GNU Linux-libre 4.14.266-gnu1
[releases.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
28
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32
33 #define TK_CLEAR_NTP            (1 << 0)
34 #define TK_MIRROR               (1 << 1)
35 #define TK_CLOCK_WAS_SET        (1 << 2)
36
37 /*
38  * The most important data for readout fits into a single 64 byte
39  * cache line.
40  */
41 static struct {
42         seqcount_t              seq;
43         struct timekeeper       timekeeper;
44 } tk_core ____cacheline_aligned = {
45         .seq = SEQCNT_ZERO(tk_core.seq),
46 };
47
48 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
49 static struct timekeeper shadow_timekeeper;
50
51 /**
52  * struct tk_fast - NMI safe timekeeper
53  * @seq:        Sequence counter for protecting updates. The lowest bit
54  *              is the index for the tk_read_base array
55  * @base:       tk_read_base array. Access is indexed by the lowest bit of
56  *              @seq.
57  *
58  * See @update_fast_timekeeper() below.
59  */
60 struct tk_fast {
61         seqcount_t              seq;
62         struct tk_read_base     base[2];
63 };
64
65 static struct tk_fast tk_fast_mono ____cacheline_aligned;
66 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
67
68 /* flag for if timekeeping is suspended */
69 int __read_mostly timekeeping_suspended;
70
71 static inline void tk_normalize_xtime(struct timekeeper *tk)
72 {
73         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
74                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
75                 tk->xtime_sec++;
76         }
77         while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
78                 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
79                 tk->raw_sec++;
80         }
81 }
82
83 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
84 {
85         struct timespec64 ts;
86
87         ts.tv_sec = tk->xtime_sec;
88         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
89         return ts;
90 }
91
92 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94         tk->xtime_sec = ts->tv_sec;
95         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
96 }
97
98 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
99 {
100         tk->xtime_sec += ts->tv_sec;
101         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
102         tk_normalize_xtime(tk);
103 }
104
105 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
106 {
107         struct timespec64 tmp;
108
109         /*
110          * Verify consistency of: offset_real = -wall_to_monotonic
111          * before modifying anything
112          */
113         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
114                                         -tk->wall_to_monotonic.tv_nsec);
115         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
116         tk->wall_to_monotonic = wtm;
117         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
118         tk->offs_real = timespec64_to_ktime(tmp);
119         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
120 }
121
122 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
123 {
124         tk->offs_boot = ktime_add(tk->offs_boot, delta);
125 }
126
127 /*
128  * tk_clock_read - atomic clocksource read() helper
129  *
130  * This helper is necessary to use in the read paths because, while the
131  * seqlock ensures we don't return a bad value while structures are updated,
132  * it doesn't protect from potential crashes. There is the possibility that
133  * the tkr's clocksource may change between the read reference, and the
134  * clock reference passed to the read function.  This can cause crashes if
135  * the wrong clocksource is passed to the wrong read function.
136  * This isn't necessary to use when holding the timekeeper_lock or doing
137  * a read of the fast-timekeeper tkrs (which is protected by its own locking
138  * and update logic).
139  */
140 static inline u64 tk_clock_read(struct tk_read_base *tkr)
141 {
142         struct clocksource *clock = READ_ONCE(tkr->clock);
143
144         return clock->read(clock);
145 }
146
147 #ifdef CONFIG_DEBUG_TIMEKEEPING
148 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
149
150 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
151 {
152
153         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
154         const char *name = tk->tkr_mono.clock->name;
155
156         if (offset > max_cycles) {
157                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
158                                 offset, name, max_cycles);
159                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
160         } else {
161                 if (offset > (max_cycles >> 1)) {
162                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
163                                         offset, name, max_cycles >> 1);
164                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
165                 }
166         }
167
168         if (tk->underflow_seen) {
169                 if (jiffies - tk->last_warning > WARNING_FREQ) {
170                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
171                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
172                         printk_deferred("         Your kernel is probably still fine.\n");
173                         tk->last_warning = jiffies;
174                 }
175                 tk->underflow_seen = 0;
176         }
177
178         if (tk->overflow_seen) {
179                 if (jiffies - tk->last_warning > WARNING_FREQ) {
180                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
181                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
182                         printk_deferred("         Your kernel is probably still fine.\n");
183                         tk->last_warning = jiffies;
184                 }
185                 tk->overflow_seen = 0;
186         }
187 }
188
189 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
190 {
191         struct timekeeper *tk = &tk_core.timekeeper;
192         u64 now, last, mask, max, delta;
193         unsigned int seq;
194
195         /*
196          * Since we're called holding a seqlock, the data may shift
197          * under us while we're doing the calculation. This can cause
198          * false positives, since we'd note a problem but throw the
199          * results away. So nest another seqlock here to atomically
200          * grab the points we are checking with.
201          */
202         do {
203                 seq = read_seqcount_begin(&tk_core.seq);
204                 now = tk_clock_read(tkr);
205                 last = tkr->cycle_last;
206                 mask = tkr->mask;
207                 max = tkr->clock->max_cycles;
208         } while (read_seqcount_retry(&tk_core.seq, seq));
209
210         delta = clocksource_delta(now, last, mask);
211
212         /*
213          * Try to catch underflows by checking if we are seeing small
214          * mask-relative negative values.
215          */
216         if (unlikely((~delta & mask) < (mask >> 3))) {
217                 tk->underflow_seen = 1;
218                 delta = 0;
219         }
220
221         /* Cap delta value to the max_cycles values to avoid mult overflows */
222         if (unlikely(delta > max)) {
223                 tk->overflow_seen = 1;
224                 delta = tkr->clock->max_cycles;
225         }
226
227         return delta;
228 }
229 #else
230 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
231 {
232 }
233 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
234 {
235         u64 cycle_now, delta;
236
237         /* read clocksource */
238         cycle_now = tk_clock_read(tkr);
239
240         /* calculate the delta since the last update_wall_time */
241         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
242
243         return delta;
244 }
245 #endif
246
247 /**
248  * tk_setup_internals - Set up internals to use clocksource clock.
249  *
250  * @tk:         The target timekeeper to setup.
251  * @clock:              Pointer to clocksource.
252  *
253  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
254  * pair and interval request.
255  *
256  * Unless you're the timekeeping code, you should not be using this!
257  */
258 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
259 {
260         u64 interval;
261         u64 tmp, ntpinterval;
262         struct clocksource *old_clock;
263
264         ++tk->cs_was_changed_seq;
265         old_clock = tk->tkr_mono.clock;
266         tk->tkr_mono.clock = clock;
267         tk->tkr_mono.mask = clock->mask;
268         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
269
270         tk->tkr_raw.clock = clock;
271         tk->tkr_raw.mask = clock->mask;
272         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
273
274         /* Do the ns -> cycle conversion first, using original mult */
275         tmp = NTP_INTERVAL_LENGTH;
276         tmp <<= clock->shift;
277         ntpinterval = tmp;
278         tmp += clock->mult/2;
279         do_div(tmp, clock->mult);
280         if (tmp == 0)
281                 tmp = 1;
282
283         interval = (u64) tmp;
284         tk->cycle_interval = interval;
285
286         /* Go back from cycles -> shifted ns */
287         tk->xtime_interval = interval * clock->mult;
288         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
289         tk->raw_interval = interval * clock->mult;
290
291          /* if changing clocks, convert xtime_nsec shift units */
292         if (old_clock) {
293                 int shift_change = clock->shift - old_clock->shift;
294                 if (shift_change < 0) {
295                         tk->tkr_mono.xtime_nsec >>= -shift_change;
296                         tk->tkr_raw.xtime_nsec >>= -shift_change;
297                 } else {
298                         tk->tkr_mono.xtime_nsec <<= shift_change;
299                         tk->tkr_raw.xtime_nsec <<= shift_change;
300                 }
301         }
302
303         tk->tkr_mono.shift = clock->shift;
304         tk->tkr_raw.shift = clock->shift;
305
306         tk->ntp_error = 0;
307         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
308         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
309
310         /*
311          * The timekeeper keeps its own mult values for the currently
312          * active clocksource. These value will be adjusted via NTP
313          * to counteract clock drifting.
314          */
315         tk->tkr_mono.mult = clock->mult;
316         tk->tkr_raw.mult = clock->mult;
317         tk->ntp_err_mult = 0;
318 }
319
320 /* Timekeeper helper functions. */
321
322 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
323 static u32 default_arch_gettimeoffset(void) { return 0; }
324 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
325 #else
326 static inline u32 arch_gettimeoffset(void) { return 0; }
327 #endif
328
329 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
330 {
331         u64 nsec;
332
333         nsec = delta * tkr->mult + tkr->xtime_nsec;
334         nsec >>= tkr->shift;
335
336         /* If arch requires, add in get_arch_timeoffset() */
337         return nsec + arch_gettimeoffset();
338 }
339
340 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
341 {
342         u64 delta;
343
344         delta = timekeeping_get_delta(tkr);
345         return timekeeping_delta_to_ns(tkr, delta);
346 }
347
348 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
349 {
350         u64 delta;
351
352         /* calculate the delta since the last update_wall_time */
353         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
354         return timekeeping_delta_to_ns(tkr, delta);
355 }
356
357 /**
358  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
359  * @tkr: Timekeeping readout base from which we take the update
360  *
361  * We want to use this from any context including NMI and tracing /
362  * instrumenting the timekeeping code itself.
363  *
364  * Employ the latch technique; see @raw_write_seqcount_latch.
365  *
366  * So if a NMI hits the update of base[0] then it will use base[1]
367  * which is still consistent. In the worst case this can result is a
368  * slightly wrong timestamp (a few nanoseconds). See
369  * @ktime_get_mono_fast_ns.
370  */
371 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
372 {
373         struct tk_read_base *base = tkf->base;
374
375         /* Force readers off to base[1] */
376         raw_write_seqcount_latch(&tkf->seq);
377
378         /* Update base[0] */
379         memcpy(base, tkr, sizeof(*base));
380
381         /* Force readers back to base[0] */
382         raw_write_seqcount_latch(&tkf->seq);
383
384         /* Update base[1] */
385         memcpy(base + 1, base, sizeof(*base));
386 }
387
388 /**
389  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
390  *
391  * This timestamp is not guaranteed to be monotonic across an update.
392  * The timestamp is calculated by:
393  *
394  *      now = base_mono + clock_delta * slope
395  *
396  * So if the update lowers the slope, readers who are forced to the
397  * not yet updated second array are still using the old steeper slope.
398  *
399  * tmono
400  * ^
401  * |    o  n
402  * |   o n
403  * |  u
404  * | o
405  * |o
406  * |12345678---> reader order
407  *
408  * o = old slope
409  * u = update
410  * n = new slope
411  *
412  * So reader 6 will observe time going backwards versus reader 5.
413  *
414  * While other CPUs are likely to be able observe that, the only way
415  * for a CPU local observation is when an NMI hits in the middle of
416  * the update. Timestamps taken from that NMI context might be ahead
417  * of the following timestamps. Callers need to be aware of that and
418  * deal with it.
419  */
420 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
421 {
422         struct tk_read_base *tkr;
423         unsigned int seq;
424         u64 now;
425
426         do {
427                 seq = raw_read_seqcount_latch(&tkf->seq);
428                 tkr = tkf->base + (seq & 0x01);
429                 now = ktime_to_ns(tkr->base);
430
431                 now += timekeeping_delta_to_ns(tkr,
432                                 clocksource_delta(
433                                         tk_clock_read(tkr),
434                                         tkr->cycle_last,
435                                         tkr->mask));
436         } while (read_seqcount_retry(&tkf->seq, seq));
437
438         return now;
439 }
440
441 u64 ktime_get_mono_fast_ns(void)
442 {
443         return __ktime_get_fast_ns(&tk_fast_mono);
444 }
445 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
446
447 u64 ktime_get_raw_fast_ns(void)
448 {
449         return __ktime_get_fast_ns(&tk_fast_raw);
450 }
451 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
452
453 /**
454  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
455  *
456  * To keep it NMI safe since we're accessing from tracing, we're not using a
457  * separate timekeeper with updates to monotonic clock and boot offset
458  * protected with seqlocks. This has the following minor side effects:
459  *
460  * (1) Its possible that a timestamp be taken after the boot offset is updated
461  * but before the timekeeper is updated. If this happens, the new boot offset
462  * is added to the old timekeeping making the clock appear to update slightly
463  * earlier:
464  *    CPU 0                                        CPU 1
465  *    timekeeping_inject_sleeptime64()
466  *    __timekeeping_inject_sleeptime(tk, delta);
467  *                                                 timestamp();
468  *    timekeeping_update(tk, TK_CLEAR_NTP...);
469  *
470  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
471  * partially updated.  Since the tk->offs_boot update is a rare event, this
472  * should be a rare occurrence which postprocessing should be able to handle.
473  */
474 u64 notrace ktime_get_boot_fast_ns(void)
475 {
476         struct timekeeper *tk = &tk_core.timekeeper;
477
478         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
479 }
480 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
481
482 /* Suspend-time cycles value for halted fast timekeeper. */
483 static u64 cycles_at_suspend;
484
485 static u64 dummy_clock_read(struct clocksource *cs)
486 {
487         return cycles_at_suspend;
488 }
489
490 static struct clocksource dummy_clock = {
491         .read = dummy_clock_read,
492 };
493
494 /**
495  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
496  * @tk: Timekeeper to snapshot.
497  *
498  * It generally is unsafe to access the clocksource after timekeeping has been
499  * suspended, so take a snapshot of the readout base of @tk and use it as the
500  * fast timekeeper's readout base while suspended.  It will return the same
501  * number of cycles every time until timekeeping is resumed at which time the
502  * proper readout base for the fast timekeeper will be restored automatically.
503  */
504 static void halt_fast_timekeeper(struct timekeeper *tk)
505 {
506         static struct tk_read_base tkr_dummy;
507         struct tk_read_base *tkr = &tk->tkr_mono;
508
509         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
510         cycles_at_suspend = tk_clock_read(tkr);
511         tkr_dummy.clock = &dummy_clock;
512         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
513
514         tkr = &tk->tkr_raw;
515         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
516         tkr_dummy.clock = &dummy_clock;
517         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
518 }
519
520 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
521 #warning Please contact your maintainers, as GENERIC_TIME_VSYSCALL_OLD compatibity will disappear soon.
522
523 static inline void update_vsyscall(struct timekeeper *tk)
524 {
525         struct timespec xt, wm;
526
527         xt = timespec64_to_timespec(tk_xtime(tk));
528         wm = timespec64_to_timespec(tk->wall_to_monotonic);
529         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
530                             tk->tkr_mono.cycle_last);
531 }
532
533 static inline void old_vsyscall_fixup(struct timekeeper *tk)
534 {
535         s64 remainder;
536
537         /*
538         * Store only full nanoseconds into xtime_nsec after rounding
539         * it up and add the remainder to the error difference.
540         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
541         * by truncating the remainder in vsyscalls. However, it causes
542         * additional work to be done in timekeeping_adjust(). Once
543         * the vsyscall implementations are converted to use xtime_nsec
544         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
545         * users are removed, this can be killed.
546         */
547         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
548         if (remainder != 0) {
549                 tk->tkr_mono.xtime_nsec -= remainder;
550                 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
551                 tk->ntp_error += remainder << tk->ntp_error_shift;
552                 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
553         }
554 }
555 #else
556 #define old_vsyscall_fixup(tk)
557 #endif
558
559 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
560
561 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
562 {
563         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
564 }
565
566 /**
567  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
568  */
569 int pvclock_gtod_register_notifier(struct notifier_block *nb)
570 {
571         struct timekeeper *tk = &tk_core.timekeeper;
572         unsigned long flags;
573         int ret;
574
575         raw_spin_lock_irqsave(&timekeeper_lock, flags);
576         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
577         update_pvclock_gtod(tk, true);
578         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
579
580         return ret;
581 }
582 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
583
584 /**
585  * pvclock_gtod_unregister_notifier - unregister a pvclock
586  * timedata update listener
587  */
588 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
589 {
590         unsigned long flags;
591         int ret;
592
593         raw_spin_lock_irqsave(&timekeeper_lock, flags);
594         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
595         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
596
597         return ret;
598 }
599 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
600
601 /*
602  * tk_update_leap_state - helper to update the next_leap_ktime
603  */
604 static inline void tk_update_leap_state(struct timekeeper *tk)
605 {
606         tk->next_leap_ktime = ntp_get_next_leap();
607         if (tk->next_leap_ktime != KTIME_MAX)
608                 /* Convert to monotonic time */
609                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
610 }
611
612 /*
613  * Update the ktime_t based scalar nsec members of the timekeeper
614  */
615 static inline void tk_update_ktime_data(struct timekeeper *tk)
616 {
617         u64 seconds;
618         u32 nsec;
619
620         /*
621          * The xtime based monotonic readout is:
622          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
623          * The ktime based monotonic readout is:
624          *      nsec = base_mono + now();
625          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
626          */
627         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
628         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
629         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
630
631         /*
632          * The sum of the nanoseconds portions of xtime and
633          * wall_to_monotonic can be greater/equal one second. Take
634          * this into account before updating tk->ktime_sec.
635          */
636         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
637         if (nsec >= NSEC_PER_SEC)
638                 seconds++;
639         tk->ktime_sec = seconds;
640
641         /* Update the monotonic raw base */
642         tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
643 }
644
645 /* must hold timekeeper_lock */
646 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
647 {
648         if (action & TK_CLEAR_NTP) {
649                 tk->ntp_error = 0;
650                 ntp_clear();
651         }
652
653         tk_update_leap_state(tk);
654         tk_update_ktime_data(tk);
655
656         update_vsyscall(tk);
657         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
658
659         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
660         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
661
662         if (action & TK_CLOCK_WAS_SET)
663                 tk->clock_was_set_seq++;
664         /*
665          * The mirroring of the data to the shadow-timekeeper needs
666          * to happen last here to ensure we don't over-write the
667          * timekeeper structure on the next update with stale data
668          */
669         if (action & TK_MIRROR)
670                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
671                        sizeof(tk_core.timekeeper));
672 }
673
674 /**
675  * timekeeping_forward_now - update clock to the current time
676  *
677  * Forward the current clock to update its state since the last call to
678  * update_wall_time(). This is useful before significant clock changes,
679  * as it avoids having to deal with this time offset explicitly.
680  */
681 static void timekeeping_forward_now(struct timekeeper *tk)
682 {
683         u64 cycle_now, delta;
684
685         cycle_now = tk_clock_read(&tk->tkr_mono);
686         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
687         tk->tkr_mono.cycle_last = cycle_now;
688         tk->tkr_raw.cycle_last  = cycle_now;
689
690         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
691
692         /* If arch requires, add in get_arch_timeoffset() */
693         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
694
695
696         tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
697
698         /* If arch requires, add in get_arch_timeoffset() */
699         tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
700
701         tk_normalize_xtime(tk);
702 }
703
704 /**
705  * __getnstimeofday64 - Returns the time of day in a timespec64.
706  * @ts:         pointer to the timespec to be set
707  *
708  * Updates the time of day in the timespec.
709  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
710  */
711 int __getnstimeofday64(struct timespec64 *ts)
712 {
713         struct timekeeper *tk = &tk_core.timekeeper;
714         unsigned long seq;
715         u64 nsecs;
716
717         do {
718                 seq = read_seqcount_begin(&tk_core.seq);
719
720                 ts->tv_sec = tk->xtime_sec;
721                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
722
723         } while (read_seqcount_retry(&tk_core.seq, seq));
724
725         ts->tv_nsec = 0;
726         timespec64_add_ns(ts, nsecs);
727
728         /*
729          * Do not bail out early, in case there were callers still using
730          * the value, even in the face of the WARN_ON.
731          */
732         if (unlikely(timekeeping_suspended))
733                 return -EAGAIN;
734         return 0;
735 }
736 EXPORT_SYMBOL(__getnstimeofday64);
737
738 /**
739  * getnstimeofday64 - Returns the time of day in a timespec64.
740  * @ts:         pointer to the timespec64 to be set
741  *
742  * Returns the time of day in a timespec64 (WARN if suspended).
743  */
744 void getnstimeofday64(struct timespec64 *ts)
745 {
746         WARN_ON(__getnstimeofday64(ts));
747 }
748 EXPORT_SYMBOL(getnstimeofday64);
749
750 ktime_t ktime_get(void)
751 {
752         struct timekeeper *tk = &tk_core.timekeeper;
753         unsigned int seq;
754         ktime_t base;
755         u64 nsecs;
756
757         WARN_ON(timekeeping_suspended);
758
759         do {
760                 seq = read_seqcount_begin(&tk_core.seq);
761                 base = tk->tkr_mono.base;
762                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
763
764         } while (read_seqcount_retry(&tk_core.seq, seq));
765
766         return ktime_add_ns(base, nsecs);
767 }
768 EXPORT_SYMBOL_GPL(ktime_get);
769
770 u32 ktime_get_resolution_ns(void)
771 {
772         struct timekeeper *tk = &tk_core.timekeeper;
773         unsigned int seq;
774         u32 nsecs;
775
776         WARN_ON(timekeeping_suspended);
777
778         do {
779                 seq = read_seqcount_begin(&tk_core.seq);
780                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
781         } while (read_seqcount_retry(&tk_core.seq, seq));
782
783         return nsecs;
784 }
785 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
786
787 static ktime_t *offsets[TK_OFFS_MAX] = {
788         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
789         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
790         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
791 };
792
793 ktime_t ktime_get_with_offset(enum tk_offsets offs)
794 {
795         struct timekeeper *tk = &tk_core.timekeeper;
796         unsigned int seq;
797         ktime_t base, *offset = offsets[offs];
798         u64 nsecs;
799
800         WARN_ON(timekeeping_suspended);
801
802         do {
803                 seq = read_seqcount_begin(&tk_core.seq);
804                 base = ktime_add(tk->tkr_mono.base, *offset);
805                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
806
807         } while (read_seqcount_retry(&tk_core.seq, seq));
808
809         return ktime_add_ns(base, nsecs);
810
811 }
812 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
813
814 /**
815  * ktime_mono_to_any() - convert mononotic time to any other time
816  * @tmono:      time to convert.
817  * @offs:       which offset to use
818  */
819 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
820 {
821         ktime_t *offset = offsets[offs];
822         unsigned long seq;
823         ktime_t tconv;
824
825         do {
826                 seq = read_seqcount_begin(&tk_core.seq);
827                 tconv = ktime_add(tmono, *offset);
828         } while (read_seqcount_retry(&tk_core.seq, seq));
829
830         return tconv;
831 }
832 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
833
834 /**
835  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
836  */
837 ktime_t ktime_get_raw(void)
838 {
839         struct timekeeper *tk = &tk_core.timekeeper;
840         unsigned int seq;
841         ktime_t base;
842         u64 nsecs;
843
844         do {
845                 seq = read_seqcount_begin(&tk_core.seq);
846                 base = tk->tkr_raw.base;
847                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
848
849         } while (read_seqcount_retry(&tk_core.seq, seq));
850
851         return ktime_add_ns(base, nsecs);
852 }
853 EXPORT_SYMBOL_GPL(ktime_get_raw);
854
855 /**
856  * ktime_get_ts64 - get the monotonic clock in timespec64 format
857  * @ts:         pointer to timespec variable
858  *
859  * The function calculates the monotonic clock from the realtime
860  * clock and the wall_to_monotonic offset and stores the result
861  * in normalized timespec64 format in the variable pointed to by @ts.
862  */
863 void ktime_get_ts64(struct timespec64 *ts)
864 {
865         struct timekeeper *tk = &tk_core.timekeeper;
866         struct timespec64 tomono;
867         unsigned int seq;
868         u64 nsec;
869
870         WARN_ON(timekeeping_suspended);
871
872         do {
873                 seq = read_seqcount_begin(&tk_core.seq);
874                 ts->tv_sec = tk->xtime_sec;
875                 nsec = timekeeping_get_ns(&tk->tkr_mono);
876                 tomono = tk->wall_to_monotonic;
877
878         } while (read_seqcount_retry(&tk_core.seq, seq));
879
880         ts->tv_sec += tomono.tv_sec;
881         ts->tv_nsec = 0;
882         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
883 }
884 EXPORT_SYMBOL_GPL(ktime_get_ts64);
885
886 /**
887  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
888  *
889  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
890  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
891  * works on both 32 and 64 bit systems. On 32 bit systems the readout
892  * covers ~136 years of uptime which should be enough to prevent
893  * premature wrap arounds.
894  */
895 time64_t ktime_get_seconds(void)
896 {
897         struct timekeeper *tk = &tk_core.timekeeper;
898
899         WARN_ON(timekeeping_suspended);
900         return tk->ktime_sec;
901 }
902 EXPORT_SYMBOL_GPL(ktime_get_seconds);
903
904 /**
905  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
906  *
907  * Returns the wall clock seconds since 1970. This replaces the
908  * get_seconds() interface which is not y2038 safe on 32bit systems.
909  *
910  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
911  * 32bit systems the access must be protected with the sequence
912  * counter to provide "atomic" access to the 64bit tk->xtime_sec
913  * value.
914  */
915 time64_t ktime_get_real_seconds(void)
916 {
917         struct timekeeper *tk = &tk_core.timekeeper;
918         time64_t seconds;
919         unsigned int seq;
920
921         if (IS_ENABLED(CONFIG_64BIT))
922                 return tk->xtime_sec;
923
924         do {
925                 seq = read_seqcount_begin(&tk_core.seq);
926                 seconds = tk->xtime_sec;
927
928         } while (read_seqcount_retry(&tk_core.seq, seq));
929
930         return seconds;
931 }
932 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
933
934 /**
935  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
936  * but without the sequence counter protect. This internal function
937  * is called just when timekeeping lock is already held.
938  */
939 time64_t __ktime_get_real_seconds(void)
940 {
941         struct timekeeper *tk = &tk_core.timekeeper;
942
943         return tk->xtime_sec;
944 }
945
946 /**
947  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
948  * @systime_snapshot:   pointer to struct receiving the system time snapshot
949  */
950 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
951 {
952         struct timekeeper *tk = &tk_core.timekeeper;
953         unsigned long seq;
954         ktime_t base_raw;
955         ktime_t base_real;
956         u64 nsec_raw;
957         u64 nsec_real;
958         u64 now;
959
960         WARN_ON_ONCE(timekeeping_suspended);
961
962         do {
963                 seq = read_seqcount_begin(&tk_core.seq);
964                 now = tk_clock_read(&tk->tkr_mono);
965                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
966                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
967                 base_real = ktime_add(tk->tkr_mono.base,
968                                       tk_core.timekeeper.offs_real);
969                 base_raw = tk->tkr_raw.base;
970                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
971                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
972         } while (read_seqcount_retry(&tk_core.seq, seq));
973
974         systime_snapshot->cycles = now;
975         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
976         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
977 }
978 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
979
980 /* Scale base by mult/div checking for overflow */
981 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
982 {
983         u64 tmp, rem;
984
985         tmp = div64_u64_rem(*base, div, &rem);
986
987         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
988             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
989                 return -EOVERFLOW;
990         tmp *= mult;
991
992         rem = div64_u64(rem * mult, div);
993         *base = tmp + rem;
994         return 0;
995 }
996
997 /**
998  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
999  * @history:                    Snapshot representing start of history
1000  * @partial_history_cycles:     Cycle offset into history (fractional part)
1001  * @total_history_cycles:       Total history length in cycles
1002  * @discontinuity:              True indicates clock was set on history period
1003  * @ts:                         Cross timestamp that should be adjusted using
1004  *      partial/total ratio
1005  *
1006  * Helper function used by get_device_system_crosststamp() to correct the
1007  * crosstimestamp corresponding to the start of the current interval to the
1008  * system counter value (timestamp point) provided by the driver. The
1009  * total_history_* quantities are the total history starting at the provided
1010  * reference point and ending at the start of the current interval. The cycle
1011  * count between the driver timestamp point and the start of the current
1012  * interval is partial_history_cycles.
1013  */
1014 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1015                                          u64 partial_history_cycles,
1016                                          u64 total_history_cycles,
1017                                          bool discontinuity,
1018                                          struct system_device_crosststamp *ts)
1019 {
1020         struct timekeeper *tk = &tk_core.timekeeper;
1021         u64 corr_raw, corr_real;
1022         bool interp_forward;
1023         int ret;
1024
1025         if (total_history_cycles == 0 || partial_history_cycles == 0)
1026                 return 0;
1027
1028         /* Interpolate shortest distance from beginning or end of history */
1029         interp_forward = partial_history_cycles > total_history_cycles / 2;
1030         partial_history_cycles = interp_forward ?
1031                 total_history_cycles - partial_history_cycles :
1032                 partial_history_cycles;
1033
1034         /*
1035          * Scale the monotonic raw time delta by:
1036          *      partial_history_cycles / total_history_cycles
1037          */
1038         corr_raw = (u64)ktime_to_ns(
1039                 ktime_sub(ts->sys_monoraw, history->raw));
1040         ret = scale64_check_overflow(partial_history_cycles,
1041                                      total_history_cycles, &corr_raw);
1042         if (ret)
1043                 return ret;
1044
1045         /*
1046          * If there is a discontinuity in the history, scale monotonic raw
1047          *      correction by:
1048          *      mult(real)/mult(raw) yielding the realtime correction
1049          * Otherwise, calculate the realtime correction similar to monotonic
1050          *      raw calculation
1051          */
1052         if (discontinuity) {
1053                 corr_real = mul_u64_u32_div
1054                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1055         } else {
1056                 corr_real = (u64)ktime_to_ns(
1057                         ktime_sub(ts->sys_realtime, history->real));
1058                 ret = scale64_check_overflow(partial_history_cycles,
1059                                              total_history_cycles, &corr_real);
1060                 if (ret)
1061                         return ret;
1062         }
1063
1064         /* Fixup monotonic raw and real time time values */
1065         if (interp_forward) {
1066                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1067                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1068         } else {
1069                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1070                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1071         }
1072
1073         return 0;
1074 }
1075
1076 /*
1077  * cycle_between - true if test occurs chronologically between before and after
1078  */
1079 static bool cycle_between(u64 before, u64 test, u64 after)
1080 {
1081         if (test > before && test < after)
1082                 return true;
1083         if (test < before && before > after)
1084                 return true;
1085         return false;
1086 }
1087
1088 /**
1089  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1090  * @get_time_fn:        Callback to get simultaneous device time and
1091  *      system counter from the device driver
1092  * @ctx:                Context passed to get_time_fn()
1093  * @history_begin:      Historical reference point used to interpolate system
1094  *      time when counter provided by the driver is before the current interval
1095  * @xtstamp:            Receives simultaneously captured system and device time
1096  *
1097  * Reads a timestamp from a device and correlates it to system time
1098  */
1099 int get_device_system_crosststamp(int (*get_time_fn)
1100                                   (ktime_t *device_time,
1101                                    struct system_counterval_t *sys_counterval,
1102                                    void *ctx),
1103                                   void *ctx,
1104                                   struct system_time_snapshot *history_begin,
1105                                   struct system_device_crosststamp *xtstamp)
1106 {
1107         struct system_counterval_t system_counterval;
1108         struct timekeeper *tk = &tk_core.timekeeper;
1109         u64 cycles, now, interval_start;
1110         unsigned int clock_was_set_seq = 0;
1111         ktime_t base_real, base_raw;
1112         u64 nsec_real, nsec_raw;
1113         u8 cs_was_changed_seq;
1114         unsigned long seq;
1115         bool do_interp;
1116         int ret;
1117
1118         do {
1119                 seq = read_seqcount_begin(&tk_core.seq);
1120                 /*
1121                  * Try to synchronously capture device time and a system
1122                  * counter value calling back into the device driver
1123                  */
1124                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1125                 if (ret)
1126                         return ret;
1127
1128                 /*
1129                  * Verify that the clocksource associated with the captured
1130                  * system counter value is the same as the currently installed
1131                  * timekeeper clocksource
1132                  */
1133                 if (tk->tkr_mono.clock != system_counterval.cs)
1134                         return -ENODEV;
1135                 cycles = system_counterval.cycles;
1136
1137                 /*
1138                  * Check whether the system counter value provided by the
1139                  * device driver is on the current timekeeping interval.
1140                  */
1141                 now = tk_clock_read(&tk->tkr_mono);
1142                 interval_start = tk->tkr_mono.cycle_last;
1143                 if (!cycle_between(interval_start, cycles, now)) {
1144                         clock_was_set_seq = tk->clock_was_set_seq;
1145                         cs_was_changed_seq = tk->cs_was_changed_seq;
1146                         cycles = interval_start;
1147                         do_interp = true;
1148                 } else {
1149                         do_interp = false;
1150                 }
1151
1152                 base_real = ktime_add(tk->tkr_mono.base,
1153                                       tk_core.timekeeper.offs_real);
1154                 base_raw = tk->tkr_raw.base;
1155
1156                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1157                                                      system_counterval.cycles);
1158                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1159                                                     system_counterval.cycles);
1160         } while (read_seqcount_retry(&tk_core.seq, seq));
1161
1162         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1163         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1164
1165         /*
1166          * Interpolate if necessary, adjusting back from the start of the
1167          * current interval
1168          */
1169         if (do_interp) {
1170                 u64 partial_history_cycles, total_history_cycles;
1171                 bool discontinuity;
1172
1173                 /*
1174                  * Check that the counter value occurs after the provided
1175                  * history reference and that the history doesn't cross a
1176                  * clocksource change
1177                  */
1178                 if (!history_begin ||
1179                     !cycle_between(history_begin->cycles,
1180                                    system_counterval.cycles, cycles) ||
1181                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1182                         return -EINVAL;
1183                 partial_history_cycles = cycles - system_counterval.cycles;
1184                 total_history_cycles = cycles - history_begin->cycles;
1185                 discontinuity =
1186                         history_begin->clock_was_set_seq != clock_was_set_seq;
1187
1188                 ret = adjust_historical_crosststamp(history_begin,
1189                                                     partial_history_cycles,
1190                                                     total_history_cycles,
1191                                                     discontinuity, xtstamp);
1192                 if (ret)
1193                         return ret;
1194         }
1195
1196         return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1199
1200 /**
1201  * do_gettimeofday - Returns the time of day in a timeval
1202  * @tv:         pointer to the timeval to be set
1203  *
1204  * NOTE: Users should be converted to using getnstimeofday()
1205  */
1206 void do_gettimeofday(struct timeval *tv)
1207 {
1208         struct timespec64 now;
1209
1210         getnstimeofday64(&now);
1211         tv->tv_sec = now.tv_sec;
1212         tv->tv_usec = now.tv_nsec/1000;
1213 }
1214 EXPORT_SYMBOL(do_gettimeofday);
1215
1216 /**
1217  * do_settimeofday64 - Sets the time of day.
1218  * @ts:     pointer to the timespec64 variable containing the new time
1219  *
1220  * Sets the time of day to the new time and update NTP and notify hrtimers
1221  */
1222 int do_settimeofday64(const struct timespec64 *ts)
1223 {
1224         struct timekeeper *tk = &tk_core.timekeeper;
1225         struct timespec64 ts_delta, xt;
1226         unsigned long flags;
1227         int ret = 0;
1228
1229         if (!timespec64_valid_strict(ts))
1230                 return -EINVAL;
1231
1232         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1233         write_seqcount_begin(&tk_core.seq);
1234
1235         timekeeping_forward_now(tk);
1236
1237         xt = tk_xtime(tk);
1238         ts_delta = timespec64_sub(*ts, xt);
1239
1240         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1241                 ret = -EINVAL;
1242                 goto out;
1243         }
1244
1245         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1246
1247         tk_set_xtime(tk, ts);
1248 out:
1249         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1250
1251         write_seqcount_end(&tk_core.seq);
1252         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1253
1254         /* signal hrtimers about time change */
1255         clock_was_set();
1256
1257         return ret;
1258 }
1259 EXPORT_SYMBOL(do_settimeofday64);
1260
1261 /**
1262  * timekeeping_inject_offset - Adds or subtracts from the current time.
1263  * @tv:         pointer to the timespec variable containing the offset
1264  *
1265  * Adds or subtracts an offset value from the current time.
1266  */
1267 int timekeeping_inject_offset(struct timespec *ts)
1268 {
1269         struct timekeeper *tk = &tk_core.timekeeper;
1270         unsigned long flags;
1271         struct timespec64 ts64, tmp;
1272         int ret = 0;
1273
1274         if (!timespec_inject_offset_valid(ts))
1275                 return -EINVAL;
1276
1277         ts64 = timespec_to_timespec64(*ts);
1278
1279         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1280         write_seqcount_begin(&tk_core.seq);
1281
1282         timekeeping_forward_now(tk);
1283
1284         /* Make sure the proposed value is valid */
1285         tmp = timespec64_add(tk_xtime(tk),  ts64);
1286         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1287             !timespec64_valid_strict(&tmp)) {
1288                 ret = -EINVAL;
1289                 goto error;
1290         }
1291
1292         tk_xtime_add(tk, &ts64);
1293         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1294
1295 error: /* even if we error out, we forwarded the time, so call update */
1296         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1297
1298         write_seqcount_end(&tk_core.seq);
1299         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1300
1301         /* signal hrtimers about time change */
1302         clock_was_set();
1303
1304         return ret;
1305 }
1306 EXPORT_SYMBOL(timekeeping_inject_offset);
1307
1308 /**
1309  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1310  *
1311  */
1312 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1313 {
1314         tk->tai_offset = tai_offset;
1315         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1316 }
1317
1318 /**
1319  * change_clocksource - Swaps clocksources if a new one is available
1320  *
1321  * Accumulates current time interval and initializes new clocksource
1322  */
1323 static int change_clocksource(void *data)
1324 {
1325         struct timekeeper *tk = &tk_core.timekeeper;
1326         struct clocksource *new, *old;
1327         unsigned long flags;
1328
1329         new = (struct clocksource *) data;
1330
1331         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1332         write_seqcount_begin(&tk_core.seq);
1333
1334         timekeeping_forward_now(tk);
1335         /*
1336          * If the cs is in module, get a module reference. Succeeds
1337          * for built-in code (owner == NULL) as well.
1338          */
1339         if (try_module_get(new->owner)) {
1340                 if (!new->enable || new->enable(new) == 0) {
1341                         old = tk->tkr_mono.clock;
1342                         tk_setup_internals(tk, new);
1343                         if (old->disable)
1344                                 old->disable(old);
1345                         module_put(old->owner);
1346                 } else {
1347                         module_put(new->owner);
1348                 }
1349         }
1350         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1351
1352         write_seqcount_end(&tk_core.seq);
1353         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1354
1355         return 0;
1356 }
1357
1358 /**
1359  * timekeeping_notify - Install a new clock source
1360  * @clock:              pointer to the clock source
1361  *
1362  * This function is called from clocksource.c after a new, better clock
1363  * source has been registered. The caller holds the clocksource_mutex.
1364  */
1365 int timekeeping_notify(struct clocksource *clock)
1366 {
1367         struct timekeeper *tk = &tk_core.timekeeper;
1368
1369         if (tk->tkr_mono.clock == clock)
1370                 return 0;
1371         stop_machine(change_clocksource, clock, NULL);
1372         tick_clock_notify();
1373         return tk->tkr_mono.clock == clock ? 0 : -1;
1374 }
1375
1376 /**
1377  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1378  * @ts:         pointer to the timespec64 to be set
1379  *
1380  * Returns the raw monotonic time (completely un-modified by ntp)
1381  */
1382 void getrawmonotonic64(struct timespec64 *ts)
1383 {
1384         struct timekeeper *tk = &tk_core.timekeeper;
1385         unsigned long seq;
1386         u64 nsecs;
1387
1388         do {
1389                 seq = read_seqcount_begin(&tk_core.seq);
1390                 ts->tv_sec = tk->raw_sec;
1391                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1392
1393         } while (read_seqcount_retry(&tk_core.seq, seq));
1394
1395         ts->tv_nsec = 0;
1396         timespec64_add_ns(ts, nsecs);
1397 }
1398 EXPORT_SYMBOL(getrawmonotonic64);
1399
1400
1401 /**
1402  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1403  */
1404 int timekeeping_valid_for_hres(void)
1405 {
1406         struct timekeeper *tk = &tk_core.timekeeper;
1407         unsigned long seq;
1408         int ret;
1409
1410         do {
1411                 seq = read_seqcount_begin(&tk_core.seq);
1412
1413                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1414
1415         } while (read_seqcount_retry(&tk_core.seq, seq));
1416
1417         return ret;
1418 }
1419
1420 /**
1421  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1422  */
1423 u64 timekeeping_max_deferment(void)
1424 {
1425         struct timekeeper *tk = &tk_core.timekeeper;
1426         unsigned long seq;
1427         u64 ret;
1428
1429         do {
1430                 seq = read_seqcount_begin(&tk_core.seq);
1431
1432                 ret = tk->tkr_mono.clock->max_idle_ns;
1433
1434         } while (read_seqcount_retry(&tk_core.seq, seq));
1435
1436         return ret;
1437 }
1438
1439 /**
1440  * read_persistent_clock -  Return time from the persistent clock.
1441  *
1442  * Weak dummy function for arches that do not yet support it.
1443  * Reads the time from the battery backed persistent clock.
1444  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1445  *
1446  *  XXX - Do be sure to remove it once all arches implement it.
1447  */
1448 void __weak read_persistent_clock(struct timespec *ts)
1449 {
1450         ts->tv_sec = 0;
1451         ts->tv_nsec = 0;
1452 }
1453
1454 void __weak read_persistent_clock64(struct timespec64 *ts64)
1455 {
1456         struct timespec ts;
1457
1458         read_persistent_clock(&ts);
1459         *ts64 = timespec_to_timespec64(ts);
1460 }
1461
1462 /**
1463  * read_boot_clock64 -  Return time of the system start.
1464  *
1465  * Weak dummy function for arches that do not yet support it.
1466  * Function to read the exact time the system has been started.
1467  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1468  *
1469  *  XXX - Do be sure to remove it once all arches implement it.
1470  */
1471 void __weak read_boot_clock64(struct timespec64 *ts)
1472 {
1473         ts->tv_sec = 0;
1474         ts->tv_nsec = 0;
1475 }
1476
1477 /* Flag for if timekeeping_resume() has injected sleeptime */
1478 static bool sleeptime_injected;
1479
1480 /* Flag for if there is a persistent clock on this platform */
1481 static bool persistent_clock_exists;
1482
1483 /*
1484  * timekeeping_init - Initializes the clocksource and common timekeeping values
1485  */
1486 void __init timekeeping_init(void)
1487 {
1488         struct timekeeper *tk = &tk_core.timekeeper;
1489         struct clocksource *clock;
1490         unsigned long flags;
1491         struct timespec64 now, boot, tmp;
1492
1493         read_persistent_clock64(&now);
1494         if (!timespec64_valid_strict(&now)) {
1495                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1496                         "         Check your CMOS/BIOS settings.\n");
1497                 now.tv_sec = 0;
1498                 now.tv_nsec = 0;
1499         } else if (now.tv_sec || now.tv_nsec)
1500                 persistent_clock_exists = true;
1501
1502         read_boot_clock64(&boot);
1503         if (!timespec64_valid_strict(&boot)) {
1504                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1505                         "         Check your CMOS/BIOS settings.\n");
1506                 boot.tv_sec = 0;
1507                 boot.tv_nsec = 0;
1508         }
1509
1510         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1511         write_seqcount_begin(&tk_core.seq);
1512         ntp_init();
1513
1514         clock = clocksource_default_clock();
1515         if (clock->enable)
1516                 clock->enable(clock);
1517         tk_setup_internals(tk, clock);
1518
1519         tk_set_xtime(tk, &now);
1520         tk->raw_sec = 0;
1521         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1522                 boot = tk_xtime(tk);
1523
1524         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1525         tk_set_wall_to_mono(tk, tmp);
1526
1527         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1528
1529         write_seqcount_end(&tk_core.seq);
1530         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1531 }
1532
1533 /* time in seconds when suspend began for persistent clock */
1534 static struct timespec64 timekeeping_suspend_time;
1535
1536 /**
1537  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1538  * @delta: pointer to a timespec delta value
1539  *
1540  * Takes a timespec offset measuring a suspend interval and properly
1541  * adds the sleep offset to the timekeeping variables.
1542  */
1543 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1544                                            struct timespec64 *delta)
1545 {
1546         if (!timespec64_valid_strict(delta)) {
1547                 printk_deferred(KERN_WARNING
1548                                 "__timekeeping_inject_sleeptime: Invalid "
1549                                 "sleep delta value!\n");
1550                 return;
1551         }
1552         tk_xtime_add(tk, delta);
1553         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1554         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1555         tk_debug_account_sleep_time(delta);
1556 }
1557
1558 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1559 /**
1560  * We have three kinds of time sources to use for sleep time
1561  * injection, the preference order is:
1562  * 1) non-stop clocksource
1563  * 2) persistent clock (ie: RTC accessible when irqs are off)
1564  * 3) RTC
1565  *
1566  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1567  * If system has neither 1) nor 2), 3) will be used finally.
1568  *
1569  *
1570  * If timekeeping has injected sleeptime via either 1) or 2),
1571  * 3) becomes needless, so in this case we don't need to call
1572  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1573  * means.
1574  */
1575 bool timekeeping_rtc_skipresume(void)
1576 {
1577         return sleeptime_injected;
1578 }
1579
1580 /**
1581  * 1) can be determined whether to use or not only when doing
1582  * timekeeping_resume() which is invoked after rtc_suspend(),
1583  * so we can't skip rtc_suspend() surely if system has 1).
1584  *
1585  * But if system has 2), 2) will definitely be used, so in this
1586  * case we don't need to call rtc_suspend(), and this is what
1587  * timekeeping_rtc_skipsuspend() means.
1588  */
1589 bool timekeeping_rtc_skipsuspend(void)
1590 {
1591         return persistent_clock_exists;
1592 }
1593
1594 /**
1595  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1596  * @delta: pointer to a timespec64 delta value
1597  *
1598  * This hook is for architectures that cannot support read_persistent_clock64
1599  * because their RTC/persistent clock is only accessible when irqs are enabled.
1600  * and also don't have an effective nonstop clocksource.
1601  *
1602  * This function should only be called by rtc_resume(), and allows
1603  * a suspend offset to be injected into the timekeeping values.
1604  */
1605 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1606 {
1607         struct timekeeper *tk = &tk_core.timekeeper;
1608         unsigned long flags;
1609
1610         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1611         write_seqcount_begin(&tk_core.seq);
1612
1613         timekeeping_forward_now(tk);
1614
1615         __timekeeping_inject_sleeptime(tk, delta);
1616
1617         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1618
1619         write_seqcount_end(&tk_core.seq);
1620         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1621
1622         /* signal hrtimers about time change */
1623         clock_was_set();
1624 }
1625 #endif
1626
1627 /**
1628  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1629  */
1630 void timekeeping_resume(void)
1631 {
1632         struct timekeeper *tk = &tk_core.timekeeper;
1633         struct clocksource *clock = tk->tkr_mono.clock;
1634         unsigned long flags;
1635         struct timespec64 ts_new, ts_delta;
1636         u64 cycle_now;
1637
1638         sleeptime_injected = false;
1639         read_persistent_clock64(&ts_new);
1640
1641         clockevents_resume();
1642         clocksource_resume();
1643
1644         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1645         write_seqcount_begin(&tk_core.seq);
1646
1647         /*
1648          * After system resumes, we need to calculate the suspended time and
1649          * compensate it for the OS time. There are 3 sources that could be
1650          * used: Nonstop clocksource during suspend, persistent clock and rtc
1651          * device.
1652          *
1653          * One specific platform may have 1 or 2 or all of them, and the
1654          * preference will be:
1655          *      suspend-nonstop clocksource -> persistent clock -> rtc
1656          * The less preferred source will only be tried if there is no better
1657          * usable source. The rtc part is handled separately in rtc core code.
1658          */
1659         cycle_now = tk_clock_read(&tk->tkr_mono);
1660         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1661                 cycle_now > tk->tkr_mono.cycle_last) {
1662                 u64 nsec, cyc_delta;
1663
1664                 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1665                                               tk->tkr_mono.mask);
1666                 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1667                 ts_delta = ns_to_timespec64(nsec);
1668                 sleeptime_injected = true;
1669         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1670                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1671                 sleeptime_injected = true;
1672         }
1673
1674         if (sleeptime_injected)
1675                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1676
1677         /* Re-base the last cycle value */
1678         tk->tkr_mono.cycle_last = cycle_now;
1679         tk->tkr_raw.cycle_last  = cycle_now;
1680
1681         tk->ntp_error = 0;
1682         timekeeping_suspended = 0;
1683         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1684         write_seqcount_end(&tk_core.seq);
1685         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1686
1687         touch_softlockup_watchdog();
1688
1689         tick_resume();
1690         hrtimers_resume();
1691 }
1692
1693 int timekeeping_suspend(void)
1694 {
1695         struct timekeeper *tk = &tk_core.timekeeper;
1696         unsigned long flags;
1697         struct timespec64               delta, delta_delta;
1698         static struct timespec64        old_delta;
1699
1700         read_persistent_clock64(&timekeeping_suspend_time);
1701
1702         /*
1703          * On some systems the persistent_clock can not be detected at
1704          * timekeeping_init by its return value, so if we see a valid
1705          * value returned, update the persistent_clock_exists flag.
1706          */
1707         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1708                 persistent_clock_exists = true;
1709
1710         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1711         write_seqcount_begin(&tk_core.seq);
1712         timekeeping_forward_now(tk);
1713         timekeeping_suspended = 1;
1714
1715         if (persistent_clock_exists) {
1716                 /*
1717                  * To avoid drift caused by repeated suspend/resumes,
1718                  * which each can add ~1 second drift error,
1719                  * try to compensate so the difference in system time
1720                  * and persistent_clock time stays close to constant.
1721                  */
1722                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1723                 delta_delta = timespec64_sub(delta, old_delta);
1724                 if (abs(delta_delta.tv_sec) >= 2) {
1725                         /*
1726                          * if delta_delta is too large, assume time correction
1727                          * has occurred and set old_delta to the current delta.
1728                          */
1729                         old_delta = delta;
1730                 } else {
1731                         /* Otherwise try to adjust old_system to compensate */
1732                         timekeeping_suspend_time =
1733                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1734                 }
1735         }
1736
1737         timekeeping_update(tk, TK_MIRROR);
1738         halt_fast_timekeeper(tk);
1739         write_seqcount_end(&tk_core.seq);
1740         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1741
1742         tick_suspend();
1743         clocksource_suspend();
1744         clockevents_suspend();
1745
1746         return 0;
1747 }
1748
1749 /* sysfs resume/suspend bits for timekeeping */
1750 static struct syscore_ops timekeeping_syscore_ops = {
1751         .resume         = timekeeping_resume,
1752         .suspend        = timekeeping_suspend,
1753 };
1754
1755 static int __init timekeeping_init_ops(void)
1756 {
1757         register_syscore_ops(&timekeeping_syscore_ops);
1758         return 0;
1759 }
1760 device_initcall(timekeeping_init_ops);
1761
1762 /*
1763  * Apply a multiplier adjustment to the timekeeper
1764  */
1765 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1766                                                          s64 offset,
1767                                                          bool negative,
1768                                                          int adj_scale)
1769 {
1770         s64 interval = tk->cycle_interval;
1771         s32 mult_adj = 1;
1772
1773         if (negative) {
1774                 mult_adj = -mult_adj;
1775                 interval = -interval;
1776                 offset  = -offset;
1777         }
1778         mult_adj <<= adj_scale;
1779         interval <<= adj_scale;
1780         offset <<= adj_scale;
1781
1782         /*
1783          * So the following can be confusing.
1784          *
1785          * To keep things simple, lets assume mult_adj == 1 for now.
1786          *
1787          * When mult_adj != 1, remember that the interval and offset values
1788          * have been appropriately scaled so the math is the same.
1789          *
1790          * The basic idea here is that we're increasing the multiplier
1791          * by one, this causes the xtime_interval to be incremented by
1792          * one cycle_interval. This is because:
1793          *      xtime_interval = cycle_interval * mult
1794          * So if mult is being incremented by one:
1795          *      xtime_interval = cycle_interval * (mult + 1)
1796          * Its the same as:
1797          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1798          * Which can be shortened to:
1799          *      xtime_interval += cycle_interval
1800          *
1801          * So offset stores the non-accumulated cycles. Thus the current
1802          * time (in shifted nanoseconds) is:
1803          *      now = (offset * adj) + xtime_nsec
1804          * Now, even though we're adjusting the clock frequency, we have
1805          * to keep time consistent. In other words, we can't jump back
1806          * in time, and we also want to avoid jumping forward in time.
1807          *
1808          * So given the same offset value, we need the time to be the same
1809          * both before and after the freq adjustment.
1810          *      now = (offset * adj_1) + xtime_nsec_1
1811          *      now = (offset * adj_2) + xtime_nsec_2
1812          * So:
1813          *      (offset * adj_1) + xtime_nsec_1 =
1814          *              (offset * adj_2) + xtime_nsec_2
1815          * And we know:
1816          *      adj_2 = adj_1 + 1
1817          * So:
1818          *      (offset * adj_1) + xtime_nsec_1 =
1819          *              (offset * (adj_1+1)) + xtime_nsec_2
1820          *      (offset * adj_1) + xtime_nsec_1 =
1821          *              (offset * adj_1) + offset + xtime_nsec_2
1822          * Canceling the sides:
1823          *      xtime_nsec_1 = offset + xtime_nsec_2
1824          * Which gives us:
1825          *      xtime_nsec_2 = xtime_nsec_1 - offset
1826          * Which simplfies to:
1827          *      xtime_nsec -= offset
1828          *
1829          * XXX - TODO: Doc ntp_error calculation.
1830          */
1831         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1832                 /* NTP adjustment caused clocksource mult overflow */
1833                 WARN_ON_ONCE(1);
1834                 return;
1835         }
1836
1837         tk->tkr_mono.mult += mult_adj;
1838         tk->xtime_interval += interval;
1839         tk->tkr_mono.xtime_nsec -= offset;
1840         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1841 }
1842
1843 /*
1844  * Calculate the multiplier adjustment needed to match the frequency
1845  * specified by NTP
1846  */
1847 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1848                                                         s64 offset)
1849 {
1850         s64 interval = tk->cycle_interval;
1851         s64 xinterval = tk->xtime_interval;
1852         u32 base = tk->tkr_mono.clock->mult;
1853         u32 max = tk->tkr_mono.clock->maxadj;
1854         u32 cur_adj = tk->tkr_mono.mult;
1855         s64 tick_error;
1856         bool negative;
1857         u32 adj_scale;
1858
1859         /* Remove any current error adj from freq calculation */
1860         if (tk->ntp_err_mult)
1861                 xinterval -= tk->cycle_interval;
1862
1863         tk->ntp_tick = ntp_tick_length();
1864
1865         /* Calculate current error per tick */
1866         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1867         tick_error -= (xinterval + tk->xtime_remainder);
1868
1869         /* Don't worry about correcting it if its small */
1870         if (likely((tick_error >= 0) && (tick_error <= interval)))
1871                 return;
1872
1873         /* preserve the direction of correction */
1874         negative = (tick_error < 0);
1875
1876         /* If any adjustment would pass the max, just return */
1877         if (negative && (cur_adj - 1) <= (base - max))
1878                 return;
1879         if (!negative && (cur_adj + 1) >= (base + max))
1880                 return;
1881         /*
1882          * Sort out the magnitude of the correction, but
1883          * avoid making so large a correction that we go
1884          * over the max adjustment.
1885          */
1886         adj_scale = 0;
1887         tick_error = abs(tick_error);
1888         while (tick_error > interval) {
1889                 u32 adj = 1 << (adj_scale + 1);
1890
1891                 /* Check if adjustment gets us within 1 unit from the max */
1892                 if (negative && (cur_adj - adj) <= (base - max))
1893                         break;
1894                 if (!negative && (cur_adj + adj) >= (base + max))
1895                         break;
1896
1897                 adj_scale++;
1898                 tick_error >>= 1;
1899         }
1900
1901         /* scale the corrections */
1902         timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1903 }
1904
1905 /*
1906  * Adjust the timekeeper's multiplier to the correct frequency
1907  * and also to reduce the accumulated error value.
1908  */
1909 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1910 {
1911         /* Correct for the current frequency error */
1912         timekeeping_freqadjust(tk, offset);
1913
1914         /* Next make a small adjustment to fix any cumulative error */
1915         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1916                 tk->ntp_err_mult = 1;
1917                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1918         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1919                 /* Undo any existing error adjustment */
1920                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1921                 tk->ntp_err_mult = 0;
1922         }
1923
1924         if (unlikely(tk->tkr_mono.clock->maxadj &&
1925                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1926                         > tk->tkr_mono.clock->maxadj))) {
1927                 printk_once(KERN_WARNING
1928                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1929                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1930                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1931         }
1932
1933         /*
1934          * It may be possible that when we entered this function, xtime_nsec
1935          * was very small.  Further, if we're slightly speeding the clocksource
1936          * in the code above, its possible the required corrective factor to
1937          * xtime_nsec could cause it to underflow.
1938          *
1939          * Now, since we already accumulated the second, cannot simply roll
1940          * the accumulated second back, since the NTP subsystem has been
1941          * notified via second_overflow. So instead we push xtime_nsec forward
1942          * by the amount we underflowed, and add that amount into the error.
1943          *
1944          * We'll correct this error next time through this function, when
1945          * xtime_nsec is not as small.
1946          */
1947         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1948                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1949                 tk->tkr_mono.xtime_nsec = 0;
1950                 tk->ntp_error += neg << tk->ntp_error_shift;
1951         }
1952 }
1953
1954 /**
1955  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1956  *
1957  * Helper function that accumulates the nsecs greater than a second
1958  * from the xtime_nsec field to the xtime_secs field.
1959  * It also calls into the NTP code to handle leapsecond processing.
1960  *
1961  */
1962 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1963 {
1964         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1965         unsigned int clock_set = 0;
1966
1967         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1968                 int leap;
1969
1970                 tk->tkr_mono.xtime_nsec -= nsecps;
1971                 tk->xtime_sec++;
1972
1973                 /* Figure out if its a leap sec and apply if needed */
1974                 leap = second_overflow(tk->xtime_sec);
1975                 if (unlikely(leap)) {
1976                         struct timespec64 ts;
1977
1978                         tk->xtime_sec += leap;
1979
1980                         ts.tv_sec = leap;
1981                         ts.tv_nsec = 0;
1982                         tk_set_wall_to_mono(tk,
1983                                 timespec64_sub(tk->wall_to_monotonic, ts));
1984
1985                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1986
1987                         clock_set = TK_CLOCK_WAS_SET;
1988                 }
1989         }
1990         return clock_set;
1991 }
1992
1993 /**
1994  * logarithmic_accumulation - shifted accumulation of cycles
1995  *
1996  * This functions accumulates a shifted interval of cycles into
1997  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1998  * loop.
1999  *
2000  * Returns the unconsumed cycles.
2001  */
2002 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2003                                     u32 shift, unsigned int *clock_set)
2004 {
2005         u64 interval = tk->cycle_interval << shift;
2006         u64 snsec_per_sec;
2007
2008         /* If the offset is smaller than a shifted interval, do nothing */
2009         if (offset < interval)
2010                 return offset;
2011
2012         /* Accumulate one shifted interval */
2013         offset -= interval;
2014         tk->tkr_mono.cycle_last += interval;
2015         tk->tkr_raw.cycle_last  += interval;
2016
2017         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2018         *clock_set |= accumulate_nsecs_to_secs(tk);
2019
2020         /* Accumulate raw time */
2021         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2022         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2023         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2024                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2025                 tk->raw_sec++;
2026         }
2027
2028         /* Accumulate error between NTP and clock interval */
2029         tk->ntp_error += tk->ntp_tick << shift;
2030         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2031                                                 (tk->ntp_error_shift + shift);
2032
2033         return offset;
2034 }
2035
2036 /**
2037  * update_wall_time - Uses the current clocksource to increment the wall time
2038  *
2039  */
2040 void update_wall_time(void)
2041 {
2042         struct timekeeper *real_tk = &tk_core.timekeeper;
2043         struct timekeeper *tk = &shadow_timekeeper;
2044         u64 offset;
2045         int shift = 0, maxshift;
2046         unsigned int clock_set = 0;
2047         unsigned long flags;
2048
2049         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2050
2051         /* Make sure we're fully resumed: */
2052         if (unlikely(timekeeping_suspended))
2053                 goto out;
2054
2055 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2056         offset = real_tk->cycle_interval;
2057 #else
2058         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2059                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2060 #endif
2061
2062         /* Check if there's really nothing to do */
2063         if (offset < real_tk->cycle_interval)
2064                 goto out;
2065
2066         /* Do some additional sanity checking */
2067         timekeeping_check_update(tk, offset);
2068
2069         /*
2070          * With NO_HZ we may have to accumulate many cycle_intervals
2071          * (think "ticks") worth of time at once. To do this efficiently,
2072          * we calculate the largest doubling multiple of cycle_intervals
2073          * that is smaller than the offset.  We then accumulate that
2074          * chunk in one go, and then try to consume the next smaller
2075          * doubled multiple.
2076          */
2077         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2078         shift = max(0, shift);
2079         /* Bound shift to one less than what overflows tick_length */
2080         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2081         shift = min(shift, maxshift);
2082         while (offset >= tk->cycle_interval) {
2083                 offset = logarithmic_accumulation(tk, offset, shift,
2084                                                         &clock_set);
2085                 if (offset < tk->cycle_interval<<shift)
2086                         shift--;
2087         }
2088
2089         /* correct the clock when NTP error is too big */
2090         timekeeping_adjust(tk, offset);
2091
2092         /*
2093          * XXX This can be killed once everyone converts
2094          * to the new update_vsyscall.
2095          */
2096         old_vsyscall_fixup(tk);
2097
2098         /*
2099          * Finally, make sure that after the rounding
2100          * xtime_nsec isn't larger than NSEC_PER_SEC
2101          */
2102         clock_set |= accumulate_nsecs_to_secs(tk);
2103
2104         write_seqcount_begin(&tk_core.seq);
2105         /*
2106          * Update the real timekeeper.
2107          *
2108          * We could avoid this memcpy by switching pointers, but that
2109          * requires changes to all other timekeeper usage sites as
2110          * well, i.e. move the timekeeper pointer getter into the
2111          * spinlocked/seqcount protected sections. And we trade this
2112          * memcpy under the tk_core.seq against one before we start
2113          * updating.
2114          */
2115         timekeeping_update(tk, clock_set);
2116         memcpy(real_tk, tk, sizeof(*tk));
2117         /* The memcpy must come last. Do not put anything here! */
2118         write_seqcount_end(&tk_core.seq);
2119 out:
2120         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2121         if (clock_set)
2122                 /* Have to call _delayed version, since in irq context*/
2123                 clock_was_set_delayed();
2124 }
2125
2126 /**
2127  * getboottime64 - Return the real time of system boot.
2128  * @ts:         pointer to the timespec64 to be set
2129  *
2130  * Returns the wall-time of boot in a timespec64.
2131  *
2132  * This is based on the wall_to_monotonic offset and the total suspend
2133  * time. Calls to settimeofday will affect the value returned (which
2134  * basically means that however wrong your real time clock is at boot time,
2135  * you get the right time here).
2136  */
2137 void getboottime64(struct timespec64 *ts)
2138 {
2139         struct timekeeper *tk = &tk_core.timekeeper;
2140         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2141
2142         *ts = ktime_to_timespec64(t);
2143 }
2144 EXPORT_SYMBOL_GPL(getboottime64);
2145
2146 unsigned long get_seconds(void)
2147 {
2148         struct timekeeper *tk = &tk_core.timekeeper;
2149
2150         return tk->xtime_sec;
2151 }
2152 EXPORT_SYMBOL(get_seconds);
2153
2154 struct timespec __current_kernel_time(void)
2155 {
2156         struct timekeeper *tk = &tk_core.timekeeper;
2157
2158         return timespec64_to_timespec(tk_xtime(tk));
2159 }
2160
2161 struct timespec64 current_kernel_time64(void)
2162 {
2163         struct timekeeper *tk = &tk_core.timekeeper;
2164         struct timespec64 now;
2165         unsigned long seq;
2166
2167         do {
2168                 seq = read_seqcount_begin(&tk_core.seq);
2169
2170                 now = tk_xtime(tk);
2171         } while (read_seqcount_retry(&tk_core.seq, seq));
2172
2173         return now;
2174 }
2175 EXPORT_SYMBOL(current_kernel_time64);
2176
2177 struct timespec64 get_monotonic_coarse64(void)
2178 {
2179         struct timekeeper *tk = &tk_core.timekeeper;
2180         struct timespec64 now, mono;
2181         unsigned long seq;
2182
2183         do {
2184                 seq = read_seqcount_begin(&tk_core.seq);
2185
2186                 now = tk_xtime(tk);
2187                 mono = tk->wall_to_monotonic;
2188         } while (read_seqcount_retry(&tk_core.seq, seq));
2189
2190         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2191                                 now.tv_nsec + mono.tv_nsec);
2192
2193         return now;
2194 }
2195 EXPORT_SYMBOL(get_monotonic_coarse64);
2196
2197 /*
2198  * Must hold jiffies_lock
2199  */
2200 void do_timer(unsigned long ticks)
2201 {
2202         jiffies_64 += ticks;
2203         calc_global_load(ticks);
2204 }
2205
2206 /**
2207  * ktime_get_update_offsets_now - hrtimer helper
2208  * @cwsseq:     pointer to check and store the clock was set sequence number
2209  * @offs_real:  pointer to storage for monotonic -> realtime offset
2210  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2211  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2212  *
2213  * Returns current monotonic time and updates the offsets if the
2214  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2215  * different.
2216  *
2217  * Called from hrtimer_interrupt() or retrigger_next_event()
2218  */
2219 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2220                                      ktime_t *offs_boot, ktime_t *offs_tai)
2221 {
2222         struct timekeeper *tk = &tk_core.timekeeper;
2223         unsigned int seq;
2224         ktime_t base;
2225         u64 nsecs;
2226
2227         do {
2228                 seq = read_seqcount_begin(&tk_core.seq);
2229
2230                 base = tk->tkr_mono.base;
2231                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2232                 base = ktime_add_ns(base, nsecs);
2233
2234                 if (*cwsseq != tk->clock_was_set_seq) {
2235                         *cwsseq = tk->clock_was_set_seq;
2236                         *offs_real = tk->offs_real;
2237                         *offs_boot = tk->offs_boot;
2238                         *offs_tai = tk->offs_tai;
2239                 }
2240
2241                 /* Handle leapsecond insertion adjustments */
2242                 if (unlikely(base >= tk->next_leap_ktime))
2243                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2244
2245         } while (read_seqcount_retry(&tk_core.seq, seq));
2246
2247         return base;
2248 }
2249
2250 /**
2251  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2252  */
2253 int do_adjtimex(struct timex *txc)
2254 {
2255         struct timekeeper *tk = &tk_core.timekeeper;
2256         unsigned long flags;
2257         struct timespec64 ts;
2258         s32 orig_tai, tai;
2259         int ret;
2260
2261         /* Validate the data before disabling interrupts */
2262         ret = ntp_validate_timex(txc);
2263         if (ret)
2264                 return ret;
2265
2266         if (txc->modes & ADJ_SETOFFSET) {
2267                 struct timespec delta;
2268                 delta.tv_sec  = txc->time.tv_sec;
2269                 delta.tv_nsec = txc->time.tv_usec;
2270                 if (!(txc->modes & ADJ_NANO))
2271                         delta.tv_nsec *= 1000;
2272                 ret = timekeeping_inject_offset(&delta);
2273                 if (ret)
2274                         return ret;
2275         }
2276
2277         getnstimeofday64(&ts);
2278
2279         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2280         write_seqcount_begin(&tk_core.seq);
2281
2282         orig_tai = tai = tk->tai_offset;
2283         ret = __do_adjtimex(txc, &ts, &tai);
2284
2285         if (tai != orig_tai) {
2286                 __timekeeping_set_tai_offset(tk, tai);
2287                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2288         }
2289         tk_update_leap_state(tk);
2290
2291         write_seqcount_end(&tk_core.seq);
2292         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2293
2294         if (tai != orig_tai)
2295                 clock_was_set();
2296
2297         ntp_notify_cmos_timer();
2298
2299         return ret;
2300 }
2301
2302 #ifdef CONFIG_NTP_PPS
2303 /**
2304  * hardpps() - Accessor function to NTP __hardpps function
2305  */
2306 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2307 {
2308         unsigned long flags;
2309
2310         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2311         write_seqcount_begin(&tk_core.seq);
2312
2313         __hardpps(phase_ts, raw_ts);
2314
2315         write_seqcount_end(&tk_core.seq);
2316         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2317 }
2318 EXPORT_SYMBOL(hardpps);
2319 #endif /* CONFIG_NTP_PPS */
2320
2321 /**
2322  * xtime_update() - advances the timekeeping infrastructure
2323  * @ticks:      number of ticks, that have elapsed since the last call.
2324  *
2325  * Must be called with interrupts disabled.
2326  */
2327 void xtime_update(unsigned long ticks)
2328 {
2329         write_seqlock(&jiffies_lock);
2330         do_timer(ticks);
2331         write_sequnlock(&jiffies_lock);
2332         update_wall_time();
2333 }