO))
2348                         delta.tv_nsec *= 1000;
2349                 ret = timekeeping_inject_offset(&delta);
2350                 if (ret)
2351                         return ret;
2352         }
2353
2354         ktime_get_real_ts64(&ts);
2355
2356         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2357         write_seqcount_begin(&tk_core.seq);
2358
2359         orig_tai = tai = tk->tai_offset;
2360         ret = __do_adjtimex(txc, &ts, &tai);
2361
2362         if (tai != orig_tai) {
2363                 __timekeeping_set_tai_offset(tk, tai);
2364                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2365         }
2366         tk_update_leap_state(tk);
2367
2368         write_seqcount_end(&tk_core.seq);
2369         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2370
2371         /* Update the multiplier immediately if frequency was set directly */
2372         if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2373                 timekeeping_advance(TK_ADV_FREQ);
2374
2375         if (tai != orig_tai)
2376                 clock_was_set();
2377
2378         ntp_notify_cmos_timer();
2379
2380         return ret;
2381 }
2382
2383 #ifdef CONFIG_NTP_PPS
2384 /**
2385  * hardpps() - Accessor function to NTP __hardpps function
2386  */
2387 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2388 {
2389         unsigned long flags;
2390
2391         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2392         write_seqcount_begin(&tk_core.seq);
2393
2394         __hardpps(phase_ts, raw_ts);
2395
2396         write_seqcount_end(&tk_core.seq);
2397         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2398 }
2399 EXPORT_SYMBOL(hardpps);
2400 #endif /* CONFIG_NTP_PPS */
2401
2402 /**
2403  * xtime_update() - advances the timekeeping infrastructure
2404  * @ticks:      number of ticks, that have elapsed since the last call.
2405  *
2406  * Must be called with interrupts disabled.
2407  */
2408 void xtime_update(unsigned long ticks)
2409 {
2410         write_seqlock(&jiffies_lock);
2411         do_timer(ticks);
2412         write_sequnlock(&jiffies_lock);
2413         update_wall_time();
2414 }