GNU Linux-libre 4.9.309-gnu1
[releases.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned = {
43         .seq = SEQCNT_ZERO(tk_core.seq),
44 };
45
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48
49 /**
50  * struct tk_fast - NMI safe timekeeper
51  * @seq:        Sequence counter for protecting updates. The lowest bit
52  *              is the index for the tk_read_base array
53  * @base:       tk_read_base array. Access is indexed by the lowest bit of
54  *              @seq.
55  *
56  * See @update_fast_timekeeper() below.
57  */
58 struct tk_fast {
59         seqcount_t              seq;
60         struct tk_read_base     base[2];
61 };
62
63 static struct tk_fast tk_fast_mono ____cacheline_aligned;
64 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
65
66 /* flag for if timekeeping is suspended */
67 int __read_mostly timekeeping_suspended;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
72                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73                 tk->xtime_sec++;
74         }
75 }
76
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79         struct timespec64 ts;
80
81         ts.tv_sec = tk->xtime_sec;
82         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
83         return ts;
84 }
85
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88         tk->xtime_sec = ts->tv_sec;
89         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 }
91
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94         tk->xtime_sec += ts->tv_sec;
95         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
96         tk_normalize_xtime(tk);
97 }
98
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101         struct timespec64 tmp;
102
103         /*
104          * Verify consistency of: offset_real = -wall_to_monotonic
105          * before modifying anything
106          */
107         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108                                         -tk->wall_to_monotonic.tv_nsec);
109         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110         tk->wall_to_monotonic = wtm;
111         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112         tk->offs_real = timespec64_to_ktime(tmp);
113         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118         tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120
121 /*
122  * tk_clock_read - atomic clocksource read() helper
123  *
124  * This helper is necessary to use in the read paths because, while the
125  * seqlock ensures we don't return a bad value while structures are updated,
126  * it doesn't protect from potential crashes. There is the possibility that
127  * the tkr's clocksource may change between the read reference, and the
128  * clock reference passed to the read function.  This can cause crashes if
129  * the wrong clocksource is passed to the wrong read function.
130  * This isn't necessary to use when holding the timekeeper_lock or doing
131  * a read of the fast-timekeeper tkrs (which is protected by its own locking
132  * and update logic).
133  */
134 static inline u64 tk_clock_read(struct tk_read_base *tkr)
135 {
136         struct clocksource *clock = READ_ONCE(tkr->clock);
137
138         return clock->read(clock);
139 }
140
141 #ifdef CONFIG_DEBUG_TIMEKEEPING
142 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
143
144 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
145 {
146
147         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
148         const char *name = tk->tkr_mono.clock->name;
149
150         if (offset > max_cycles) {
151                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
152                                 offset, name, max_cycles);
153                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
154         } else {
155                 if (offset > (max_cycles >> 1)) {
156                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
157                                         offset, name, max_cycles >> 1);
158                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
159                 }
160         }
161
162         if (tk->underflow_seen) {
163                 if (jiffies - tk->last_warning > WARNING_FREQ) {
164                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
165                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
166                         printk_deferred("         Your kernel is probably still fine.\n");
167                         tk->last_warning = jiffies;
168                 }
169                 tk->underflow_seen = 0;
170         }
171
172         if (tk->overflow_seen) {
173                 if (jiffies - tk->last_warning > WARNING_FREQ) {
174                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
175                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
176                         printk_deferred("         Your kernel is probably still fine.\n");
177                         tk->last_warning = jiffies;
178                 }
179                 tk->overflow_seen = 0;
180         }
181 }
182
183 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
184 {
185         struct timekeeper *tk = &tk_core.timekeeper;
186         cycle_t now, last, mask, max, delta;
187         unsigned int seq;
188
189         /*
190          * Since we're called holding a seqlock, the data may shift
191          * under us while we're doing the calculation. This can cause
192          * false positives, since we'd note a problem but throw the
193          * results away. So nest another seqlock here to atomically
194          * grab the points we are checking with.
195          */
196         do {
197                 seq = read_seqcount_begin(&tk_core.seq);
198                 now = tk_clock_read(tkr);
199                 last = tkr->cycle_last;
200                 mask = tkr->mask;
201                 max = tkr->clock->max_cycles;
202         } while (read_seqcount_retry(&tk_core.seq, seq));
203
204         delta = clocksource_delta(now, last, mask);
205
206         /*
207          * Try to catch underflows by checking if we are seeing small
208          * mask-relative negative values.
209          */
210         if (unlikely((~delta & mask) < (mask >> 3))) {
211                 tk->underflow_seen = 1;
212                 delta = 0;
213         }
214
215         /* Cap delta value to the max_cycles values to avoid mult overflows */
216         if (unlikely(delta > max)) {
217                 tk->overflow_seen = 1;
218                 delta = tkr->clock->max_cycles;
219         }
220
221         return delta;
222 }
223 #else
224 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
225 {
226 }
227 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
228 {
229         cycle_t cycle_now, delta;
230
231         /* read clocksource */
232         cycle_now = tk_clock_read(tkr);
233
234         /* calculate the delta since the last update_wall_time */
235         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
236
237         return delta;
238 }
239 #endif
240
241 /**
242  * tk_setup_internals - Set up internals to use clocksource clock.
243  *
244  * @tk:         The target timekeeper to setup.
245  * @clock:              Pointer to clocksource.
246  *
247  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
248  * pair and interval request.
249  *
250  * Unless you're the timekeeping code, you should not be using this!
251  */
252 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
253 {
254         cycle_t interval;
255         u64 tmp, ntpinterval;
256         struct clocksource *old_clock;
257
258         ++tk->cs_was_changed_seq;
259         old_clock = tk->tkr_mono.clock;
260         tk->tkr_mono.clock = clock;
261         tk->tkr_mono.mask = clock->mask;
262         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
263
264         tk->tkr_raw.clock = clock;
265         tk->tkr_raw.mask = clock->mask;
266         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
267
268         /* Do the ns -> cycle conversion first, using original mult */
269         tmp = NTP_INTERVAL_LENGTH;
270         tmp <<= clock->shift;
271         ntpinterval = tmp;
272         tmp += clock->mult/2;
273         do_div(tmp, clock->mult);
274         if (tmp == 0)
275                 tmp = 1;
276
277         interval = (cycle_t) tmp;
278         tk->cycle_interval = interval;
279
280         /* Go back from cycles -> shifted ns */
281         tk->xtime_interval = (u64) interval * clock->mult;
282         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
283         tk->raw_interval = interval * clock->mult;
284
285          /* if changing clocks, convert xtime_nsec shift units */
286         if (old_clock) {
287                 int shift_change = clock->shift - old_clock->shift;
288                 if (shift_change < 0)
289                         tk->tkr_mono.xtime_nsec >>= -shift_change;
290                 else
291                         tk->tkr_mono.xtime_nsec <<= shift_change;
292         }
293         tk->tkr_raw.xtime_nsec = 0;
294
295         tk->tkr_mono.shift = clock->shift;
296         tk->tkr_raw.shift = clock->shift;
297
298         tk->ntp_error = 0;
299         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
300         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
301
302         /*
303          * The timekeeper keeps its own mult values for the currently
304          * active clocksource. These value will be adjusted via NTP
305          * to counteract clock drifting.
306          */
307         tk->tkr_mono.mult = clock->mult;
308         tk->tkr_raw.mult = clock->mult;
309         tk->ntp_err_mult = 0;
310 }
311
312 /* Timekeeper helper functions. */
313
314 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
315 static u32 default_arch_gettimeoffset(void) { return 0; }
316 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
317 #else
318 static inline u32 arch_gettimeoffset(void) { return 0; }
319 #endif
320
321 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
322                                           cycle_t delta)
323 {
324         u64 nsec;
325
326         nsec = delta * tkr->mult + tkr->xtime_nsec;
327         nsec >>= tkr->shift;
328
329         /* If arch requires, add in get_arch_timeoffset() */
330         return nsec + arch_gettimeoffset();
331 }
332
333 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
334 {
335         cycle_t delta;
336
337         delta = timekeeping_get_delta(tkr);
338         return timekeeping_delta_to_ns(tkr, delta);
339 }
340
341 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
342                                             cycle_t cycles)
343 {
344         cycle_t delta;
345
346         /* calculate the delta since the last update_wall_time */
347         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
348         return timekeeping_delta_to_ns(tkr, delta);
349 }
350
351 /**
352  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
353  * @tkr: Timekeeping readout base from which we take the update
354  *
355  * We want to use this from any context including NMI and tracing /
356  * instrumenting the timekeeping code itself.
357  *
358  * Employ the latch technique; see @raw_write_seqcount_latch.
359  *
360  * So if a NMI hits the update of base[0] then it will use base[1]
361  * which is still consistent. In the worst case this can result is a
362  * slightly wrong timestamp (a few nanoseconds). See
363  * @ktime_get_mono_fast_ns.
364  */
365 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
366 {
367         struct tk_read_base *base = tkf->base;
368
369         /* Force readers off to base[1] */
370         raw_write_seqcount_latch(&tkf->seq);
371
372         /* Update base[0] */
373         memcpy(base, tkr, sizeof(*base));
374
375         /* Force readers back to base[0] */
376         raw_write_seqcount_latch(&tkf->seq);
377
378         /* Update base[1] */
379         memcpy(base + 1, base, sizeof(*base));
380 }
381
382 /**
383  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
384  *
385  * This timestamp is not guaranteed to be monotonic across an update.
386  * The timestamp is calculated by:
387  *
388  *      now = base_mono + clock_delta * slope
389  *
390  * So if the update lowers the slope, readers who are forced to the
391  * not yet updated second array are still using the old steeper slope.
392  *
393  * tmono
394  * ^
395  * |    o  n
396  * |   o n
397  * |  u
398  * | o
399  * |o
400  * |12345678---> reader order
401  *
402  * o = old slope
403  * u = update
404  * n = new slope
405  *
406  * So reader 6 will observe time going backwards versus reader 5.
407  *
408  * While other CPUs are likely to be able observe that, the only way
409  * for a CPU local observation is when an NMI hits in the middle of
410  * the update. Timestamps taken from that NMI context might be ahead
411  * of the following timestamps. Callers need to be aware of that and
412  * deal with it.
413  */
414 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
415 {
416         struct tk_read_base *tkr;
417         unsigned int seq;
418         u64 now;
419
420         do {
421                 seq = raw_read_seqcount_latch(&tkf->seq);
422                 tkr = tkf->base + (seq & 0x01);
423                 now = ktime_to_ns(tkr->base);
424
425                 now += timekeeping_delta_to_ns(tkr,
426                                 clocksource_delta(
427                                         tk_clock_read(tkr),
428                                         tkr->cycle_last,
429                                         tkr->mask));
430         } while (read_seqcount_retry(&tkf->seq, seq));
431
432         return now;
433 }
434
435 u64 ktime_get_mono_fast_ns(void)
436 {
437         return __ktime_get_fast_ns(&tk_fast_mono);
438 }
439 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
440
441 u64 ktime_get_raw_fast_ns(void)
442 {
443         return __ktime_get_fast_ns(&tk_fast_raw);
444 }
445 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
446
447 /* Suspend-time cycles value for halted fast timekeeper. */
448 static cycle_t cycles_at_suspend;
449
450 static cycle_t dummy_clock_read(struct clocksource *cs)
451 {
452         return cycles_at_suspend;
453 }
454
455 static struct clocksource dummy_clock = {
456         .read = dummy_clock_read,
457 };
458
459 /**
460  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
461  * @tk: Timekeeper to snapshot.
462  *
463  * It generally is unsafe to access the clocksource after timekeeping has been
464  * suspended, so take a snapshot of the readout base of @tk and use it as the
465  * fast timekeeper's readout base while suspended.  It will return the same
466  * number of cycles every time until timekeeping is resumed at which time the
467  * proper readout base for the fast timekeeper will be restored automatically.
468  */
469 static void halt_fast_timekeeper(struct timekeeper *tk)
470 {
471         static struct tk_read_base tkr_dummy;
472         struct tk_read_base *tkr = &tk->tkr_mono;
473
474         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
475         cycles_at_suspend = tk_clock_read(tkr);
476         tkr_dummy.clock = &dummy_clock;
477         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
478
479         tkr = &tk->tkr_raw;
480         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
481         tkr_dummy.clock = &dummy_clock;
482         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
483 }
484
485 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
486
487 static inline void update_vsyscall(struct timekeeper *tk)
488 {
489         struct timespec xt, wm;
490
491         xt = timespec64_to_timespec(tk_xtime(tk));
492         wm = timespec64_to_timespec(tk->wall_to_monotonic);
493         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
494                             tk->tkr_mono.cycle_last);
495 }
496
497 static inline void old_vsyscall_fixup(struct timekeeper *tk)
498 {
499         s64 remainder;
500
501         /*
502         * Store only full nanoseconds into xtime_nsec after rounding
503         * it up and add the remainder to the error difference.
504         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
505         * by truncating the remainder in vsyscalls. However, it causes
506         * additional work to be done in timekeeping_adjust(). Once
507         * the vsyscall implementations are converted to use xtime_nsec
508         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
509         * users are removed, this can be killed.
510         */
511         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
512         if (remainder != 0) {
513                 tk->tkr_mono.xtime_nsec -= remainder;
514                 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
515                 tk->ntp_error += remainder << tk->ntp_error_shift;
516                 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
517         }
518 }
519 #else
520 #define old_vsyscall_fixup(tk)
521 #endif
522
523 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
524
525 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
526 {
527         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
528 }
529
530 /**
531  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
532  */
533 int pvclock_gtod_register_notifier(struct notifier_block *nb)
534 {
535         struct timekeeper *tk = &tk_core.timekeeper;
536         unsigned long flags;
537         int ret;
538
539         raw_spin_lock_irqsave(&timekeeper_lock, flags);
540         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
541         update_pvclock_gtod(tk, true);
542         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
543
544         return ret;
545 }
546 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
547
548 /**
549  * pvclock_gtod_unregister_notifier - unregister a pvclock
550  * timedata update listener
551  */
552 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
553 {
554         unsigned long flags;
555         int ret;
556
557         raw_spin_lock_irqsave(&timekeeper_lock, flags);
558         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
559         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
560
561         return ret;
562 }
563 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
564
565 /*
566  * tk_update_leap_state - helper to update the next_leap_ktime
567  */
568 static inline void tk_update_leap_state(struct timekeeper *tk)
569 {
570         tk->next_leap_ktime = ntp_get_next_leap();
571         if (tk->next_leap_ktime.tv64 != KTIME_MAX)
572                 /* Convert to monotonic time */
573                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
574 }
575
576 /*
577  * Update the ktime_t based scalar nsec members of the timekeeper
578  */
579 static inline void tk_update_ktime_data(struct timekeeper *tk)
580 {
581         u64 seconds;
582         u32 nsec;
583
584         /*
585          * The xtime based monotonic readout is:
586          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
587          * The ktime based monotonic readout is:
588          *      nsec = base_mono + now();
589          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
590          */
591         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
592         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
593         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
594
595         /* Update the monotonic raw base */
596         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
597
598         /*
599          * The sum of the nanoseconds portions of xtime and
600          * wall_to_monotonic can be greater/equal one second. Take
601          * this into account before updating tk->ktime_sec.
602          */
603         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
604         if (nsec >= NSEC_PER_SEC)
605                 seconds++;
606         tk->ktime_sec = seconds;
607 }
608
609 /* must hold timekeeper_lock */
610 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
611 {
612         if (action & TK_CLEAR_NTP) {
613                 tk->ntp_error = 0;
614                 ntp_clear();
615         }
616
617         tk_update_leap_state(tk);
618         tk_update_ktime_data(tk);
619
620         update_vsyscall(tk);
621         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
622
623         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
624         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
625
626         if (action & TK_CLOCK_WAS_SET)
627                 tk->clock_was_set_seq++;
628         /*
629          * The mirroring of the data to the shadow-timekeeper needs
630          * to happen last here to ensure we don't over-write the
631          * timekeeper structure on the next update with stale data
632          */
633         if (action & TK_MIRROR)
634                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
635                        sizeof(tk_core.timekeeper));
636 }
637
638 /**
639  * timekeeping_forward_now - update clock to the current time
640  *
641  * Forward the current clock to update its state since the last call to
642  * update_wall_time(). This is useful before significant clock changes,
643  * as it avoids having to deal with this time offset explicitly.
644  */
645 static void timekeeping_forward_now(struct timekeeper *tk)
646 {
647         cycle_t cycle_now, delta;
648         s64 nsec;
649
650         cycle_now = tk_clock_read(&tk->tkr_mono);
651         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
652         tk->tkr_mono.cycle_last = cycle_now;
653         tk->tkr_raw.cycle_last  = cycle_now;
654
655         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
656
657         /* If arch requires, add in get_arch_timeoffset() */
658         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
659
660         tk_normalize_xtime(tk);
661
662         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
663         timespec64_add_ns(&tk->raw_time, nsec);
664 }
665
666 /**
667  * __getnstimeofday64 - Returns the time of day in a timespec64.
668  * @ts:         pointer to the timespec to be set
669  *
670  * Updates the time of day in the timespec.
671  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
672  */
673 int __getnstimeofday64(struct timespec64 *ts)
674 {
675         struct timekeeper *tk = &tk_core.timekeeper;
676         unsigned long seq;
677         s64 nsecs = 0;
678
679         do {
680                 seq = read_seqcount_begin(&tk_core.seq);
681
682                 ts->tv_sec = tk->xtime_sec;
683                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
684
685         } while (read_seqcount_retry(&tk_core.seq, seq));
686
687         ts->tv_nsec = 0;
688         timespec64_add_ns(ts, nsecs);
689
690         /*
691          * Do not bail out early, in case there were callers still using
692          * the value, even in the face of the WARN_ON.
693          */
694         if (unlikely(timekeeping_suspended))
695                 return -EAGAIN;
696         return 0;
697 }
698 EXPORT_SYMBOL(__getnstimeofday64);
699
700 /**
701  * getnstimeofday64 - Returns the time of day in a timespec64.
702  * @ts:         pointer to the timespec64 to be set
703  *
704  * Returns the time of day in a timespec64 (WARN if suspended).
705  */
706 void getnstimeofday64(struct timespec64 *ts)
707 {
708         WARN_ON(__getnstimeofday64(ts));
709 }
710 EXPORT_SYMBOL(getnstimeofday64);
711
712 ktime_t ktime_get(void)
713 {
714         struct timekeeper *tk = &tk_core.timekeeper;
715         unsigned int seq;
716         ktime_t base;
717         s64 nsecs;
718
719         WARN_ON(timekeeping_suspended);
720
721         do {
722                 seq = read_seqcount_begin(&tk_core.seq);
723                 base = tk->tkr_mono.base;
724                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
725
726         } while (read_seqcount_retry(&tk_core.seq, seq));
727
728         return ktime_add_ns(base, nsecs);
729 }
730 EXPORT_SYMBOL_GPL(ktime_get);
731
732 u32 ktime_get_resolution_ns(void)
733 {
734         struct timekeeper *tk = &tk_core.timekeeper;
735         unsigned int seq;
736         u32 nsecs;
737
738         WARN_ON(timekeeping_suspended);
739
740         do {
741                 seq = read_seqcount_begin(&tk_core.seq);
742                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
743         } while (read_seqcount_retry(&tk_core.seq, seq));
744
745         return nsecs;
746 }
747 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
748
749 static ktime_t *offsets[TK_OFFS_MAX] = {
750         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
751         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
752         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
753 };
754
755 ktime_t ktime_get_with_offset(enum tk_offsets offs)
756 {
757         struct timekeeper *tk = &tk_core.timekeeper;
758         unsigned int seq;
759         ktime_t base, *offset = offsets[offs];
760         s64 nsecs;
761
762         WARN_ON(timekeeping_suspended);
763
764         do {
765                 seq = read_seqcount_begin(&tk_core.seq);
766                 base = ktime_add(tk->tkr_mono.base, *offset);
767                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
768
769         } while (read_seqcount_retry(&tk_core.seq, seq));
770
771         return ktime_add_ns(base, nsecs);
772
773 }
774 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
775
776 /**
777  * ktime_mono_to_any() - convert mononotic time to any other time
778  * @tmono:      time to convert.
779  * @offs:       which offset to use
780  */
781 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
782 {
783         ktime_t *offset = offsets[offs];
784         unsigned long seq;
785         ktime_t tconv;
786
787         do {
788                 seq = read_seqcount_begin(&tk_core.seq);
789                 tconv = ktime_add(tmono, *offset);
790         } while (read_seqcount_retry(&tk_core.seq, seq));
791
792         return tconv;
793 }
794 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
795
796 /**
797  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
798  */
799 ktime_t ktime_get_raw(void)
800 {
801         struct timekeeper *tk = &tk_core.timekeeper;
802         unsigned int seq;
803         ktime_t base;
804         s64 nsecs;
805
806         do {
807                 seq = read_seqcount_begin(&tk_core.seq);
808                 base = tk->tkr_raw.base;
809                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
810
811         } while (read_seqcount_retry(&tk_core.seq, seq));
812
813         return ktime_add_ns(base, nsecs);
814 }
815 EXPORT_SYMBOL_GPL(ktime_get_raw);
816
817 /**
818  * ktime_get_ts64 - get the monotonic clock in timespec64 format
819  * @ts:         pointer to timespec variable
820  *
821  * The function calculates the monotonic clock from the realtime
822  * clock and the wall_to_monotonic offset and stores the result
823  * in normalized timespec64 format in the variable pointed to by @ts.
824  */
825 void ktime_get_ts64(struct timespec64 *ts)
826 {
827         struct timekeeper *tk = &tk_core.timekeeper;
828         struct timespec64 tomono;
829         s64 nsec;
830         unsigned int seq;
831
832         WARN_ON(timekeeping_suspended);
833
834         do {
835                 seq = read_seqcount_begin(&tk_core.seq);
836                 ts->tv_sec = tk->xtime_sec;
837                 nsec = timekeeping_get_ns(&tk->tkr_mono);
838                 tomono = tk->wall_to_monotonic;
839
840         } while (read_seqcount_retry(&tk_core.seq, seq));
841
842         ts->tv_sec += tomono.tv_sec;
843         ts->tv_nsec = 0;
844         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
845 }
846 EXPORT_SYMBOL_GPL(ktime_get_ts64);
847
848 /**
849  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
850  *
851  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
852  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
853  * works on both 32 and 64 bit systems. On 32 bit systems the readout
854  * covers ~136 years of uptime which should be enough to prevent
855  * premature wrap arounds.
856  */
857 time64_t ktime_get_seconds(void)
858 {
859         struct timekeeper *tk = &tk_core.timekeeper;
860
861         WARN_ON(timekeeping_suspended);
862         return tk->ktime_sec;
863 }
864 EXPORT_SYMBOL_GPL(ktime_get_seconds);
865
866 /**
867  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
868  *
869  * Returns the wall clock seconds since 1970. This replaces the
870  * get_seconds() interface which is not y2038 safe on 32bit systems.
871  *
872  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
873  * 32bit systems the access must be protected with the sequence
874  * counter to provide "atomic" access to the 64bit tk->xtime_sec
875  * value.
876  */
877 time64_t ktime_get_real_seconds(void)
878 {
879         struct timekeeper *tk = &tk_core.timekeeper;
880         time64_t seconds;
881         unsigned int seq;
882
883         if (IS_ENABLED(CONFIG_64BIT))
884                 return tk->xtime_sec;
885
886         do {
887                 seq = read_seqcount_begin(&tk_core.seq);
888                 seconds = tk->xtime_sec;
889
890         } while (read_seqcount_retry(&tk_core.seq, seq));
891
892         return seconds;
893 }
894 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
895
896 /**
897  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
898  * but without the sequence counter protect. This internal function
899  * is called just when timekeeping lock is already held.
900  */
901 time64_t __ktime_get_real_seconds(void)
902 {
903         struct timekeeper *tk = &tk_core.timekeeper;
904
905         return tk->xtime_sec;
906 }
907
908 /**
909  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
910  * @systime_snapshot:   pointer to struct receiving the system time snapshot
911  */
912 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
913 {
914         struct timekeeper *tk = &tk_core.timekeeper;
915         unsigned long seq;
916         ktime_t base_raw;
917         ktime_t base_real;
918         s64 nsec_raw;
919         s64 nsec_real;
920         cycle_t now;
921
922         WARN_ON_ONCE(timekeeping_suspended);
923
924         do {
925                 seq = read_seqcount_begin(&tk_core.seq);
926                 now = tk_clock_read(&tk->tkr_mono);
927                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
928                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
929                 base_real = ktime_add(tk->tkr_mono.base,
930                                       tk_core.timekeeper.offs_real);
931                 base_raw = tk->tkr_raw.base;
932                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
933                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
934         } while (read_seqcount_retry(&tk_core.seq, seq));
935
936         systime_snapshot->cycles = now;
937         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
938         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
939 }
940 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
941
942 /* Scale base by mult/div checking for overflow */
943 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
944 {
945         u64 tmp, rem;
946
947         tmp = div64_u64_rem(*base, div, &rem);
948
949         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
950             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
951                 return -EOVERFLOW;
952         tmp *= mult;
953
954         rem = div64_u64(rem * mult, div);
955         *base = tmp + rem;
956         return 0;
957 }
958
959 /**
960  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
961  * @history:                    Snapshot representing start of history
962  * @partial_history_cycles:     Cycle offset into history (fractional part)
963  * @total_history_cycles:       Total history length in cycles
964  * @discontinuity:              True indicates clock was set on history period
965  * @ts:                         Cross timestamp that should be adjusted using
966  *      partial/total ratio
967  *
968  * Helper function used by get_device_system_crosststamp() to correct the
969  * crosstimestamp corresponding to the start of the current interval to the
970  * system counter value (timestamp point) provided by the driver. The
971  * total_history_* quantities are the total history starting at the provided
972  * reference point and ending at the start of the current interval. The cycle
973  * count between the driver timestamp point and the start of the current
974  * interval is partial_history_cycles.
975  */
976 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
977                                          cycle_t partial_history_cycles,
978                                          cycle_t total_history_cycles,
979                                          bool discontinuity,
980                                          struct system_device_crosststamp *ts)
981 {
982         struct timekeeper *tk = &tk_core.timekeeper;
983         u64 corr_raw, corr_real;
984         bool interp_forward;
985         int ret;
986
987         if (total_history_cycles == 0 || partial_history_cycles == 0)
988                 return 0;
989
990         /* Interpolate shortest distance from beginning or end of history */
991         interp_forward = partial_history_cycles > total_history_cycles/2 ?
992                 true : false;
993         partial_history_cycles = interp_forward ?
994                 total_history_cycles - partial_history_cycles :
995                 partial_history_cycles;
996
997         /*
998          * Scale the monotonic raw time delta by:
999          *      partial_history_cycles / total_history_cycles
1000          */
1001         corr_raw = (u64)ktime_to_ns(
1002                 ktime_sub(ts->sys_monoraw, history->raw));
1003         ret = scale64_check_overflow(partial_history_cycles,
1004                                      total_history_cycles, &corr_raw);
1005         if (ret)
1006                 return ret;
1007
1008         /*
1009          * If there is a discontinuity in the history, scale monotonic raw
1010          *      correction by:
1011          *      mult(real)/mult(raw) yielding the realtime correction
1012          * Otherwise, calculate the realtime correction similar to monotonic
1013          *      raw calculation
1014          */
1015         if (discontinuity) {
1016                 corr_real = mul_u64_u32_div
1017                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1018         } else {
1019                 corr_real = (u64)ktime_to_ns(
1020                         ktime_sub(ts->sys_realtime, history->real));
1021                 ret = scale64_check_overflow(partial_history_cycles,
1022                                              total_history_cycles, &corr_real);
1023                 if (ret)
1024                         return ret;
1025         }
1026
1027         /* Fixup monotonic raw and real time time values */
1028         if (interp_forward) {
1029                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1030                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1031         } else {
1032                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1033                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1034         }
1035
1036         return 0;
1037 }
1038
1039 /*
1040  * cycle_between - true if test occurs chronologically between before and after
1041  */
1042 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1043 {
1044         if (test > before && test < after)
1045                 return true;
1046         if (test < before && before > after)
1047                 return true;
1048         return false;
1049 }
1050
1051 /**
1052  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1053  * @get_time_fn:        Callback to get simultaneous device time and
1054  *      system counter from the device driver
1055  * @ctx:                Context passed to get_time_fn()
1056  * @history_begin:      Historical reference point used to interpolate system
1057  *      time when counter provided by the driver is before the current interval
1058  * @xtstamp:            Receives simultaneously captured system and device time
1059  *
1060  * Reads a timestamp from a device and correlates it to system time
1061  */
1062 int get_device_system_crosststamp(int (*get_time_fn)
1063                                   (ktime_t *device_time,
1064                                    struct system_counterval_t *sys_counterval,
1065                                    void *ctx),
1066                                   void *ctx,
1067                                   struct system_time_snapshot *history_begin,
1068                                   struct system_device_crosststamp *xtstamp)
1069 {
1070         struct system_counterval_t system_counterval;
1071         struct timekeeper *tk = &tk_core.timekeeper;
1072         cycle_t cycles, now, interval_start;
1073         unsigned int clock_was_set_seq = 0;
1074         ktime_t base_real, base_raw;
1075         s64 nsec_real, nsec_raw;
1076         u8 cs_was_changed_seq;
1077         unsigned long seq;
1078         bool do_interp;
1079         int ret;
1080
1081         do {
1082                 seq = read_seqcount_begin(&tk_core.seq);
1083                 /*
1084                  * Try to synchronously capture device time and a system
1085                  * counter value calling back into the device driver
1086                  */
1087                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1088                 if (ret)
1089                         return ret;
1090
1091                 /*
1092                  * Verify that the clocksource associated with the captured
1093                  * system counter value is the same as the currently installed
1094                  * timekeeper clocksource
1095                  */
1096                 if (tk->tkr_mono.clock != system_counterval.cs)
1097                         return -ENODEV;
1098                 cycles = system_counterval.cycles;
1099
1100                 /*
1101                  * Check whether the system counter value provided by the
1102                  * device driver is on the current timekeeping interval.
1103                  */
1104                 now = tk_clock_read(&tk->tkr_mono);
1105                 interval_start = tk->tkr_mono.cycle_last;
1106                 if (!cycle_between(interval_start, cycles, now)) {
1107                         clock_was_set_seq = tk->clock_was_set_seq;
1108                         cs_was_changed_seq = tk->cs_was_changed_seq;
1109                         cycles = interval_start;
1110                         do_interp = true;
1111                 } else {
1112                         do_interp = false;
1113                 }
1114
1115                 base_real = ktime_add(tk->tkr_mono.base,
1116                                       tk_core.timekeeper.offs_real);
1117                 base_raw = tk->tkr_raw.base;
1118
1119                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1120                                                      system_counterval.cycles);
1121                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1122                                                     system_counterval.cycles);
1123         } while (read_seqcount_retry(&tk_core.seq, seq));
1124
1125         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1126         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1127
1128         /*
1129          * Interpolate if necessary, adjusting back from the start of the
1130          * current interval
1131          */
1132         if (do_interp) {
1133                 cycle_t partial_history_cycles, total_history_cycles;
1134                 bool discontinuity;
1135
1136                 /*
1137                  * Check that the counter value occurs after the provided
1138                  * history reference and that the history doesn't cross a
1139                  * clocksource change
1140                  */
1141                 if (!history_begin ||
1142                     !cycle_between(history_begin->cycles,
1143                                    system_counterval.cycles, cycles) ||
1144                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1145                         return -EINVAL;
1146                 partial_history_cycles = cycles - system_counterval.cycles;
1147                 total_history_cycles = cycles - history_begin->cycles;
1148                 discontinuity =
1149                         history_begin->clock_was_set_seq != clock_was_set_seq;
1150
1151                 ret = adjust_historical_crosststamp(history_begin,
1152                                                     partial_history_cycles,
1153                                                     total_history_cycles,
1154                                                     discontinuity, xtstamp);
1155                 if (ret)
1156                         return ret;
1157         }
1158
1159         return 0;
1160 }
1161 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1162
1163 /**
1164  * do_gettimeofday - Returns the time of day in a timeval
1165  * @tv:         pointer to the timeval to be set
1166  *
1167  * NOTE: Users should be converted to using getnstimeofday()
1168  */
1169 void do_gettimeofday(struct timeval *tv)
1170 {
1171         struct timespec64 now;
1172
1173         getnstimeofday64(&now);
1174         tv->tv_sec = now.tv_sec;
1175         tv->tv_usec = now.tv_nsec/1000;
1176 }
1177 EXPORT_SYMBOL(do_gettimeofday);
1178
1179 /**
1180  * do_settimeofday64 - Sets the time of day.
1181  * @ts:     pointer to the timespec64 variable containing the new time
1182  *
1183  * Sets the time of day to the new time and update NTP and notify hrtimers
1184  */
1185 int do_settimeofday64(const struct timespec64 *ts)
1186 {
1187         struct timekeeper *tk = &tk_core.timekeeper;
1188         struct timespec64 ts_delta, xt;
1189         unsigned long flags;
1190         int ret = 0;
1191
1192         if (!timespec64_valid_strict(ts))
1193                 return -EINVAL;
1194
1195         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1196         write_seqcount_begin(&tk_core.seq);
1197
1198         timekeeping_forward_now(tk);
1199
1200         xt = tk_xtime(tk);
1201         ts_delta = timespec64_sub(*ts, xt);
1202
1203         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1204                 ret = -EINVAL;
1205                 goto out;
1206         }
1207
1208         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1209
1210         tk_set_xtime(tk, ts);
1211 out:
1212         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1213
1214         write_seqcount_end(&tk_core.seq);
1215         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1216
1217         /* signal hrtimers about time change */
1218         clock_was_set();
1219
1220         return ret;
1221 }
1222 EXPORT_SYMBOL(do_settimeofday64);
1223
1224 /**
1225  * timekeeping_inject_offset - Adds or subtracts from the current time.
1226  * @tv:         pointer to the timespec variable containing the offset
1227  *
1228  * Adds or subtracts an offset value from the current time.
1229  */
1230 int timekeeping_inject_offset(struct timespec *ts)
1231 {
1232         struct timekeeper *tk = &tk_core.timekeeper;
1233         unsigned long flags;
1234         struct timespec64 ts64, tmp;
1235         int ret = 0;
1236
1237         if (!timespec_inject_offset_valid(ts))
1238                 return -EINVAL;
1239
1240         ts64 = timespec_to_timespec64(*ts);
1241
1242         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1243         write_seqcount_begin(&tk_core.seq);
1244
1245         timekeeping_forward_now(tk);
1246
1247         /* Make sure the proposed value is valid */
1248         tmp = timespec64_add(tk_xtime(tk),  ts64);
1249         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1250             !timespec64_valid_strict(&tmp)) {
1251                 ret = -EINVAL;
1252                 goto error;
1253         }
1254
1255         tk_xtime_add(tk, &ts64);
1256         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1257
1258 error: /* even if we error out, we forwarded the time, so call update */
1259         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1260
1261         write_seqcount_end(&tk_core.seq);
1262         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1263
1264         /* signal hrtimers about time change */
1265         clock_was_set();
1266
1267         return ret;
1268 }
1269 EXPORT_SYMBOL(timekeeping_inject_offset);
1270
1271
1272 /**
1273  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1274  *
1275  */
1276 s32 timekeeping_get_tai_offset(void)
1277 {
1278         struct timekeeper *tk = &tk_core.timekeeper;
1279         unsigned int seq;
1280         s32 ret;
1281
1282         do {
1283                 seq = read_seqcount_begin(&tk_core.seq);
1284                 ret = tk->tai_offset;
1285         } while (read_seqcount_retry(&tk_core.seq, seq));
1286
1287         return ret;
1288 }
1289
1290 /**
1291  * __timekeeping_set_tai_offset - Lock free worker function
1292  *
1293  */
1294 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1295 {
1296         tk->tai_offset = tai_offset;
1297         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1298 }
1299
1300 /**
1301  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1302  *
1303  */
1304 void timekeeping_set_tai_offset(s32 tai_offset)
1305 {
1306         struct timekeeper *tk = &tk_core.timekeeper;
1307         unsigned long flags;
1308
1309         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1310         write_seqcount_begin(&tk_core.seq);
1311         __timekeeping_set_tai_offset(tk, tai_offset);
1312         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1313         write_seqcount_end(&tk_core.seq);
1314         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1315         clock_was_set();
1316 }
1317
1318 /**
1319  * change_clocksource - Swaps clocksources if a new one is available
1320  *
1321  * Accumulates current time interval and initializes new clocksource
1322  */
1323 static int change_clocksource(void *data)
1324 {
1325         struct timekeeper *tk = &tk_core.timekeeper;
1326         struct clocksource *new, *old;
1327         unsigned long flags;
1328
1329         new = (struct clocksource *) data;
1330
1331         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1332         write_seqcount_begin(&tk_core.seq);
1333
1334         timekeeping_forward_now(tk);
1335         /*
1336          * If the cs is in module, get a module reference. Succeeds
1337          * for built-in code (owner == NULL) as well.
1338          */
1339         if (try_module_get(new->owner)) {
1340                 if (!new->enable || new->enable(new) == 0) {
1341                         old = tk->tkr_mono.clock;
1342                         tk_setup_internals(tk, new);
1343                         if (old->disable)
1344                                 old->disable(old);
1345                         module_put(old->owner);
1346                 } else {
1347                         module_put(new->owner);
1348                 }
1349         }
1350         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1351
1352         write_seqcount_end(&tk_core.seq);
1353         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1354
1355         return 0;
1356 }
1357
1358 /**
1359  * timekeeping_notify - Install a new clock source
1360  * @clock:              pointer to the clock source
1361  *
1362  * This function is called from clocksource.c after a new, better clock
1363  * source has been registered. The caller holds the clocksource_mutex.
1364  */
1365 int timekeeping_notify(struct clocksource *clock)
1366 {
1367         struct timekeeper *tk = &tk_core.timekeeper;
1368
1369         if (tk->tkr_mono.clock == clock)
1370                 return 0;
1371         stop_machine(change_clocksource, clock, NULL);
1372         tick_clock_notify();
1373         return tk->tkr_mono.clock == clock ? 0 : -1;
1374 }
1375
1376 /**
1377  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1378  * @ts:         pointer to the timespec64 to be set
1379  *
1380  * Returns the raw monotonic time (completely un-modified by ntp)
1381  */
1382 void getrawmonotonic64(struct timespec64 *ts)
1383 {
1384         struct timekeeper *tk = &tk_core.timekeeper;
1385         struct timespec64 ts64;
1386         unsigned long seq;
1387         s64 nsecs;
1388
1389         do {
1390                 seq = read_seqcount_begin(&tk_core.seq);
1391                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1392                 ts64 = tk->raw_time;
1393
1394         } while (read_seqcount_retry(&tk_core.seq, seq));
1395
1396         timespec64_add_ns(&ts64, nsecs);
1397         *ts = ts64;
1398 }
1399 EXPORT_SYMBOL(getrawmonotonic64);
1400
1401
1402 /**
1403  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1404  */
1405 int timekeeping_valid_for_hres(void)
1406 {
1407         struct timekeeper *tk = &tk_core.timekeeper;
1408         unsigned long seq;
1409         int ret;
1410
1411         do {
1412                 seq = read_seqcount_begin(&tk_core.seq);
1413
1414                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1415
1416         } while (read_seqcount_retry(&tk_core.seq, seq));
1417
1418         return ret;
1419 }
1420
1421 /**
1422  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1423  */
1424 u64 timekeeping_max_deferment(void)
1425 {
1426         struct timekeeper *tk = &tk_core.timekeeper;
1427         unsigned long seq;
1428         u64 ret;
1429
1430         do {
1431                 seq = read_seqcount_begin(&tk_core.seq);
1432
1433                 ret = tk->tkr_mono.clock->max_idle_ns;
1434
1435         } while (read_seqcount_retry(&tk_core.seq, seq));
1436
1437         return ret;
1438 }
1439
1440 /**
1441  * read_persistent_clock -  Return time from the persistent clock.
1442  *
1443  * Weak dummy function for arches that do not yet support it.
1444  * Reads the time from the battery backed persistent clock.
1445  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1446  *
1447  *  XXX - Do be sure to remove it once all arches implement it.
1448  */
1449 void __weak read_persistent_clock(struct timespec *ts)
1450 {
1451         ts->tv_sec = 0;
1452         ts->tv_nsec = 0;
1453 }
1454
1455 void __weak read_persistent_clock64(struct timespec64 *ts64)
1456 {
1457         struct timespec ts;
1458
1459         read_persistent_clock(&ts);
1460         *ts64 = timespec_to_timespec64(ts);
1461 }
1462
1463 /**
1464  * read_boot_clock64 -  Return time of the system start.
1465  *
1466  * Weak dummy function for arches that do not yet support it.
1467  * Function to read the exact time the system has been started.
1468  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1469  *
1470  *  XXX - Do be sure to remove it once all arches implement it.
1471  */
1472 void __weak read_boot_clock64(struct timespec64 *ts)
1473 {
1474         ts->tv_sec = 0;
1475         ts->tv_nsec = 0;
1476 }
1477
1478 /* Flag for if timekeeping_resume() has injected sleeptime */
1479 static bool sleeptime_injected;
1480
1481 /* Flag for if there is a persistent clock on this platform */
1482 static bool persistent_clock_exists;
1483
1484 /*
1485  * timekeeping_init - Initializes the clocksource and common timekeeping values
1486  */
1487 void __init timekeeping_init(void)
1488 {
1489         struct timekeeper *tk = &tk_core.timekeeper;
1490         struct clocksource *clock;
1491         unsigned long flags;
1492         struct timespec64 now, boot, tmp;
1493
1494         read_persistent_clock64(&now);
1495         if (!timespec64_valid_strict(&now)) {
1496                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1497                         "         Check your CMOS/BIOS settings.\n");
1498                 now.tv_sec = 0;
1499                 now.tv_nsec = 0;
1500         } else if (now.tv_sec || now.tv_nsec)
1501                 persistent_clock_exists = true;
1502
1503         read_boot_clock64(&boot);
1504         if (!timespec64_valid_strict(&boot)) {
1505                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1506                         "         Check your CMOS/BIOS settings.\n");
1507                 boot.tv_sec = 0;
1508                 boot.tv_nsec = 0;
1509         }
1510
1511         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1512         write_seqcount_begin(&tk_core.seq);
1513         ntp_init();
1514
1515         clock = clocksource_default_clock();
1516         if (clock->enable)
1517                 clock->enable(clock);
1518         tk_setup_internals(tk, clock);
1519
1520         tk_set_xtime(tk, &now);
1521         tk->raw_time.tv_sec = 0;
1522         tk->raw_time.tv_nsec = 0;
1523         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1524                 boot = tk_xtime(tk);
1525
1526         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1527         tk_set_wall_to_mono(tk, tmp);
1528
1529         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1530
1531         write_seqcount_end(&tk_core.seq);
1532         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1533 }
1534
1535 /* time in seconds when suspend began for persistent clock */
1536 static struct timespec64 timekeeping_suspend_time;
1537
1538 /**
1539  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1540  * @delta: pointer to a timespec delta value
1541  *
1542  * Takes a timespec offset measuring a suspend interval and properly
1543  * adds the sleep offset to the timekeeping variables.
1544  */
1545 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1546                                            struct timespec64 *delta)
1547 {
1548         if (!timespec64_valid_strict(delta)) {
1549                 printk_deferred(KERN_WARNING
1550                                 "__timekeeping_inject_sleeptime: Invalid "
1551                                 "sleep delta value!\n");
1552                 return;
1553         }
1554         tk_xtime_add(tk, delta);
1555         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1556         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1557         tk_debug_account_sleep_time(delta);
1558 }
1559
1560 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1561 /**
1562  * We have three kinds of time sources to use for sleep time
1563  * injection, the preference order is:
1564  * 1) non-stop clocksource
1565  * 2) persistent clock (ie: RTC accessible when irqs are off)
1566  * 3) RTC
1567  *
1568  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1569  * If system has neither 1) nor 2), 3) will be used finally.
1570  *
1571  *
1572  * If timekeeping has injected sleeptime via either 1) or 2),
1573  * 3) becomes needless, so in this case we don't need to call
1574  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1575  * means.
1576  */
1577 bool timekeeping_rtc_skipresume(void)
1578 {
1579         return sleeptime_injected;
1580 }
1581
1582 /**
1583  * 1) can be determined whether to use or not only when doing
1584  * timekeeping_resume() which is invoked after rtc_suspend(),
1585  * so we can't skip rtc_suspend() surely if system has 1).
1586  *
1587  * But if system has 2), 2) will definitely be used, so in this
1588  * case we don't need to call rtc_suspend(), and this is what
1589  * timekeeping_rtc_skipsuspend() means.
1590  */
1591 bool timekeeping_rtc_skipsuspend(void)
1592 {
1593         return persistent_clock_exists;
1594 }
1595
1596 /**
1597  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1598  * @delta: pointer to a timespec64 delta value
1599  *
1600  * This hook is for architectures that cannot support read_persistent_clock64
1601  * because their RTC/persistent clock is only accessible when irqs are enabled.
1602  * and also don't have an effective nonstop clocksource.
1603  *
1604  * This function should only be called by rtc_resume(), and allows
1605  * a suspend offset to be injected into the timekeeping values.
1606  */
1607 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1608 {
1609         struct timekeeper *tk = &tk_core.timekeeper;
1610         unsigned long flags;
1611
1612         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1613         write_seqcount_begin(&tk_core.seq);
1614
1615         timekeeping_forward_now(tk);
1616
1617         __timekeeping_inject_sleeptime(tk, delta);
1618
1619         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1620
1621         write_seqcount_end(&tk_core.seq);
1622         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1623
1624         /* signal hrtimers about time change */
1625         clock_was_set();
1626 }
1627 #endif
1628
1629 /**
1630  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1631  */
1632 void timekeeping_resume(void)
1633 {
1634         struct timekeeper *tk = &tk_core.timekeeper;
1635         struct clocksource *clock = tk->tkr_mono.clock;
1636         unsigned long flags;
1637         struct timespec64 ts_new, ts_delta;
1638         cycle_t cycle_now, cycle_delta;
1639
1640         sleeptime_injected = false;
1641         read_persistent_clock64(&ts_new);
1642
1643         clockevents_resume();
1644         clocksource_resume();
1645
1646         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1647         write_seqcount_begin(&tk_core.seq);
1648
1649         /*
1650          * After system resumes, we need to calculate the suspended time and
1651          * compensate it for the OS time. There are 3 sources that could be
1652          * used: Nonstop clocksource during suspend, persistent clock and rtc
1653          * device.
1654          *
1655          * One specific platform may have 1 or 2 or all of them, and the
1656          * preference will be:
1657          *      suspend-nonstop clocksource -> persistent clock -> rtc
1658          * The less preferred source will only be tried if there is no better
1659          * usable source. The rtc part is handled separately in rtc core code.
1660          */
1661         cycle_now = tk_clock_read(&tk->tkr_mono);
1662         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1663                 cycle_now > tk->tkr_mono.cycle_last) {
1664                 u64 num, max = ULLONG_MAX;
1665                 u32 mult = clock->mult;
1666                 u32 shift = clock->shift;
1667                 s64 nsec = 0;
1668
1669                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1670                                                 tk->tkr_mono.mask);
1671
1672                 /*
1673                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1674                  * suspended time is too long. In that case we need do the
1675                  * 64 bits math carefully
1676                  */
1677                 do_div(max, mult);
1678                 if (cycle_delta > max) {
1679                         num = div64_u64(cycle_delta, max);
1680                         nsec = (((u64) max * mult) >> shift) * num;
1681                         cycle_delta -= num * max;
1682                 }
1683                 nsec += ((u64) cycle_delta * mult) >> shift;
1684
1685                 ts_delta = ns_to_timespec64(nsec);
1686                 sleeptime_injected = true;
1687         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1688                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1689                 sleeptime_injected = true;
1690         }
1691
1692         if (sleeptime_injected)
1693                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1694
1695         /* Re-base the last cycle value */
1696         tk->tkr_mono.cycle_last = cycle_now;
1697         tk->tkr_raw.cycle_last  = cycle_now;
1698
1699         tk->ntp_error = 0;
1700         timekeeping_suspended = 0;
1701         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1702         write_seqcount_end(&tk_core.seq);
1703         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1704
1705         touch_softlockup_watchdog();
1706
1707         tick_resume();
1708         hrtimers_resume();
1709 }
1710
1711 int timekeeping_suspend(void)
1712 {
1713         struct timekeeper *tk = &tk_core.timekeeper;
1714         unsigned long flags;
1715         struct timespec64               delta, delta_delta;
1716         static struct timespec64        old_delta;
1717
1718         read_persistent_clock64(&timekeeping_suspend_time);
1719
1720         /*
1721          * On some systems the persistent_clock can not be detected at
1722          * timekeeping_init by its return value, so if we see a valid
1723          * value returned, update the persistent_clock_exists flag.
1724          */
1725         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1726                 persistent_clock_exists = true;
1727
1728         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1729         write_seqcount_begin(&tk_core.seq);
1730         timekeeping_forward_now(tk);
1731         timekeeping_suspended = 1;
1732
1733         if (persistent_clock_exists) {
1734                 /*
1735                  * To avoid drift caused by repeated suspend/resumes,
1736                  * which each can add ~1 second drift error,
1737                  * try to compensate so the difference in system time
1738                  * and persistent_clock time stays close to constant.
1739                  */
1740                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1741                 delta_delta = timespec64_sub(delta, old_delta);
1742                 if (abs(delta_delta.tv_sec) >= 2) {
1743                         /*
1744                          * if delta_delta is too large, assume time correction
1745                          * has occurred and set old_delta to the current delta.
1746                          */
1747                         old_delta = delta;
1748                 } else {
1749                         /* Otherwise try to adjust old_system to compensate */
1750                         timekeeping_suspend_time =
1751                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1752                 }
1753         }
1754
1755         timekeeping_update(tk, TK_MIRROR);
1756         halt_fast_timekeeper(tk);
1757         write_seqcount_end(&tk_core.seq);
1758         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1759
1760         tick_suspend();
1761         clocksource_suspend();
1762         clockevents_suspend();
1763
1764         return 0;
1765 }
1766
1767 /* sysfs resume/suspend bits for timekeeping */
1768 static struct syscore_ops timekeeping_syscore_ops = {
1769         .resume         = timekeeping_resume,
1770         .suspend        = timekeeping_suspend,
1771 };
1772
1773 static int __init timekeeping_init_ops(void)
1774 {
1775         register_syscore_ops(&timekeeping_syscore_ops);
1776         return 0;
1777 }
1778 device_initcall(timekeeping_init_ops);
1779
1780 /*
1781  * Apply a multiplier adjustment to the timekeeper
1782  */
1783 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1784                                                          s64 offset,
1785                                                          bool negative,
1786                                                          int adj_scale)
1787 {
1788         s64 interval = tk->cycle_interval;
1789         s32 mult_adj = 1;
1790
1791         if (negative) {
1792                 mult_adj = -mult_adj;
1793                 interval = -interval;
1794                 offset  = -offset;
1795         }
1796         mult_adj <<= adj_scale;
1797         interval <<= adj_scale;
1798         offset <<= adj_scale;
1799
1800         /*
1801          * So the following can be confusing.
1802          *
1803          * To keep things simple, lets assume mult_adj == 1 for now.
1804          *
1805          * When mult_adj != 1, remember that the interval and offset values
1806          * have been appropriately scaled so the math is the same.
1807          *
1808          * The basic idea here is that we're increasing the multiplier
1809          * by one, this causes the xtime_interval to be incremented by
1810          * one cycle_interval. This is because:
1811          *      xtime_interval = cycle_interval * mult
1812          * So if mult is being incremented by one:
1813          *      xtime_interval = cycle_interval * (mult + 1)
1814          * Its the same as:
1815          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1816          * Which can be shortened to:
1817          *      xtime_interval += cycle_interval
1818          *
1819          * So offset stores the non-accumulated cycles. Thus the current
1820          * time (in shifted nanoseconds) is:
1821          *      now = (offset * adj) + xtime_nsec
1822          * Now, even though we're adjusting the clock frequency, we have
1823          * to keep time consistent. In other words, we can't jump back
1824          * in time, and we also want to avoid jumping forward in time.
1825          *
1826          * So given the same offset value, we need the time to be the same
1827          * both before and after the freq adjustment.
1828          *      now = (offset * adj_1) + xtime_nsec_1
1829          *      now = (offset * adj_2) + xtime_nsec_2
1830          * So:
1831          *      (offset * adj_1) + xtime_nsec_1 =
1832          *              (offset * adj_2) + xtime_nsec_2
1833          * And we know:
1834          *      adj_2 = adj_1 + 1
1835          * So:
1836          *      (offset * adj_1) + xtime_nsec_1 =
1837          *              (offset * (adj_1+1)) + xtime_nsec_2
1838          *      (offset * adj_1) + xtime_nsec_1 =
1839          *              (offset * adj_1) + offset + xtime_nsec_2
1840          * Canceling the sides:
1841          *      xtime_nsec_1 = offset + xtime_nsec_2
1842          * Which gives us:
1843          *      xtime_nsec_2 = xtime_nsec_1 - offset
1844          * Which simplfies to:
1845          *      xtime_nsec -= offset
1846          *
1847          * XXX - TODO: Doc ntp_error calculation.
1848          */
1849         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1850                 /* NTP adjustment caused clocksource mult overflow */
1851                 WARN_ON_ONCE(1);
1852                 return;
1853         }
1854
1855         tk->tkr_mono.mult += mult_adj;
1856         tk->xtime_interval += interval;
1857         tk->tkr_mono.xtime_nsec -= offset;
1858         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1859 }
1860
1861 /*
1862  * Calculate the multiplier adjustment needed to match the frequency
1863  * specified by NTP
1864  */
1865 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1866                                                         s64 offset)
1867 {
1868         s64 interval = tk->cycle_interval;
1869         s64 xinterval = tk->xtime_interval;
1870         u32 base = tk->tkr_mono.clock->mult;
1871         u32 max = tk->tkr_mono.clock->maxadj;
1872         u32 cur_adj = tk->tkr_mono.mult;
1873         s64 tick_error;
1874         bool negative;
1875         u32 adj_scale;
1876
1877         /* Remove any current error adj from freq calculation */
1878         if (tk->ntp_err_mult)
1879                 xinterval -= tk->cycle_interval;
1880
1881         tk->ntp_tick = ntp_tick_length();
1882
1883         /* Calculate current error per tick */
1884         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1885         tick_error -= (xinterval + tk->xtime_remainder);
1886
1887         /* Don't worry about correcting it if its small */
1888         if (likely((tick_error >= 0) && (tick_error <= interval)))
1889                 return;
1890
1891         /* preserve the direction of correction */
1892         negative = (tick_error < 0);
1893
1894         /* If any adjustment would pass the max, just return */
1895         if (negative && (cur_adj - 1) <= (base - max))
1896                 return;
1897         if (!negative && (cur_adj + 1) >= (base + max))
1898                 return;
1899         /*
1900          * Sort out the magnitude of the correction, but
1901          * avoid making so large a correction that we go
1902          * over the max adjustment.
1903          */
1904         adj_scale = 0;
1905         tick_error = abs(tick_error);
1906         while (tick_error > interval) {
1907                 u32 adj = 1 << (adj_scale + 1);
1908
1909                 /* Check if adjustment gets us within 1 unit from the max */
1910                 if (negative && (cur_adj - adj) <= (base - max))
1911                         break;
1912                 if (!negative && (cur_adj + adj) >= (base + max))
1913                         break;
1914
1915                 adj_scale++;
1916                 tick_error >>= 1;
1917         }
1918
1919         /* scale the corrections */
1920         timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1921 }
1922
1923 /*
1924  * Adjust the timekeeper's multiplier to the correct frequency
1925  * and also to reduce the accumulated error value.
1926  */
1927 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1928 {
1929         /* Correct for the current frequency error */
1930         timekeeping_freqadjust(tk, offset);
1931
1932         /* Next make a small adjustment to fix any cumulative error */
1933         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1934                 tk->ntp_err_mult = 1;
1935                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1936         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1937                 /* Undo any existing error adjustment */
1938                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1939                 tk->ntp_err_mult = 0;
1940         }
1941
1942         if (unlikely(tk->tkr_mono.clock->maxadj &&
1943                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1944                         > tk->tkr_mono.clock->maxadj))) {
1945                 printk_once(KERN_WARNING
1946                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1947                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1948                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1949         }
1950
1951         /*
1952          * It may be possible that when we entered this function, xtime_nsec
1953          * was very small.  Further, if we're slightly speeding the clocksource
1954          * in the code above, its possible the required corrective factor to
1955          * xtime_nsec could cause it to underflow.
1956          *
1957          * Now, since we already accumulated the second, cannot simply roll
1958          * the accumulated second back, since the NTP subsystem has been
1959          * notified via second_overflow. So instead we push xtime_nsec forward
1960          * by the amount we underflowed, and add that amount into the error.
1961          *
1962          * We'll correct this error next time through this function, when
1963          * xtime_nsec is not as small.
1964          */
1965         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1966                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1967                 tk->tkr_mono.xtime_nsec = 0;
1968                 tk->ntp_error += neg << tk->ntp_error_shift;
1969         }
1970 }
1971
1972 /**
1973  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1974  *
1975  * Helper function that accumulates the nsecs greater than a second
1976  * from the xtime_nsec field to the xtime_secs field.
1977  * It also calls into the NTP code to handle leapsecond processing.
1978  *
1979  */
1980 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1981 {
1982         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1983         unsigned int clock_set = 0;
1984
1985         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1986                 int leap;
1987
1988                 tk->tkr_mono.xtime_nsec -= nsecps;
1989                 tk->xtime_sec++;
1990
1991                 /* Figure out if its a leap sec and apply if needed */
1992                 leap = second_overflow(tk->xtime_sec);
1993                 if (unlikely(leap)) {
1994                         struct timespec64 ts;
1995
1996                         tk->xtime_sec += leap;
1997
1998                         ts.tv_sec = leap;
1999                         ts.tv_nsec = 0;
2000                         tk_set_wall_to_mono(tk,
2001                                 timespec64_sub(tk->wall_to_monotonic, ts));
2002
2003                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2004
2005                         clock_set = TK_CLOCK_WAS_SET;
2006                 }
2007         }
2008         return clock_set;
2009 }
2010
2011 /**
2012  * logarithmic_accumulation - shifted accumulation of cycles
2013  *
2014  * This functions accumulates a shifted interval of cycles into
2015  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2016  * loop.
2017  *
2018  * Returns the unconsumed cycles.
2019  */
2020 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
2021                                                 u32 shift,
2022                                                 unsigned int *clock_set)
2023 {
2024         cycle_t interval = tk->cycle_interval << shift;
2025         u64 snsec_per_sec;
2026
2027         /* If the offset is smaller than a shifted interval, do nothing */
2028         if (offset < interval)
2029                 return offset;
2030
2031         /* Accumulate one shifted interval */
2032         offset -= interval;
2033         tk->tkr_mono.cycle_last += interval;
2034         tk->tkr_raw.cycle_last  += interval;
2035
2036         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2037         *clock_set |= accumulate_nsecs_to_secs(tk);
2038
2039         /* Accumulate raw time */
2040         tk->tkr_raw.xtime_nsec += (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift;
2041         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2042         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2043         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2044                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2045                 tk->raw_time.tv_sec++;
2046         }
2047         tk->raw_time.tv_nsec = tk->tkr_raw.xtime_nsec >> tk->tkr_raw.shift;
2048         tk->tkr_raw.xtime_nsec -= (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift;
2049
2050         /* Accumulate error between NTP and clock interval */
2051         tk->ntp_error += tk->ntp_tick << shift;
2052         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2053                                                 (tk->ntp_error_shift + shift);
2054
2055         return offset;
2056 }
2057
2058 /**
2059  * update_wall_time - Uses the current clocksource to increment the wall time
2060  *
2061  */
2062 void update_wall_time(void)
2063 {
2064         struct timekeeper *real_tk = &tk_core.timekeeper;
2065         struct timekeeper *tk = &shadow_timekeeper;
2066         cycle_t offset;
2067         int shift = 0, maxshift;
2068         unsigned int clock_set = 0;
2069         unsigned long flags;
2070
2071         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2072
2073         /* Make sure we're fully resumed: */
2074         if (unlikely(timekeeping_suspended))
2075                 goto out;
2076
2077 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2078         offset = real_tk->cycle_interval;
2079 #else
2080         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2081                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2082 #endif
2083
2084         /* Check if there's really nothing to do */
2085         if (offset < real_tk->cycle_interval)
2086                 goto out;
2087
2088         /* Do some additional sanity checking */
2089         timekeeping_check_update(real_tk, offset);
2090
2091         /*
2092          * With NO_HZ we may have to accumulate many cycle_intervals
2093          * (think "ticks") worth of time at once. To do this efficiently,
2094          * we calculate the largest doubling multiple of cycle_intervals
2095          * that is smaller than the offset.  We then accumulate that
2096          * chunk in one go, and then try to consume the next smaller
2097          * doubled multiple.
2098          */
2099         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2100         shift = max(0, shift);
2101         /* Bound shift to one less than what overflows tick_length */
2102         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2103         shift = min(shift, maxshift);
2104         while (offset >= tk->cycle_interval) {
2105                 offset = logarithmic_accumulation(tk, offset, shift,
2106                                                         &clock_set);
2107                 if (offset < tk->cycle_interval<<shift)
2108                         shift--;
2109         }
2110
2111         /* correct the clock when NTP error is too big */
2112         timekeeping_adjust(tk, offset);
2113
2114         /*
2115          * XXX This can be killed once everyone converts
2116          * to the new update_vsyscall.
2117          */
2118         old_vsyscall_fixup(tk);
2119
2120         /*
2121          * Finally, make sure that after the rounding
2122          * xtime_nsec isn't larger than NSEC_PER_SEC
2123          */
2124         clock_set |= accumulate_nsecs_to_secs(tk);
2125
2126         write_seqcount_begin(&tk_core.seq);
2127         /*
2128          * Update the real timekeeper.
2129          *
2130          * We could avoid this memcpy by switching pointers, but that
2131          * requires changes to all other timekeeper usage sites as
2132          * well, i.e. move the timekeeper pointer getter into the
2133          * spinlocked/seqcount protected sections. And we trade this
2134          * memcpy under the tk_core.seq against one before we start
2135          * updating.
2136          */
2137         timekeeping_update(tk, clock_set);
2138         memcpy(real_tk, tk, sizeof(*tk));
2139         /* The memcpy must come last. Do not put anything here! */
2140         write_seqcount_end(&tk_core.seq);
2141 out:
2142         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2143         if (clock_set)
2144                 /* Have to call _delayed version, since in irq context*/
2145                 clock_was_set_delayed();
2146 }
2147
2148 /**
2149  * getboottime64 - Return the real time of system boot.
2150  * @ts:         pointer to the timespec64 to be set
2151  *
2152  * Returns the wall-time of boot in a timespec64.
2153  *
2154  * This is based on the wall_to_monotonic offset and the total suspend
2155  * time. Calls to settimeofday will affect the value returned (which
2156  * basically means that however wrong your real time clock is at boot time,
2157  * you get the right time here).
2158  */
2159 void getboottime64(struct timespec64 *ts)
2160 {
2161         struct timekeeper *tk = &tk_core.timekeeper;
2162         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2163
2164         *ts = ktime_to_timespec64(t);
2165 }
2166 EXPORT_SYMBOL_GPL(getboottime64);
2167
2168 unsigned long get_seconds(void)
2169 {
2170         struct timekeeper *tk = &tk_core.timekeeper;
2171
2172         return tk->xtime_sec;
2173 }
2174 EXPORT_SYMBOL(get_seconds);
2175
2176 struct timespec __current_kernel_time(void)
2177 {
2178         struct timekeeper *tk = &tk_core.timekeeper;
2179
2180         return timespec64_to_timespec(tk_xtime(tk));
2181 }
2182
2183 struct timespec64 current_kernel_time64(void)
2184 {
2185         struct timekeeper *tk = &tk_core.timekeeper;
2186         struct timespec64 now;
2187         unsigned long seq;
2188
2189         do {
2190                 seq = read_seqcount_begin(&tk_core.seq);
2191
2192                 now = tk_xtime(tk);
2193         } while (read_seqcount_retry(&tk_core.seq, seq));
2194
2195         return now;
2196 }
2197 EXPORT_SYMBOL(current_kernel_time64);
2198
2199 struct timespec64 get_monotonic_coarse64(void)
2200 {
2201         struct timekeeper *tk = &tk_core.timekeeper;
2202         struct timespec64 now, mono;
2203         unsigned long seq;
2204
2205         do {
2206                 seq = read_seqcount_begin(&tk_core.seq);
2207
2208                 now = tk_xtime(tk);
2209                 mono = tk->wall_to_monotonic;
2210         } while (read_seqcount_retry(&tk_core.seq, seq));
2211
2212         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2213                                 now.tv_nsec + mono.tv_nsec);
2214
2215         return now;
2216 }
2217 EXPORT_SYMBOL(get_monotonic_coarse64);
2218
2219 /*
2220  * Must hold jiffies_lock
2221  */
2222 void do_timer(unsigned long ticks)
2223 {
2224         jiffies_64 += ticks;
2225         calc_global_load(ticks);
2226 }
2227
2228 /**
2229  * ktime_get_update_offsets_now - hrtimer helper
2230  * @cwsseq:     pointer to check and store the clock was set sequence number
2231  * @offs_real:  pointer to storage for monotonic -> realtime offset
2232  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2233  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2234  *
2235  * Returns current monotonic time and updates the offsets if the
2236  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2237  * different.
2238  *
2239  * Called from hrtimer_interrupt() or retrigger_next_event()
2240  */
2241 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2242                                      ktime_t *offs_boot, ktime_t *offs_tai)
2243 {
2244         struct timekeeper *tk = &tk_core.timekeeper;
2245         unsigned int seq;
2246         ktime_t base;
2247         u64 nsecs;
2248
2249         do {
2250                 seq = read_seqcount_begin(&tk_core.seq);
2251
2252                 base = tk->tkr_mono.base;
2253                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2254                 base = ktime_add_ns(base, nsecs);
2255
2256                 if (*cwsseq != tk->clock_was_set_seq) {
2257                         *cwsseq = tk->clock_was_set_seq;
2258                         *offs_real = tk->offs_real;
2259                         *offs_boot = tk->offs_boot;
2260                         *offs_tai = tk->offs_tai;
2261                 }
2262
2263                 /* Handle leapsecond insertion adjustments */
2264                 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2265                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2266
2267         } while (read_seqcount_retry(&tk_core.seq, seq));
2268
2269         return base;
2270 }
2271
2272 /**
2273  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2274  */
2275 int do_adjtimex(struct timex *txc)
2276 {
2277         struct timekeeper *tk = &tk_core.timekeeper;
2278         unsigned long flags;
2279         struct timespec64 ts;
2280         s32 orig_tai, tai;
2281         int ret;
2282
2283         /* Validate the data before disabling interrupts */
2284         ret = ntp_validate_timex(txc);
2285         if (ret)
2286                 return ret;
2287
2288         if (txc->modes & ADJ_SETOFFSET) {
2289                 struct timespec delta;
2290                 delta.tv_sec  = txc->time.tv_sec;
2291                 delta.tv_nsec = txc->time.tv_usec;
2292                 if (!(txc->modes & ADJ_NANO))
2293                         delta.tv_nsec *= 1000;
2294                 ret = timekeeping_inject_offset(&delta);
2295                 if (ret)
2296                         return ret;
2297         }
2298
2299         getnstimeofday64(&ts);
2300
2301         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2302         write_seqcount_begin(&tk_core.seq);
2303
2304         orig_tai = tai = tk->tai_offset;
2305         ret = __do_adjtimex(txc, &ts, &tai);
2306
2307         if (tai != orig_tai) {
2308                 __timekeeping_set_tai_offset(tk, tai);
2309                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2310         }
2311         tk_update_leap_state(tk);
2312
2313         write_seqcount_end(&tk_core.seq);
2314         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2315
2316         if (tai != orig_tai)
2317                 clock_was_set();
2318
2319         ntp_notify_cmos_timer();
2320
2321         return ret;
2322 }
2323
2324 #ifdef CONFIG_NTP_PPS
2325 /**
2326  * hardpps() - Accessor function to NTP __hardpps function
2327  */
2328 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2329 {
2330         unsigned long flags;
2331
2332         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2333         write_seqcount_begin(&tk_core.seq);
2334
2335         __hardpps(phase_ts, raw_ts);
2336
2337         write_seqcount_end(&tk_core.seq);
2338         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2339 }
2340 EXPORT_SYMBOL(hardpps);
2341 #endif
2342
2343 /**
2344  * xtime_update() - advances the timekeeping infrastructure
2345  * @ticks:      number of ticks, that have elapsed since the last call.
2346  *
2347  * Must be called with interrupts disabled.
2348  */
2349 void xtime_update(unsigned long ticks)
2350 {
2351         write_seqlock(&jiffies_lock);
2352         do_timer(ticks);
2353         write_sequnlock(&jiffies_lock);
2354         update_wall_time();
2355 }