GNU Linux-libre 4.4.288-gnu1
[releases.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>      /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF           (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT            4U
125 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT       0
130 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT       1
133 # define RB_ARCH_ALIGNMENT              8U
134 #endif
135
136 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142         RB_LEN_TIME_EXTEND = 8,
143         RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156         /* padding has a NULL time_delta */
157         event->type_len = RINGBUF_TYPE_PADDING;
158         event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164         unsigned length;
165
166         if (event->type_len)
167                 length = event->type_len * RB_ALIGNMENT;
168         else
169                 length = event->array[0];
170         return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181         switch (event->type_len) {
182         case RINGBUF_TYPE_PADDING:
183                 if (rb_null_event(event))
184                         /* undefined */
185                         return -1;
186                 return  event->array[0] + RB_EVNT_HDR_SIZE;
187
188         case RINGBUF_TYPE_TIME_EXTEND:
189                 return RB_LEN_TIME_EXTEND;
190
191         case RINGBUF_TYPE_TIME_STAMP:
192                 return RB_LEN_TIME_STAMP;
193
194         case RINGBUF_TYPE_DATA:
195                 return rb_event_data_length(event);
196         default:
197                 BUG();
198         }
199         /* not hit */
200         return 0;
201 }
202
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210         unsigned len = 0;
211
212         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213                 /* time extends include the data event after it */
214                 len = RB_LEN_TIME_EXTEND;
215                 event = skip_time_extend(event);
216         }
217         return len + rb_event_length(event);
218 }
219
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235                 event = skip_time_extend(event);
236
237         length = rb_event_length(event);
238         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239                 return length;
240         length -= RB_EVNT_HDR_SIZE;
241         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243         return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252                 event = skip_time_extend(event);
253         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254         /* If length is in len field, then array[0] has the data */
255         if (event->type_len)
256                 return (void *)&event->array[0];
257         /* Otherwise length is in array[0] and array[1] has the data */
258         return (void *)&event->array[1];
259 }
260
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267         return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu)                \
272         for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT        27
275 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST   (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS        (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED        (1 << 30)
282
283 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
285 struct buffer_data_page {
286         u64              time_stamp;    /* page time stamp */
287         local_t          commit;        /* write committed index */
288         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
289 };
290
291 /*
292  * Note, the buffer_page list must be first. The buffer pages
293  * are allocated in cache lines, which means that each buffer
294  * page will be at the beginning of a cache line, and thus
295  * the least significant bits will be zero. We use this to
296  * add flags in the list struct pointers, to make the ring buffer
297  * lockless.
298  */
299 struct buffer_page {
300         struct list_head list;          /* list of buffer pages */
301         local_t          write;         /* index for next write */
302         unsigned         read;          /* index for next read */
303         local_t          entries;       /* entries on this page */
304         unsigned long    real_end;      /* real end of data */
305         struct buffer_data_page *page;  /* Actual data page */
306 };
307
308 /*
309  * The buffer page counters, write and entries, must be reset
310  * atomically when crossing page boundaries. To synchronize this
311  * update, two counters are inserted into the number. One is
312  * the actual counter for the write position or count on the page.
313  *
314  * The other is a counter of updaters. Before an update happens
315  * the update partition of the counter is incremented. This will
316  * allow the updater to update the counter atomically.
317  *
318  * The counter is 20 bits, and the state data is 12.
319  */
320 #define RB_WRITE_MASK           0xfffff
321 #define RB_WRITE_INTCNT         (1 << 20)
322
323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325         local_set(&bpage->commit, 0);
326 }
327
328 /**
329  * ring_buffer_page_len - the size of data on the page.
330  * @page: The page to read
331  *
332  * Returns the amount of data on the page, including buffer page header.
333  */
334 size_t ring_buffer_page_len(void *page)
335 {
336         struct buffer_data_page *bpage = page;
337
338         return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339                 + BUF_PAGE_HDR_SIZE;
340 }
341
342 /*
343  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344  * this issue out.
345  */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348         free_page((unsigned long)bpage->page);
349         kfree(bpage);
350 }
351
352 /*
353  * We need to fit the time_stamp delta into 27 bits.
354  */
355 static inline int test_time_stamp(u64 delta)
356 {
357         if (delta & TS_DELTA_TEST)
358                 return 1;
359         return 0;
360 }
361
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369         struct buffer_data_page field;
370
371         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372                          "offset:0;\tsize:%u;\tsigned:%u;\n",
373                          (unsigned int)sizeof(field.time_stamp),
374                          (unsigned int)is_signed_type(u64));
375
376         trace_seq_printf(s, "\tfield: local_t commit;\t"
377                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
378                          (unsigned int)offsetof(typeof(field), commit),
379                          (unsigned int)sizeof(field.commit),
380                          (unsigned int)is_signed_type(long));
381
382         trace_seq_printf(s, "\tfield: int overwrite;\t"
383                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
384                          (unsigned int)offsetof(typeof(field), commit),
385                          1,
386                          (unsigned int)is_signed_type(long));
387
388         trace_seq_printf(s, "\tfield: char data;\t"
389                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
390                          (unsigned int)offsetof(typeof(field), data),
391                          (unsigned int)BUF_PAGE_SIZE,
392                          (unsigned int)is_signed_type(char));
393
394         return !trace_seq_has_overflowed(s);
395 }
396
397 struct rb_irq_work {
398         struct irq_work                 work;
399         wait_queue_head_t               waiters;
400         wait_queue_head_t               full_waiters;
401         bool                            waiters_pending;
402         bool                            full_waiters_pending;
403         bool                            wakeup_full;
404 };
405
406 /*
407  * Structure to hold event state and handle nested events.
408  */
409 struct rb_event_info {
410         u64                     ts;
411         u64                     delta;
412         unsigned long           length;
413         struct buffer_page      *tail_page;
414         int                     add_timestamp;
415 };
416
417 /*
418  * Used for which event context the event is in.
419  *  TRANSITION = 0
420  *  NMI     = 1
421  *  IRQ     = 2
422  *  SOFTIRQ = 3
423  *  NORMAL  = 4
424  *
425  * See trace_recursive_lock() comment below for more details.
426  */
427 enum {
428         RB_CTX_TRANSITION,
429         RB_CTX_NMI,
430         RB_CTX_IRQ,
431         RB_CTX_SOFTIRQ,
432         RB_CTX_NORMAL,
433         RB_CTX_MAX
434 };
435
436 /*
437  * head_page == tail_page && head == tail then buffer is empty.
438  */
439 struct ring_buffer_per_cpu {
440         int                             cpu;
441         atomic_t                        record_disabled;
442         struct ring_buffer              *buffer;
443         raw_spinlock_t                  reader_lock;    /* serialize readers */
444         arch_spinlock_t                 lock;
445         struct lock_class_key           lock_key;
446         unsigned long                   nr_pages;
447         unsigned int                    current_context;
448         struct list_head                *pages;
449         struct buffer_page              *head_page;     /* read from head */
450         struct buffer_page              *tail_page;     /* write to tail */
451         struct buffer_page              *commit_page;   /* committed pages */
452         struct buffer_page              *reader_page;
453         unsigned long                   lost_events;
454         unsigned long                   last_overrun;
455         local_t                         entries_bytes;
456         local_t                         entries;
457         local_t                         overrun;
458         local_t                         commit_overrun;
459         local_t                         dropped_events;
460         local_t                         committing;
461         local_t                         commits;
462         unsigned long                   read;
463         unsigned long                   read_bytes;
464         u64                             write_stamp;
465         u64                             read_stamp;
466         /* ring buffer pages to update, > 0 to add, < 0 to remove */
467         long                            nr_pages_to_update;
468         struct list_head                new_pages; /* new pages to add */
469         struct work_struct              update_pages_work;
470         struct completion               update_done;
471
472         struct rb_irq_work              irq_work;
473 };
474
475 struct ring_buffer {
476         unsigned                        flags;
477         int                             cpus;
478         atomic_t                        record_disabled;
479         atomic_t                        resize_disabled;
480         cpumask_var_t                   cpumask;
481
482         struct lock_class_key           *reader_lock_key;
483
484         struct mutex                    mutex;
485
486         struct ring_buffer_per_cpu      **buffers;
487
488 #ifdef CONFIG_HOTPLUG_CPU
489         struct notifier_block           cpu_notify;
490 #endif
491         u64                             (*clock)(void);
492
493         struct rb_irq_work              irq_work;
494 };
495
496 struct ring_buffer_iter {
497         struct ring_buffer_per_cpu      *cpu_buffer;
498         unsigned long                   head;
499         struct buffer_page              *head_page;
500         struct buffer_page              *cache_reader_page;
501         unsigned long                   cache_read;
502         u64                             read_stamp;
503 };
504
505 /*
506  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
507  *
508  * Schedules a delayed work to wake up any task that is blocked on the
509  * ring buffer waiters queue.
510  */
511 static void rb_wake_up_waiters(struct irq_work *work)
512 {
513         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
514
515         wake_up_all(&rbwork->waiters);
516         if (rbwork->wakeup_full) {
517                 rbwork->wakeup_full = false;
518                 wake_up_all(&rbwork->full_waiters);
519         }
520 }
521
522 /**
523  * ring_buffer_wait - wait for input to the ring buffer
524  * @buffer: buffer to wait on
525  * @cpu: the cpu buffer to wait on
526  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
527  *
528  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
529  * as data is added to any of the @buffer's cpu buffers. Otherwise
530  * it will wait for data to be added to a specific cpu buffer.
531  */
532 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
533 {
534         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
535         DEFINE_WAIT(wait);
536         struct rb_irq_work *work;
537         int ret = 0;
538
539         /*
540          * Depending on what the caller is waiting for, either any
541          * data in any cpu buffer, or a specific buffer, put the
542          * caller on the appropriate wait queue.
543          */
544         if (cpu == RING_BUFFER_ALL_CPUS) {
545                 work = &buffer->irq_work;
546                 /* Full only makes sense on per cpu reads */
547                 full = false;
548         } else {
549                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
550                         return -ENODEV;
551                 cpu_buffer = buffer->buffers[cpu];
552                 work = &cpu_buffer->irq_work;
553         }
554
555
556         while (true) {
557                 if (full)
558                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
559                 else
560                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
561
562                 /*
563                  * The events can happen in critical sections where
564                  * checking a work queue can cause deadlocks.
565                  * After adding a task to the queue, this flag is set
566                  * only to notify events to try to wake up the queue
567                  * using irq_work.
568                  *
569                  * We don't clear it even if the buffer is no longer
570                  * empty. The flag only causes the next event to run
571                  * irq_work to do the work queue wake up. The worse
572                  * that can happen if we race with !trace_empty() is that
573                  * an event will cause an irq_work to try to wake up
574                  * an empty queue.
575                  *
576                  * There's no reason to protect this flag either, as
577                  * the work queue and irq_work logic will do the necessary
578                  * synchronization for the wake ups. The only thing
579                  * that is necessary is that the wake up happens after
580                  * a task has been queued. It's OK for spurious wake ups.
581                  */
582                 if (full)
583                         work->full_waiters_pending = true;
584                 else
585                         work->waiters_pending = true;
586
587                 if (signal_pending(current)) {
588                         ret = -EINTR;
589                         break;
590                 }
591
592                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
593                         break;
594
595                 if (cpu != RING_BUFFER_ALL_CPUS &&
596                     !ring_buffer_empty_cpu(buffer, cpu)) {
597                         unsigned long flags;
598                         bool pagebusy;
599
600                         if (!full)
601                                 break;
602
603                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
604                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
605                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
606
607                         if (!pagebusy)
608                                 break;
609                 }
610
611                 schedule();
612         }
613
614         if (full)
615                 finish_wait(&work->full_waiters, &wait);
616         else
617                 finish_wait(&work->waiters, &wait);
618
619         return ret;
620 }
621
622 /**
623  * ring_buffer_poll_wait - poll on buffer input
624  * @buffer: buffer to wait on
625  * @cpu: the cpu buffer to wait on
626  * @filp: the file descriptor
627  * @poll_table: The poll descriptor
628  *
629  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
630  * as data is added to any of the @buffer's cpu buffers. Otherwise
631  * it will wait for data to be added to a specific cpu buffer.
632  *
633  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
634  * zero otherwise.
635  */
636 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
637                           struct file *filp, poll_table *poll_table)
638 {
639         struct ring_buffer_per_cpu *cpu_buffer;
640         struct rb_irq_work *work;
641
642         if (cpu == RING_BUFFER_ALL_CPUS)
643                 work = &buffer->irq_work;
644         else {
645                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
646                         return -EINVAL;
647
648                 cpu_buffer = buffer->buffers[cpu];
649                 work = &cpu_buffer->irq_work;
650         }
651
652         poll_wait(filp, &work->waiters, poll_table);
653         work->waiters_pending = true;
654         /*
655          * There's a tight race between setting the waiters_pending and
656          * checking if the ring buffer is empty.  Once the waiters_pending bit
657          * is set, the next event will wake the task up, but we can get stuck
658          * if there's only a single event in.
659          *
660          * FIXME: Ideally, we need a memory barrier on the writer side as well,
661          * but adding a memory barrier to all events will cause too much of a
662          * performance hit in the fast path.  We only need a memory barrier when
663          * the buffer goes from empty to having content.  But as this race is
664          * extremely small, and it's not a problem if another event comes in, we
665          * will fix it later.
666          */
667         smp_mb();
668
669         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
670             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
671                 return POLLIN | POLLRDNORM;
672         return 0;
673 }
674
675 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
676 #define RB_WARN_ON(b, cond)                                             \
677         ({                                                              \
678                 int _____ret = unlikely(cond);                          \
679                 if (_____ret) {                                         \
680                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
681                                 struct ring_buffer_per_cpu *__b =       \
682                                         (void *)b;                      \
683                                 atomic_inc(&__b->buffer->record_disabled); \
684                         } else                                          \
685                                 atomic_inc(&b->record_disabled);        \
686                         WARN_ON(1);                                     \
687                 }                                                       \
688                 _____ret;                                               \
689         })
690
691 /* Up this if you want to test the TIME_EXTENTS and normalization */
692 #define DEBUG_SHIFT 0
693
694 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
695 {
696         /* shift to debug/test normalization and TIME_EXTENTS */
697         return buffer->clock() << DEBUG_SHIFT;
698 }
699
700 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
701 {
702         u64 time;
703
704         preempt_disable_notrace();
705         time = rb_time_stamp(buffer);
706         preempt_enable_notrace();
707
708         return time;
709 }
710 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
711
712 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
713                                       int cpu, u64 *ts)
714 {
715         /* Just stupid testing the normalize function and deltas */
716         *ts >>= DEBUG_SHIFT;
717 }
718 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
719
720 /*
721  * Making the ring buffer lockless makes things tricky.
722  * Although writes only happen on the CPU that they are on,
723  * and they only need to worry about interrupts. Reads can
724  * happen on any CPU.
725  *
726  * The reader page is always off the ring buffer, but when the
727  * reader finishes with a page, it needs to swap its page with
728  * a new one from the buffer. The reader needs to take from
729  * the head (writes go to the tail). But if a writer is in overwrite
730  * mode and wraps, it must push the head page forward.
731  *
732  * Here lies the problem.
733  *
734  * The reader must be careful to replace only the head page, and
735  * not another one. As described at the top of the file in the
736  * ASCII art, the reader sets its old page to point to the next
737  * page after head. It then sets the page after head to point to
738  * the old reader page. But if the writer moves the head page
739  * during this operation, the reader could end up with the tail.
740  *
741  * We use cmpxchg to help prevent this race. We also do something
742  * special with the page before head. We set the LSB to 1.
743  *
744  * When the writer must push the page forward, it will clear the
745  * bit that points to the head page, move the head, and then set
746  * the bit that points to the new head page.
747  *
748  * We also don't want an interrupt coming in and moving the head
749  * page on another writer. Thus we use the second LSB to catch
750  * that too. Thus:
751  *
752  * head->list->prev->next        bit 1          bit 0
753  *                              -------        -------
754  * Normal page                     0              0
755  * Points to head page             0              1
756  * New head page                   1              0
757  *
758  * Note we can not trust the prev pointer of the head page, because:
759  *
760  * +----+       +-----+        +-----+
761  * |    |------>|  T  |---X--->|  N  |
762  * |    |<------|     |        |     |
763  * +----+       +-----+        +-----+
764  *   ^                           ^ |
765  *   |          +-----+          | |
766  *   +----------|  R  |----------+ |
767  *              |     |<-----------+
768  *              +-----+
769  *
770  * Key:  ---X-->  HEAD flag set in pointer
771  *         T      Tail page
772  *         R      Reader page
773  *         N      Next page
774  *
775  * (see __rb_reserve_next() to see where this happens)
776  *
777  *  What the above shows is that the reader just swapped out
778  *  the reader page with a page in the buffer, but before it
779  *  could make the new header point back to the new page added
780  *  it was preempted by a writer. The writer moved forward onto
781  *  the new page added by the reader and is about to move forward
782  *  again.
783  *
784  *  You can see, it is legitimate for the previous pointer of
785  *  the head (or any page) not to point back to itself. But only
786  *  temporarially.
787  */
788
789 #define RB_PAGE_NORMAL          0UL
790 #define RB_PAGE_HEAD            1UL
791 #define RB_PAGE_UPDATE          2UL
792
793
794 #define RB_FLAG_MASK            3UL
795
796 /* PAGE_MOVED is not part of the mask */
797 #define RB_PAGE_MOVED           4UL
798
799 /*
800  * rb_list_head - remove any bit
801  */
802 static struct list_head *rb_list_head(struct list_head *list)
803 {
804         unsigned long val = (unsigned long)list;
805
806         return (struct list_head *)(val & ~RB_FLAG_MASK);
807 }
808
809 /*
810  * rb_is_head_page - test if the given page is the head page
811  *
812  * Because the reader may move the head_page pointer, we can
813  * not trust what the head page is (it may be pointing to
814  * the reader page). But if the next page is a header page,
815  * its flags will be non zero.
816  */
817 static inline int
818 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
819                 struct buffer_page *page, struct list_head *list)
820 {
821         unsigned long val;
822
823         val = (unsigned long)list->next;
824
825         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
826                 return RB_PAGE_MOVED;
827
828         return val & RB_FLAG_MASK;
829 }
830
831 /*
832  * rb_is_reader_page
833  *
834  * The unique thing about the reader page, is that, if the
835  * writer is ever on it, the previous pointer never points
836  * back to the reader page.
837  */
838 static bool rb_is_reader_page(struct buffer_page *page)
839 {
840         struct list_head *list = page->list.prev;
841
842         return rb_list_head(list->next) != &page->list;
843 }
844
845 /*
846  * rb_set_list_to_head - set a list_head to be pointing to head.
847  */
848 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
849                                 struct list_head *list)
850 {
851         unsigned long *ptr;
852
853         ptr = (unsigned long *)&list->next;
854         *ptr |= RB_PAGE_HEAD;
855         *ptr &= ~RB_PAGE_UPDATE;
856 }
857
858 /*
859  * rb_head_page_activate - sets up head page
860  */
861 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
862 {
863         struct buffer_page *head;
864
865         head = cpu_buffer->head_page;
866         if (!head)
867                 return;
868
869         /*
870          * Set the previous list pointer to have the HEAD flag.
871          */
872         rb_set_list_to_head(cpu_buffer, head->list.prev);
873 }
874
875 static void rb_list_head_clear(struct list_head *list)
876 {
877         unsigned long *ptr = (unsigned long *)&list->next;
878
879         *ptr &= ~RB_FLAG_MASK;
880 }
881
882 /*
883  * rb_head_page_dactivate - clears head page ptr (for free list)
884  */
885 static void
886 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
887 {
888         struct list_head *hd;
889
890         /* Go through the whole list and clear any pointers found. */
891         rb_list_head_clear(cpu_buffer->pages);
892
893         list_for_each(hd, cpu_buffer->pages)
894                 rb_list_head_clear(hd);
895 }
896
897 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
898                             struct buffer_page *head,
899                             struct buffer_page *prev,
900                             int old_flag, int new_flag)
901 {
902         struct list_head *list;
903         unsigned long val = (unsigned long)&head->list;
904         unsigned long ret;
905
906         list = &prev->list;
907
908         val &= ~RB_FLAG_MASK;
909
910         ret = cmpxchg((unsigned long *)&list->next,
911                       val | old_flag, val | new_flag);
912
913         /* check if the reader took the page */
914         if ((ret & ~RB_FLAG_MASK) != val)
915                 return RB_PAGE_MOVED;
916
917         return ret & RB_FLAG_MASK;
918 }
919
920 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
921                                    struct buffer_page *head,
922                                    struct buffer_page *prev,
923                                    int old_flag)
924 {
925         return rb_head_page_set(cpu_buffer, head, prev,
926                                 old_flag, RB_PAGE_UPDATE);
927 }
928
929 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
930                                  struct buffer_page *head,
931                                  struct buffer_page *prev,
932                                  int old_flag)
933 {
934         return rb_head_page_set(cpu_buffer, head, prev,
935                                 old_flag, RB_PAGE_HEAD);
936 }
937
938 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
939                                    struct buffer_page *head,
940                                    struct buffer_page *prev,
941                                    int old_flag)
942 {
943         return rb_head_page_set(cpu_buffer, head, prev,
944                                 old_flag, RB_PAGE_NORMAL);
945 }
946
947 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
948                                struct buffer_page **bpage)
949 {
950         struct list_head *p = rb_list_head((*bpage)->list.next);
951
952         *bpage = list_entry(p, struct buffer_page, list);
953 }
954
955 static struct buffer_page *
956 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
957 {
958         struct buffer_page *head;
959         struct buffer_page *page;
960         struct list_head *list;
961         int i;
962
963         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
964                 return NULL;
965
966         /* sanity check */
967         list = cpu_buffer->pages;
968         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
969                 return NULL;
970
971         page = head = cpu_buffer->head_page;
972         /*
973          * It is possible that the writer moves the header behind
974          * where we started, and we miss in one loop.
975          * A second loop should grab the header, but we'll do
976          * three loops just because I'm paranoid.
977          */
978         for (i = 0; i < 3; i++) {
979                 do {
980                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
981                                 cpu_buffer->head_page = page;
982                                 return page;
983                         }
984                         rb_inc_page(cpu_buffer, &page);
985                 } while (page != head);
986         }
987
988         RB_WARN_ON(cpu_buffer, 1);
989
990         return NULL;
991 }
992
993 static int rb_head_page_replace(struct buffer_page *old,
994                                 struct buffer_page *new)
995 {
996         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
997         unsigned long val;
998         unsigned long ret;
999
1000         val = *ptr & ~RB_FLAG_MASK;
1001         val |= RB_PAGE_HEAD;
1002
1003         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1004
1005         return ret == val;
1006 }
1007
1008 /*
1009  * rb_tail_page_update - move the tail page forward
1010  *
1011  * Returns 1 if moved tail page, 0 if someone else did.
1012  */
1013 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1014                                struct buffer_page *tail_page,
1015                                struct buffer_page *next_page)
1016 {
1017         struct buffer_page *old_tail;
1018         unsigned long old_entries;
1019         unsigned long old_write;
1020         int ret = 0;
1021
1022         /*
1023          * The tail page now needs to be moved forward.
1024          *
1025          * We need to reset the tail page, but without messing
1026          * with possible erasing of data brought in by interrupts
1027          * that have moved the tail page and are currently on it.
1028          *
1029          * We add a counter to the write field to denote this.
1030          */
1031         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1032         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1033
1034         /*
1035          * Just make sure we have seen our old_write and synchronize
1036          * with any interrupts that come in.
1037          */
1038         barrier();
1039
1040         /*
1041          * If the tail page is still the same as what we think
1042          * it is, then it is up to us to update the tail
1043          * pointer.
1044          */
1045         if (tail_page == cpu_buffer->tail_page) {
1046                 /* Zero the write counter */
1047                 unsigned long val = old_write & ~RB_WRITE_MASK;
1048                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1049
1050                 /*
1051                  * This will only succeed if an interrupt did
1052                  * not come in and change it. In which case, we
1053                  * do not want to modify it.
1054                  *
1055                  * We add (void) to let the compiler know that we do not care
1056                  * about the return value of these functions. We use the
1057                  * cmpxchg to only update if an interrupt did not already
1058                  * do it for us. If the cmpxchg fails, we don't care.
1059                  */
1060                 (void)local_cmpxchg(&next_page->write, old_write, val);
1061                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1062
1063                 /*
1064                  * No need to worry about races with clearing out the commit.
1065                  * it only can increment when a commit takes place. But that
1066                  * only happens in the outer most nested commit.
1067                  */
1068                 local_set(&next_page->page->commit, 0);
1069
1070                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1071                                    tail_page, next_page);
1072
1073                 if (old_tail == tail_page)
1074                         ret = 1;
1075         }
1076
1077         return ret;
1078 }
1079
1080 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1081                           struct buffer_page *bpage)
1082 {
1083         unsigned long val = (unsigned long)bpage;
1084
1085         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1086                 return 1;
1087
1088         return 0;
1089 }
1090
1091 /**
1092  * rb_check_list - make sure a pointer to a list has the last bits zero
1093  */
1094 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1095                          struct list_head *list)
1096 {
1097         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1098                 return 1;
1099         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1100                 return 1;
1101         return 0;
1102 }
1103
1104 /**
1105  * rb_check_pages - integrity check of buffer pages
1106  * @cpu_buffer: CPU buffer with pages to test
1107  *
1108  * As a safety measure we check to make sure the data pages have not
1109  * been corrupted.
1110  */
1111 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1112 {
1113         struct list_head *head = cpu_buffer->pages;
1114         struct buffer_page *bpage, *tmp;
1115
1116         /* Reset the head page if it exists */
1117         if (cpu_buffer->head_page)
1118                 rb_set_head_page(cpu_buffer);
1119
1120         rb_head_page_deactivate(cpu_buffer);
1121
1122         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1123                 return -1;
1124         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1125                 return -1;
1126
1127         if (rb_check_list(cpu_buffer, head))
1128                 return -1;
1129
1130         list_for_each_entry_safe(bpage, tmp, head, list) {
1131                 if (RB_WARN_ON(cpu_buffer,
1132                                bpage->list.next->prev != &bpage->list))
1133                         return -1;
1134                 if (RB_WARN_ON(cpu_buffer,
1135                                bpage->list.prev->next != &bpage->list))
1136                         return -1;
1137                 if (rb_check_list(cpu_buffer, &bpage->list))
1138                         return -1;
1139         }
1140
1141         rb_head_page_activate(cpu_buffer);
1142
1143         return 0;
1144 }
1145
1146 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1147 {
1148         struct buffer_page *bpage, *tmp;
1149         long i;
1150
1151         for (i = 0; i < nr_pages; i++) {
1152                 struct page *page;
1153                 /*
1154                  * __GFP_NORETRY flag makes sure that the allocation fails
1155                  * gracefully without invoking oom-killer and the system is
1156                  * not destabilized.
1157                  */
1158                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1159                                     GFP_KERNEL | __GFP_NORETRY,
1160                                     cpu_to_node(cpu));
1161                 if (!bpage)
1162                         goto free_pages;
1163
1164                 list_add(&bpage->list, pages);
1165
1166                 page = alloc_pages_node(cpu_to_node(cpu),
1167                                         GFP_KERNEL | __GFP_NORETRY, 0);
1168                 if (!page)
1169                         goto free_pages;
1170                 bpage->page = page_address(page);
1171                 rb_init_page(bpage->page);
1172         }
1173
1174         return 0;
1175
1176 free_pages:
1177         list_for_each_entry_safe(bpage, tmp, pages, list) {
1178                 list_del_init(&bpage->list);
1179                 free_buffer_page(bpage);
1180         }
1181
1182         return -ENOMEM;
1183 }
1184
1185 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1186                              unsigned long nr_pages)
1187 {
1188         LIST_HEAD(pages);
1189
1190         WARN_ON(!nr_pages);
1191
1192         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1193                 return -ENOMEM;
1194
1195         /*
1196          * The ring buffer page list is a circular list that does not
1197          * start and end with a list head. All page list items point to
1198          * other pages.
1199          */
1200         cpu_buffer->pages = pages.next;
1201         list_del(&pages);
1202
1203         cpu_buffer->nr_pages = nr_pages;
1204
1205         rb_check_pages(cpu_buffer);
1206
1207         return 0;
1208 }
1209
1210 static struct ring_buffer_per_cpu *
1211 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1212 {
1213         struct ring_buffer_per_cpu *cpu_buffer;
1214         struct buffer_page *bpage;
1215         struct page *page;
1216         int ret;
1217
1218         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1219                                   GFP_KERNEL, cpu_to_node(cpu));
1220         if (!cpu_buffer)
1221                 return NULL;
1222
1223         cpu_buffer->cpu = cpu;
1224         cpu_buffer->buffer = buffer;
1225         raw_spin_lock_init(&cpu_buffer->reader_lock);
1226         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1227         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1228         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1229         init_completion(&cpu_buffer->update_done);
1230         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1231         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1232         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1233
1234         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1235                             GFP_KERNEL, cpu_to_node(cpu));
1236         if (!bpage)
1237                 goto fail_free_buffer;
1238
1239         rb_check_bpage(cpu_buffer, bpage);
1240
1241         cpu_buffer->reader_page = bpage;
1242         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1243         if (!page)
1244                 goto fail_free_reader;
1245         bpage->page = page_address(page);
1246         rb_init_page(bpage->page);
1247
1248         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1249         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1250
1251         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1252         if (ret < 0)
1253                 goto fail_free_reader;
1254
1255         cpu_buffer->head_page
1256                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1257         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1258
1259         rb_head_page_activate(cpu_buffer);
1260
1261         return cpu_buffer;
1262
1263  fail_free_reader:
1264         free_buffer_page(cpu_buffer->reader_page);
1265
1266  fail_free_buffer:
1267         kfree(cpu_buffer);
1268         return NULL;
1269 }
1270
1271 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1272 {
1273         struct list_head *head = cpu_buffer->pages;
1274         struct buffer_page *bpage, *tmp;
1275
1276         free_buffer_page(cpu_buffer->reader_page);
1277
1278         rb_head_page_deactivate(cpu_buffer);
1279
1280         if (head) {
1281                 list_for_each_entry_safe(bpage, tmp, head, list) {
1282                         list_del_init(&bpage->list);
1283                         free_buffer_page(bpage);
1284                 }
1285                 bpage = list_entry(head, struct buffer_page, list);
1286                 free_buffer_page(bpage);
1287         }
1288
1289         kfree(cpu_buffer);
1290 }
1291
1292 #ifdef CONFIG_HOTPLUG_CPU
1293 static int rb_cpu_notify(struct notifier_block *self,
1294                          unsigned long action, void *hcpu);
1295 #endif
1296
1297 /**
1298  * __ring_buffer_alloc - allocate a new ring_buffer
1299  * @size: the size in bytes per cpu that is needed.
1300  * @flags: attributes to set for the ring buffer.
1301  *
1302  * Currently the only flag that is available is the RB_FL_OVERWRITE
1303  * flag. This flag means that the buffer will overwrite old data
1304  * when the buffer wraps. If this flag is not set, the buffer will
1305  * drop data when the tail hits the head.
1306  */
1307 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1308                                         struct lock_class_key *key)
1309 {
1310         struct ring_buffer *buffer;
1311         long nr_pages;
1312         int bsize;
1313         int cpu;
1314
1315         /* keep it in its own cache line */
1316         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1317                          GFP_KERNEL);
1318         if (!buffer)
1319                 return NULL;
1320
1321         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1322                 goto fail_free_buffer;
1323
1324         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1325         buffer->flags = flags;
1326         buffer->clock = trace_clock_local;
1327         buffer->reader_lock_key = key;
1328
1329         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1330         init_waitqueue_head(&buffer->irq_work.waiters);
1331
1332         /* need at least two pages */
1333         if (nr_pages < 2)
1334                 nr_pages = 2;
1335
1336         /*
1337          * In case of non-hotplug cpu, if the ring-buffer is allocated
1338          * in early initcall, it will not be notified of secondary cpus.
1339          * In that off case, we need to allocate for all possible cpus.
1340          */
1341 #ifdef CONFIG_HOTPLUG_CPU
1342         cpu_notifier_register_begin();
1343         cpumask_copy(buffer->cpumask, cpu_online_mask);
1344 #else
1345         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1346 #endif
1347         buffer->cpus = nr_cpu_ids;
1348
1349         bsize = sizeof(void *) * nr_cpu_ids;
1350         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1351                                   GFP_KERNEL);
1352         if (!buffer->buffers)
1353                 goto fail_free_cpumask;
1354
1355         for_each_buffer_cpu(buffer, cpu) {
1356                 buffer->buffers[cpu] =
1357                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1358                 if (!buffer->buffers[cpu])
1359                         goto fail_free_buffers;
1360         }
1361
1362 #ifdef CONFIG_HOTPLUG_CPU
1363         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1364         buffer->cpu_notify.priority = 0;
1365         __register_cpu_notifier(&buffer->cpu_notify);
1366         cpu_notifier_register_done();
1367 #endif
1368
1369         mutex_init(&buffer->mutex);
1370
1371         return buffer;
1372
1373  fail_free_buffers:
1374         for_each_buffer_cpu(buffer, cpu) {
1375                 if (buffer->buffers[cpu])
1376                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1377         }
1378         kfree(buffer->buffers);
1379
1380  fail_free_cpumask:
1381         free_cpumask_var(buffer->cpumask);
1382 #ifdef CONFIG_HOTPLUG_CPU
1383         cpu_notifier_register_done();
1384 #endif
1385
1386  fail_free_buffer:
1387         kfree(buffer);
1388         return NULL;
1389 }
1390 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1391
1392 /**
1393  * ring_buffer_free - free a ring buffer.
1394  * @buffer: the buffer to free.
1395  */
1396 void
1397 ring_buffer_free(struct ring_buffer *buffer)
1398 {
1399         int cpu;
1400
1401 #ifdef CONFIG_HOTPLUG_CPU
1402         cpu_notifier_register_begin();
1403         __unregister_cpu_notifier(&buffer->cpu_notify);
1404 #endif
1405
1406         for_each_buffer_cpu(buffer, cpu)
1407                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1408
1409 #ifdef CONFIG_HOTPLUG_CPU
1410         cpu_notifier_register_done();
1411 #endif
1412
1413         kfree(buffer->buffers);
1414         free_cpumask_var(buffer->cpumask);
1415
1416         kfree(buffer);
1417 }
1418 EXPORT_SYMBOL_GPL(ring_buffer_free);
1419
1420 void ring_buffer_set_clock(struct ring_buffer *buffer,
1421                            u64 (*clock)(void))
1422 {
1423         buffer->clock = clock;
1424 }
1425
1426 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1427
1428 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1429 {
1430         return local_read(&bpage->entries) & RB_WRITE_MASK;
1431 }
1432
1433 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1434 {
1435         return local_read(&bpage->write) & RB_WRITE_MASK;
1436 }
1437
1438 static int
1439 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1440 {
1441         struct list_head *tail_page, *to_remove, *next_page;
1442         struct buffer_page *to_remove_page, *tmp_iter_page;
1443         struct buffer_page *last_page, *first_page;
1444         unsigned long nr_removed;
1445         unsigned long head_bit;
1446         int page_entries;
1447
1448         head_bit = 0;
1449
1450         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1451         atomic_inc(&cpu_buffer->record_disabled);
1452         /*
1453          * We don't race with the readers since we have acquired the reader
1454          * lock. We also don't race with writers after disabling recording.
1455          * This makes it easy to figure out the first and the last page to be
1456          * removed from the list. We unlink all the pages in between including
1457          * the first and last pages. This is done in a busy loop so that we
1458          * lose the least number of traces.
1459          * The pages are freed after we restart recording and unlock readers.
1460          */
1461         tail_page = &cpu_buffer->tail_page->list;
1462
1463         /*
1464          * tail page might be on reader page, we remove the next page
1465          * from the ring buffer
1466          */
1467         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1468                 tail_page = rb_list_head(tail_page->next);
1469         to_remove = tail_page;
1470
1471         /* start of pages to remove */
1472         first_page = list_entry(rb_list_head(to_remove->next),
1473                                 struct buffer_page, list);
1474
1475         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1476                 to_remove = rb_list_head(to_remove)->next;
1477                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1478         }
1479
1480         next_page = rb_list_head(to_remove)->next;
1481
1482         /*
1483          * Now we remove all pages between tail_page and next_page.
1484          * Make sure that we have head_bit value preserved for the
1485          * next page
1486          */
1487         tail_page->next = (struct list_head *)((unsigned long)next_page |
1488                                                 head_bit);
1489         next_page = rb_list_head(next_page);
1490         next_page->prev = tail_page;
1491
1492         /* make sure pages points to a valid page in the ring buffer */
1493         cpu_buffer->pages = next_page;
1494
1495         /* update head page */
1496         if (head_bit)
1497                 cpu_buffer->head_page = list_entry(next_page,
1498                                                 struct buffer_page, list);
1499
1500         /*
1501          * change read pointer to make sure any read iterators reset
1502          * themselves
1503          */
1504         cpu_buffer->read = 0;
1505
1506         /* pages are removed, resume tracing and then free the pages */
1507         atomic_dec(&cpu_buffer->record_disabled);
1508         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1509
1510         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1511
1512         /* last buffer page to remove */
1513         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1514                                 list);
1515         tmp_iter_page = first_page;
1516
1517         do {
1518                 cond_resched();
1519
1520                 to_remove_page = tmp_iter_page;
1521                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1522
1523                 /* update the counters */
1524                 page_entries = rb_page_entries(to_remove_page);
1525                 if (page_entries) {
1526                         /*
1527                          * If something was added to this page, it was full
1528                          * since it is not the tail page. So we deduct the
1529                          * bytes consumed in ring buffer from here.
1530                          * Increment overrun to account for the lost events.
1531                          */
1532                         local_add(page_entries, &cpu_buffer->overrun);
1533                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1534                 }
1535
1536                 /*
1537                  * We have already removed references to this list item, just
1538                  * free up the buffer_page and its page
1539                  */
1540                 free_buffer_page(to_remove_page);
1541                 nr_removed--;
1542
1543         } while (to_remove_page != last_page);
1544
1545         RB_WARN_ON(cpu_buffer, nr_removed);
1546
1547         return nr_removed == 0;
1548 }
1549
1550 static int
1551 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1552 {
1553         struct list_head *pages = &cpu_buffer->new_pages;
1554         int retries, success;
1555
1556         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1557         /*
1558          * We are holding the reader lock, so the reader page won't be swapped
1559          * in the ring buffer. Now we are racing with the writer trying to
1560          * move head page and the tail page.
1561          * We are going to adapt the reader page update process where:
1562          * 1. We first splice the start and end of list of new pages between
1563          *    the head page and its previous page.
1564          * 2. We cmpxchg the prev_page->next to point from head page to the
1565          *    start of new pages list.
1566          * 3. Finally, we update the head->prev to the end of new list.
1567          *
1568          * We will try this process 10 times, to make sure that we don't keep
1569          * spinning.
1570          */
1571         retries = 10;
1572         success = 0;
1573         while (retries--) {
1574                 struct list_head *head_page, *prev_page, *r;
1575                 struct list_head *last_page, *first_page;
1576                 struct list_head *head_page_with_bit;
1577
1578                 head_page = &rb_set_head_page(cpu_buffer)->list;
1579                 if (!head_page)
1580                         break;
1581                 prev_page = head_page->prev;
1582
1583                 first_page = pages->next;
1584                 last_page  = pages->prev;
1585
1586                 head_page_with_bit = (struct list_head *)
1587                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1588
1589                 last_page->next = head_page_with_bit;
1590                 first_page->prev = prev_page;
1591
1592                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1593
1594                 if (r == head_page_with_bit) {
1595                         /*
1596                          * yay, we replaced the page pointer to our new list,
1597                          * now, we just have to update to head page's prev
1598                          * pointer to point to end of list
1599                          */
1600                         head_page->prev = last_page;
1601                         success = 1;
1602                         break;
1603                 }
1604         }
1605
1606         if (success)
1607                 INIT_LIST_HEAD(pages);
1608         /*
1609          * If we weren't successful in adding in new pages, warn and stop
1610          * tracing
1611          */
1612         RB_WARN_ON(cpu_buffer, !success);
1613         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1614
1615         /* free pages if they weren't inserted */
1616         if (!success) {
1617                 struct buffer_page *bpage, *tmp;
1618                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1619                                          list) {
1620                         list_del_init(&bpage->list);
1621                         free_buffer_page(bpage);
1622                 }
1623         }
1624         return success;
1625 }
1626
1627 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1628 {
1629         int success;
1630
1631         if (cpu_buffer->nr_pages_to_update > 0)
1632                 success = rb_insert_pages(cpu_buffer);
1633         else
1634                 success = rb_remove_pages(cpu_buffer,
1635                                         -cpu_buffer->nr_pages_to_update);
1636
1637         if (success)
1638                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1639 }
1640
1641 static void update_pages_handler(struct work_struct *work)
1642 {
1643         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1644                         struct ring_buffer_per_cpu, update_pages_work);
1645         rb_update_pages(cpu_buffer);
1646         complete(&cpu_buffer->update_done);
1647 }
1648
1649 /**
1650  * ring_buffer_resize - resize the ring buffer
1651  * @buffer: the buffer to resize.
1652  * @size: the new size.
1653  * @cpu_id: the cpu buffer to resize
1654  *
1655  * Minimum size is 2 * BUF_PAGE_SIZE.
1656  *
1657  * Returns 0 on success and < 0 on failure.
1658  */
1659 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1660                         int cpu_id)
1661 {
1662         struct ring_buffer_per_cpu *cpu_buffer;
1663         unsigned long nr_pages;
1664         int cpu, err;
1665
1666         /*
1667          * Always succeed at resizing a non-existent buffer:
1668          */
1669         if (!buffer)
1670                 return 0;
1671
1672         /* Make sure the requested buffer exists */
1673         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1674             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1675                 return 0;
1676
1677         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1678
1679         /* we need a minimum of two pages */
1680         if (nr_pages < 2)
1681                 nr_pages = 2;
1682
1683         size = nr_pages * BUF_PAGE_SIZE;
1684
1685         /*
1686          * Don't succeed if resizing is disabled, as a reader might be
1687          * manipulating the ring buffer and is expecting a sane state while
1688          * this is true.
1689          */
1690         if (atomic_read(&buffer->resize_disabled))
1691                 return -EBUSY;
1692
1693         /* prevent another thread from changing buffer sizes */
1694         mutex_lock(&buffer->mutex);
1695
1696         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1697                 /* calculate the pages to update */
1698                 for_each_buffer_cpu(buffer, cpu) {
1699                         cpu_buffer = buffer->buffers[cpu];
1700
1701                         cpu_buffer->nr_pages_to_update = nr_pages -
1702                                                         cpu_buffer->nr_pages;
1703                         /*
1704                          * nothing more to do for removing pages or no update
1705                          */
1706                         if (cpu_buffer->nr_pages_to_update <= 0)
1707                                 continue;
1708                         /*
1709                          * to add pages, make sure all new pages can be
1710                          * allocated without receiving ENOMEM
1711                          */
1712                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1713                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1714                                                 &cpu_buffer->new_pages, cpu)) {
1715                                 /* not enough memory for new pages */
1716                                 err = -ENOMEM;
1717                                 goto out_err;
1718                         }
1719                 }
1720
1721                 get_online_cpus();
1722                 /*
1723                  * Fire off all the required work handlers
1724                  * We can't schedule on offline CPUs, but it's not necessary
1725                  * since we can change their buffer sizes without any race.
1726                  */
1727                 for_each_buffer_cpu(buffer, cpu) {
1728                         cpu_buffer = buffer->buffers[cpu];
1729                         if (!cpu_buffer->nr_pages_to_update)
1730                                 continue;
1731
1732                         /* Can't run something on an offline CPU. */
1733                         if (!cpu_online(cpu)) {
1734                                 rb_update_pages(cpu_buffer);
1735                                 cpu_buffer->nr_pages_to_update = 0;
1736                         } else {
1737                                 schedule_work_on(cpu,
1738                                                 &cpu_buffer->update_pages_work);
1739                         }
1740                 }
1741
1742                 /* wait for all the updates to complete */
1743                 for_each_buffer_cpu(buffer, cpu) {
1744                         cpu_buffer = buffer->buffers[cpu];
1745                         if (!cpu_buffer->nr_pages_to_update)
1746                                 continue;
1747
1748                         if (cpu_online(cpu))
1749                                 wait_for_completion(&cpu_buffer->update_done);
1750                         cpu_buffer->nr_pages_to_update = 0;
1751                 }
1752
1753                 put_online_cpus();
1754         } else {
1755                 /* Make sure this CPU has been intitialized */
1756                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1757                         goto out;
1758
1759                 cpu_buffer = buffer->buffers[cpu_id];
1760
1761                 if (nr_pages == cpu_buffer->nr_pages)
1762                         goto out;
1763
1764                 cpu_buffer->nr_pages_to_update = nr_pages -
1765                                                 cpu_buffer->nr_pages;
1766
1767                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1768                 if (cpu_buffer->nr_pages_to_update > 0 &&
1769                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1770                                             &cpu_buffer->new_pages, cpu_id)) {
1771                         err = -ENOMEM;
1772                         goto out_err;
1773                 }
1774
1775                 get_online_cpus();
1776
1777                 /* Can't run something on an offline CPU. */
1778                 if (!cpu_online(cpu_id))
1779                         rb_update_pages(cpu_buffer);
1780                 else {
1781                         schedule_work_on(cpu_id,
1782                                          &cpu_buffer->update_pages_work);
1783                         wait_for_completion(&cpu_buffer->update_done);
1784                 }
1785
1786                 cpu_buffer->nr_pages_to_update = 0;
1787                 put_online_cpus();
1788         }
1789
1790  out:
1791         /*
1792          * The ring buffer resize can happen with the ring buffer
1793          * enabled, so that the update disturbs the tracing as little
1794          * as possible. But if the buffer is disabled, we do not need
1795          * to worry about that, and we can take the time to verify
1796          * that the buffer is not corrupt.
1797          */
1798         if (atomic_read(&buffer->record_disabled)) {
1799                 atomic_inc(&buffer->record_disabled);
1800                 /*
1801                  * Even though the buffer was disabled, we must make sure
1802                  * that it is truly disabled before calling rb_check_pages.
1803                  * There could have been a race between checking
1804                  * record_disable and incrementing it.
1805                  */
1806                 synchronize_sched();
1807                 for_each_buffer_cpu(buffer, cpu) {
1808                         cpu_buffer = buffer->buffers[cpu];
1809                         rb_check_pages(cpu_buffer);
1810                 }
1811                 atomic_dec(&buffer->record_disabled);
1812         }
1813
1814         mutex_unlock(&buffer->mutex);
1815         return 0;
1816
1817  out_err:
1818         for_each_buffer_cpu(buffer, cpu) {
1819                 struct buffer_page *bpage, *tmp;
1820
1821                 cpu_buffer = buffer->buffers[cpu];
1822                 cpu_buffer->nr_pages_to_update = 0;
1823
1824                 if (list_empty(&cpu_buffer->new_pages))
1825                         continue;
1826
1827                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1828                                         list) {
1829                         list_del_init(&bpage->list);
1830                         free_buffer_page(bpage);
1831                 }
1832         }
1833         mutex_unlock(&buffer->mutex);
1834         return err;
1835 }
1836 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1837
1838 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1839 {
1840         mutex_lock(&buffer->mutex);
1841         if (val)
1842                 buffer->flags |= RB_FL_OVERWRITE;
1843         else
1844                 buffer->flags &= ~RB_FL_OVERWRITE;
1845         mutex_unlock(&buffer->mutex);
1846 }
1847 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1848
1849 static inline void *
1850 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1851 {
1852         return bpage->data + index;
1853 }
1854
1855 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1856 {
1857         return bpage->page->data + index;
1858 }
1859
1860 static inline struct ring_buffer_event *
1861 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1862 {
1863         return __rb_page_index(cpu_buffer->reader_page,
1864                                cpu_buffer->reader_page->read);
1865 }
1866
1867 static inline struct ring_buffer_event *
1868 rb_iter_head_event(struct ring_buffer_iter *iter)
1869 {
1870         return __rb_page_index(iter->head_page, iter->head);
1871 }
1872
1873 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1874 {
1875         return local_read(&bpage->page->commit);
1876 }
1877
1878 /* Size is determined by what has been committed */
1879 static inline unsigned rb_page_size(struct buffer_page *bpage)
1880 {
1881         return rb_page_commit(bpage);
1882 }
1883
1884 static inline unsigned
1885 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1886 {
1887         return rb_page_commit(cpu_buffer->commit_page);
1888 }
1889
1890 static inline unsigned
1891 rb_event_index(struct ring_buffer_event *event)
1892 {
1893         unsigned long addr = (unsigned long)event;
1894
1895         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1896 }
1897
1898 static void rb_inc_iter(struct ring_buffer_iter *iter)
1899 {
1900         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1901
1902         /*
1903          * The iterator could be on the reader page (it starts there).
1904          * But the head could have moved, since the reader was
1905          * found. Check for this case and assign the iterator
1906          * to the head page instead of next.
1907          */
1908         if (iter->head_page == cpu_buffer->reader_page)
1909                 iter->head_page = rb_set_head_page(cpu_buffer);
1910         else
1911                 rb_inc_page(cpu_buffer, &iter->head_page);
1912
1913         iter->read_stamp = iter->head_page->page->time_stamp;
1914         iter->head = 0;
1915 }
1916
1917 /*
1918  * rb_handle_head_page - writer hit the head page
1919  *
1920  * Returns: +1 to retry page
1921  *           0 to continue
1922  *          -1 on error
1923  */
1924 static int
1925 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1926                     struct buffer_page *tail_page,
1927                     struct buffer_page *next_page)
1928 {
1929         struct buffer_page *new_head;
1930         int entries;
1931         int type;
1932         int ret;
1933
1934         entries = rb_page_entries(next_page);
1935
1936         /*
1937          * The hard part is here. We need to move the head
1938          * forward, and protect against both readers on
1939          * other CPUs and writers coming in via interrupts.
1940          */
1941         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1942                                        RB_PAGE_HEAD);
1943
1944         /*
1945          * type can be one of four:
1946          *  NORMAL - an interrupt already moved it for us
1947          *  HEAD   - we are the first to get here.
1948          *  UPDATE - we are the interrupt interrupting
1949          *           a current move.
1950          *  MOVED  - a reader on another CPU moved the next
1951          *           pointer to its reader page. Give up
1952          *           and try again.
1953          */
1954
1955         switch (type) {
1956         case RB_PAGE_HEAD:
1957                 /*
1958                  * We changed the head to UPDATE, thus
1959                  * it is our responsibility to update
1960                  * the counters.
1961                  */
1962                 local_add(entries, &cpu_buffer->overrun);
1963                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1964
1965                 /*
1966                  * The entries will be zeroed out when we move the
1967                  * tail page.
1968                  */
1969
1970                 /* still more to do */
1971                 break;
1972
1973         case RB_PAGE_UPDATE:
1974                 /*
1975                  * This is an interrupt that interrupt the
1976                  * previous update. Still more to do.
1977                  */
1978                 break;
1979         case RB_PAGE_NORMAL:
1980                 /*
1981                  * An interrupt came in before the update
1982                  * and processed this for us.
1983                  * Nothing left to do.
1984                  */
1985                 return 1;
1986         case RB_PAGE_MOVED:
1987                 /*
1988                  * The reader is on another CPU and just did
1989                  * a swap with our next_page.
1990                  * Try again.
1991                  */
1992                 return 1;
1993         default:
1994                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1995                 return -1;
1996         }
1997
1998         /*
1999          * Now that we are here, the old head pointer is
2000          * set to UPDATE. This will keep the reader from
2001          * swapping the head page with the reader page.
2002          * The reader (on another CPU) will spin till
2003          * we are finished.
2004          *
2005          * We just need to protect against interrupts
2006          * doing the job. We will set the next pointer
2007          * to HEAD. After that, we set the old pointer
2008          * to NORMAL, but only if it was HEAD before.
2009          * otherwise we are an interrupt, and only
2010          * want the outer most commit to reset it.
2011          */
2012         new_head = next_page;
2013         rb_inc_page(cpu_buffer, &new_head);
2014
2015         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2016                                     RB_PAGE_NORMAL);
2017
2018         /*
2019          * Valid returns are:
2020          *  HEAD   - an interrupt came in and already set it.
2021          *  NORMAL - One of two things:
2022          *            1) We really set it.
2023          *            2) A bunch of interrupts came in and moved
2024          *               the page forward again.
2025          */
2026         switch (ret) {
2027         case RB_PAGE_HEAD:
2028         case RB_PAGE_NORMAL:
2029                 /* OK */
2030                 break;
2031         default:
2032                 RB_WARN_ON(cpu_buffer, 1);
2033                 return -1;
2034         }
2035
2036         /*
2037          * It is possible that an interrupt came in,
2038          * set the head up, then more interrupts came in
2039          * and moved it again. When we get back here,
2040          * the page would have been set to NORMAL but we
2041          * just set it back to HEAD.
2042          *
2043          * How do you detect this? Well, if that happened
2044          * the tail page would have moved.
2045          */
2046         if (ret == RB_PAGE_NORMAL) {
2047                 /*
2048                  * If the tail had moved passed next, then we need
2049                  * to reset the pointer.
2050                  */
2051                 if (cpu_buffer->tail_page != tail_page &&
2052                     cpu_buffer->tail_page != next_page)
2053                         rb_head_page_set_normal(cpu_buffer, new_head,
2054                                                 next_page,
2055                                                 RB_PAGE_HEAD);
2056         }
2057
2058         /*
2059          * If this was the outer most commit (the one that
2060          * changed the original pointer from HEAD to UPDATE),
2061          * then it is up to us to reset it to NORMAL.
2062          */
2063         if (type == RB_PAGE_HEAD) {
2064                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2065                                               tail_page,
2066                                               RB_PAGE_UPDATE);
2067                 if (RB_WARN_ON(cpu_buffer,
2068                                ret != RB_PAGE_UPDATE))
2069                         return -1;
2070         }
2071
2072         return 0;
2073 }
2074
2075 static inline void
2076 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2077               unsigned long tail, struct rb_event_info *info)
2078 {
2079         struct buffer_page *tail_page = info->tail_page;
2080         struct ring_buffer_event *event;
2081         unsigned long length = info->length;
2082
2083         /*
2084          * Only the event that crossed the page boundary
2085          * must fill the old tail_page with padding.
2086          */
2087         if (tail >= BUF_PAGE_SIZE) {
2088                 /*
2089                  * If the page was filled, then we still need
2090                  * to update the real_end. Reset it to zero
2091                  * and the reader will ignore it.
2092                  */
2093                 if (tail == BUF_PAGE_SIZE)
2094                         tail_page->real_end = 0;
2095
2096                 local_sub(length, &tail_page->write);
2097                 return;
2098         }
2099
2100         event = __rb_page_index(tail_page, tail);
2101         kmemcheck_annotate_bitfield(event, bitfield);
2102
2103         /* account for padding bytes */
2104         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2105
2106         /*
2107          * Save the original length to the meta data.
2108          * This will be used by the reader to add lost event
2109          * counter.
2110          */
2111         tail_page->real_end = tail;
2112
2113         /*
2114          * If this event is bigger than the minimum size, then
2115          * we need to be careful that we don't subtract the
2116          * write counter enough to allow another writer to slip
2117          * in on this page.
2118          * We put in a discarded commit instead, to make sure
2119          * that this space is not used again.
2120          *
2121          * If we are less than the minimum size, we don't need to
2122          * worry about it.
2123          */
2124         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2125                 /* No room for any events */
2126
2127                 /* Mark the rest of the page with padding */
2128                 rb_event_set_padding(event);
2129
2130                 /* Set the write back to the previous setting */
2131                 local_sub(length, &tail_page->write);
2132                 return;
2133         }
2134
2135         /* Put in a discarded event */
2136         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2137         event->type_len = RINGBUF_TYPE_PADDING;
2138         /* time delta must be non zero */
2139         event->time_delta = 1;
2140
2141         /* Set write to end of buffer */
2142         length = (tail + length) - BUF_PAGE_SIZE;
2143         local_sub(length, &tail_page->write);
2144 }
2145
2146 /*
2147  * This is the slow path, force gcc not to inline it.
2148  */
2149 static noinline struct ring_buffer_event *
2150 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2151              unsigned long tail, struct rb_event_info *info)
2152 {
2153         struct buffer_page *tail_page = info->tail_page;
2154         struct buffer_page *commit_page = cpu_buffer->commit_page;
2155         struct ring_buffer *buffer = cpu_buffer->buffer;
2156         struct buffer_page *next_page;
2157         int ret;
2158         u64 ts;
2159
2160         next_page = tail_page;
2161
2162         rb_inc_page(cpu_buffer, &next_page);
2163
2164         /*
2165          * If for some reason, we had an interrupt storm that made
2166          * it all the way around the buffer, bail, and warn
2167          * about it.
2168          */
2169         if (unlikely(next_page == commit_page)) {
2170                 local_inc(&cpu_buffer->commit_overrun);
2171                 goto out_reset;
2172         }
2173
2174         /*
2175          * This is where the fun begins!
2176          *
2177          * We are fighting against races between a reader that
2178          * could be on another CPU trying to swap its reader
2179          * page with the buffer head.
2180          *
2181          * We are also fighting against interrupts coming in and
2182          * moving the head or tail on us as well.
2183          *
2184          * If the next page is the head page then we have filled
2185          * the buffer, unless the commit page is still on the
2186          * reader page.
2187          */
2188         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2189
2190                 /*
2191                  * If the commit is not on the reader page, then
2192                  * move the header page.
2193                  */
2194                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2195                         /*
2196                          * If we are not in overwrite mode,
2197                          * this is easy, just stop here.
2198                          */
2199                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2200                                 local_inc(&cpu_buffer->dropped_events);
2201                                 goto out_reset;
2202                         }
2203
2204                         ret = rb_handle_head_page(cpu_buffer,
2205                                                   tail_page,
2206                                                   next_page);
2207                         if (ret < 0)
2208                                 goto out_reset;
2209                         if (ret)
2210                                 goto out_again;
2211                 } else {
2212                         /*
2213                          * We need to be careful here too. The
2214                          * commit page could still be on the reader
2215                          * page. We could have a small buffer, and
2216                          * have filled up the buffer with events
2217                          * from interrupts and such, and wrapped.
2218                          *
2219                          * Note, if the tail page is also the on the
2220                          * reader_page, we let it move out.
2221                          */
2222                         if (unlikely((cpu_buffer->commit_page !=
2223                                       cpu_buffer->tail_page) &&
2224                                      (cpu_buffer->commit_page ==
2225                                       cpu_buffer->reader_page))) {
2226                                 local_inc(&cpu_buffer->commit_overrun);
2227                                 goto out_reset;
2228                         }
2229                 }
2230         }
2231
2232         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2233         if (ret) {
2234                 /*
2235                  * Nested commits always have zero deltas, so
2236                  * just reread the time stamp
2237                  */
2238                 ts = rb_time_stamp(buffer);
2239                 next_page->page->time_stamp = ts;
2240         }
2241
2242  out_again:
2243
2244         rb_reset_tail(cpu_buffer, tail, info);
2245
2246         /* fail and let the caller try again */
2247         return ERR_PTR(-EAGAIN);
2248
2249  out_reset:
2250         /* reset write */
2251         rb_reset_tail(cpu_buffer, tail, info);
2252
2253         return NULL;
2254 }
2255
2256 /* Slow path, do not inline */
2257 static noinline struct ring_buffer_event *
2258 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2259 {
2260         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2261
2262         /* Not the first event on the page? */
2263         if (rb_event_index(event)) {
2264                 event->time_delta = delta & TS_MASK;
2265                 event->array[0] = delta >> TS_SHIFT;
2266         } else {
2267                 /* nope, just zero it */
2268                 event->time_delta = 0;
2269                 event->array[0] = 0;
2270         }
2271
2272         return skip_time_extend(event);
2273 }
2274
2275 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2276                                      struct ring_buffer_event *event);
2277
2278 /**
2279  * rb_update_event - update event type and data
2280  * @event: the event to update
2281  * @type: the type of event
2282  * @length: the size of the event field in the ring buffer
2283  *
2284  * Update the type and data fields of the event. The length
2285  * is the actual size that is written to the ring buffer,
2286  * and with this, we can determine what to place into the
2287  * data field.
2288  */
2289 static void
2290 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2291                 struct ring_buffer_event *event,
2292                 struct rb_event_info *info)
2293 {
2294         unsigned length = info->length;
2295         u64 delta = info->delta;
2296
2297         /* Only a commit updates the timestamp */
2298         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2299                 delta = 0;
2300
2301         /*
2302          * If we need to add a timestamp, then we
2303          * add it to the start of the resevered space.
2304          */
2305         if (unlikely(info->add_timestamp)) {
2306                 event = rb_add_time_stamp(event, delta);
2307                 length -= RB_LEN_TIME_EXTEND;
2308                 delta = 0;
2309         }
2310
2311         event->time_delta = delta;
2312         length -= RB_EVNT_HDR_SIZE;
2313         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2314                 event->type_len = 0;
2315                 event->array[0] = length;
2316         } else
2317                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2318 }
2319
2320 static unsigned rb_calculate_event_length(unsigned length)
2321 {
2322         struct ring_buffer_event event; /* Used only for sizeof array */
2323
2324         /* zero length can cause confusions */
2325         if (!length)
2326                 length++;
2327
2328         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2329                 length += sizeof(event.array[0]);
2330
2331         length += RB_EVNT_HDR_SIZE;
2332         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2333
2334         /*
2335          * In case the time delta is larger than the 27 bits for it
2336          * in the header, we need to add a timestamp. If another
2337          * event comes in when trying to discard this one to increase
2338          * the length, then the timestamp will be added in the allocated
2339          * space of this event. If length is bigger than the size needed
2340          * for the TIME_EXTEND, then padding has to be used. The events
2341          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2342          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2343          * As length is a multiple of 4, we only need to worry if it
2344          * is 12 (RB_LEN_TIME_EXTEND + 4).
2345          */
2346         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2347                 length += RB_ALIGNMENT;
2348
2349         return length;
2350 }
2351
2352 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2353 static inline bool sched_clock_stable(void)
2354 {
2355         return true;
2356 }
2357 #endif
2358
2359 static inline int
2360 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2361                   struct ring_buffer_event *event)
2362 {
2363         unsigned long new_index, old_index;
2364         struct buffer_page *bpage;
2365         unsigned long index;
2366         unsigned long addr;
2367
2368         new_index = rb_event_index(event);
2369         old_index = new_index + rb_event_ts_length(event);
2370         addr = (unsigned long)event;
2371         addr &= PAGE_MASK;
2372
2373         bpage = cpu_buffer->tail_page;
2374
2375         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2376                 unsigned long write_mask =
2377                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2378                 unsigned long event_length = rb_event_length(event);
2379                 /*
2380                  * This is on the tail page. It is possible that
2381                  * a write could come in and move the tail page
2382                  * and write to the next page. That is fine
2383                  * because we just shorten what is on this page.
2384                  */
2385                 old_index += write_mask;
2386                 new_index += write_mask;
2387                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2388                 if (index == old_index) {
2389                         /* update counters */
2390                         local_sub(event_length, &cpu_buffer->entries_bytes);
2391                         return 1;
2392                 }
2393         }
2394
2395         /* could not discard */
2396         return 0;
2397 }
2398
2399 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2400 {
2401         local_inc(&cpu_buffer->committing);
2402         local_inc(&cpu_buffer->commits);
2403 }
2404
2405 static void
2406 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2407 {
2408         unsigned long max_count;
2409
2410         /*
2411          * We only race with interrupts and NMIs on this CPU.
2412          * If we own the commit event, then we can commit
2413          * all others that interrupted us, since the interruptions
2414          * are in stack format (they finish before they come
2415          * back to us). This allows us to do a simple loop to
2416          * assign the commit to the tail.
2417          */
2418  again:
2419         max_count = cpu_buffer->nr_pages * 100;
2420
2421         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
2422                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2423                         return;
2424                 if (RB_WARN_ON(cpu_buffer,
2425                                rb_is_reader_page(cpu_buffer->tail_page)))
2426                         return;
2427                 local_set(&cpu_buffer->commit_page->page->commit,
2428                           rb_page_write(cpu_buffer->commit_page));
2429                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2430                 cpu_buffer->write_stamp =
2431                         cpu_buffer->commit_page->page->time_stamp;
2432                 /* add barrier to keep gcc from optimizing too much */
2433                 barrier();
2434         }
2435         while (rb_commit_index(cpu_buffer) !=
2436                rb_page_write(cpu_buffer->commit_page)) {
2437
2438                 local_set(&cpu_buffer->commit_page->page->commit,
2439                           rb_page_write(cpu_buffer->commit_page));
2440                 RB_WARN_ON(cpu_buffer,
2441                            local_read(&cpu_buffer->commit_page->page->commit) &
2442                            ~RB_WRITE_MASK);
2443                 barrier();
2444         }
2445
2446         /* again, keep gcc from optimizing */
2447         barrier();
2448
2449         /*
2450          * If an interrupt came in just after the first while loop
2451          * and pushed the tail page forward, we will be left with
2452          * a dangling commit that will never go forward.
2453          */
2454         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
2455                 goto again;
2456 }
2457
2458 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2459 {
2460         unsigned long commits;
2461
2462         if (RB_WARN_ON(cpu_buffer,
2463                        !local_read(&cpu_buffer->committing)))
2464                 return;
2465
2466  again:
2467         commits = local_read(&cpu_buffer->commits);
2468         /* synchronize with interrupts */
2469         barrier();
2470         if (local_read(&cpu_buffer->committing) == 1)
2471                 rb_set_commit_to_write(cpu_buffer);
2472
2473         local_dec(&cpu_buffer->committing);
2474
2475         /* synchronize with interrupts */
2476         barrier();
2477
2478         /*
2479          * Need to account for interrupts coming in between the
2480          * updating of the commit page and the clearing of the
2481          * committing counter.
2482          */
2483         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2484             !local_read(&cpu_buffer->committing)) {
2485                 local_inc(&cpu_buffer->committing);
2486                 goto again;
2487         }
2488 }
2489
2490 static inline void rb_event_discard(struct ring_buffer_event *event)
2491 {
2492         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2493                 event = skip_time_extend(event);
2494
2495         /* array[0] holds the actual length for the discarded event */
2496         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2497         event->type_len = RINGBUF_TYPE_PADDING;
2498         /* time delta must be non zero */
2499         if (!event->time_delta)
2500                 event->time_delta = 1;
2501 }
2502
2503 static inline bool
2504 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2505                    struct ring_buffer_event *event)
2506 {
2507         unsigned long addr = (unsigned long)event;
2508         unsigned long index;
2509
2510         index = rb_event_index(event);
2511         addr &= PAGE_MASK;
2512
2513         return cpu_buffer->commit_page->page == (void *)addr &&
2514                 rb_commit_index(cpu_buffer) == index;
2515 }
2516
2517 static void
2518 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2519                       struct ring_buffer_event *event)
2520 {
2521         u64 delta;
2522
2523         /*
2524          * The event first in the commit queue updates the
2525          * time stamp.
2526          */
2527         if (rb_event_is_commit(cpu_buffer, event)) {
2528                 /*
2529                  * A commit event that is first on a page
2530                  * updates the write timestamp with the page stamp
2531                  */
2532                 if (!rb_event_index(event))
2533                         cpu_buffer->write_stamp =
2534                                 cpu_buffer->commit_page->page->time_stamp;
2535                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2536                         delta = event->array[0];
2537                         delta <<= TS_SHIFT;
2538                         delta += event->time_delta;
2539                         cpu_buffer->write_stamp += delta;
2540                 } else
2541                         cpu_buffer->write_stamp += event->time_delta;
2542         }
2543 }
2544
2545 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2546                       struct ring_buffer_event *event)
2547 {
2548         local_inc(&cpu_buffer->entries);
2549         rb_update_write_stamp(cpu_buffer, event);
2550         rb_end_commit(cpu_buffer);
2551 }
2552
2553 static __always_inline void
2554 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2555 {
2556         bool pagebusy;
2557
2558         if (buffer->irq_work.waiters_pending) {
2559                 buffer->irq_work.waiters_pending = false;
2560                 /* irq_work_queue() supplies it's own memory barriers */
2561                 irq_work_queue(&buffer->irq_work.work);
2562         }
2563
2564         if (cpu_buffer->irq_work.waiters_pending) {
2565                 cpu_buffer->irq_work.waiters_pending = false;
2566                 /* irq_work_queue() supplies it's own memory barriers */
2567                 irq_work_queue(&cpu_buffer->irq_work.work);
2568         }
2569
2570         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2571
2572         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2573                 cpu_buffer->irq_work.wakeup_full = true;
2574                 cpu_buffer->irq_work.full_waiters_pending = false;
2575                 /* irq_work_queue() supplies it's own memory barriers */
2576                 irq_work_queue(&cpu_buffer->irq_work.work);
2577         }
2578 }
2579
2580 /*
2581  * The lock and unlock are done within a preempt disable section.
2582  * The current_context per_cpu variable can only be modified
2583  * by the current task between lock and unlock. But it can
2584  * be modified more than once via an interrupt. To pass this
2585  * information from the lock to the unlock without having to
2586  * access the 'in_interrupt()' functions again (which do show
2587  * a bit of overhead in something as critical as function tracing,
2588  * we use a bitmask trick.
2589  *
2590  *  bit 1 =  NMI context
2591  *  bit 2 =  IRQ context
2592  *  bit 3 =  SoftIRQ context
2593  *  bit 4 =  normal context.
2594  *
2595  * This works because this is the order of contexts that can
2596  * preempt other contexts. A SoftIRQ never preempts an IRQ
2597  * context.
2598  *
2599  * When the context is determined, the corresponding bit is
2600  * checked and set (if it was set, then a recursion of that context
2601  * happened).
2602  *
2603  * On unlock, we need to clear this bit. To do so, just subtract
2604  * 1 from the current_context and AND it to itself.
2605  *
2606  * (binary)
2607  *  101 - 1 = 100
2608  *  101 & 100 = 100 (clearing bit zero)
2609  *
2610  *  1010 - 1 = 1001
2611  *  1010 & 1001 = 1000 (clearing bit 1)
2612  *
2613  * The least significant bit can be cleared this way, and it
2614  * just so happens that it is the same bit corresponding to
2615  * the current context.
2616  *
2617  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
2618  * is set when a recursion is detected at the current context, and if
2619  * the TRANSITION bit is already set, it will fail the recursion.
2620  * This is needed because there's a lag between the changing of
2621  * interrupt context and updating the preempt count. In this case,
2622  * a false positive will be found. To handle this, one extra recursion
2623  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
2624  * bit is already set, then it is considered a recursion and the function
2625  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
2626  *
2627  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
2628  * to be cleared. Even if it wasn't the context that set it. That is,
2629  * if an interrupt comes in while NORMAL bit is set and the ring buffer
2630  * is called before preempt_count() is updated, since the check will
2631  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
2632  * NMI then comes in, it will set the NMI bit, but when the NMI code
2633  * does the trace_recursive_unlock() it will clear the TRANSTION bit
2634  * and leave the NMI bit set. But this is fine, because the interrupt
2635  * code that set the TRANSITION bit will then clear the NMI bit when it
2636  * calls trace_recursive_unlock(). If another NMI comes in, it will
2637  * set the TRANSITION bit and continue.
2638  *
2639  * Note: The TRANSITION bit only handles a single transition between context.
2640  */
2641
2642 static __always_inline int
2643 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2644 {
2645         unsigned int val = cpu_buffer->current_context;
2646         int bit;
2647
2648         if (in_interrupt()) {
2649                 if (in_nmi())
2650                         bit = RB_CTX_NMI;
2651                 else if (in_irq())
2652                         bit = RB_CTX_IRQ;
2653                 else
2654                         bit = RB_CTX_SOFTIRQ;
2655         } else
2656                 bit = RB_CTX_NORMAL;
2657
2658         if (unlikely(val & (1 << bit))) {
2659                 /*
2660                  * It is possible that this was called by transitioning
2661                  * between interrupt context, and preempt_count() has not
2662                  * been updated yet. In this case, use the TRANSITION bit.
2663                  */
2664                 bit = RB_CTX_TRANSITION;
2665                 if (val & (1 << bit))
2666                         return 1;
2667         }
2668
2669         val |= (1 << bit);
2670         cpu_buffer->current_context = val;
2671
2672         return 0;
2673 }
2674
2675 static __always_inline void
2676 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2677 {
2678         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2679 }
2680
2681 /**
2682  * ring_buffer_unlock_commit - commit a reserved
2683  * @buffer: The buffer to commit to
2684  * @event: The event pointer to commit.
2685  *
2686  * This commits the data to the ring buffer, and releases any locks held.
2687  *
2688  * Must be paired with ring_buffer_lock_reserve.
2689  */
2690 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2691                               struct ring_buffer_event *event)
2692 {
2693         struct ring_buffer_per_cpu *cpu_buffer;
2694         int cpu = raw_smp_processor_id();
2695
2696         cpu_buffer = buffer->buffers[cpu];
2697
2698         rb_commit(cpu_buffer, event);
2699
2700         rb_wakeups(buffer, cpu_buffer);
2701
2702         trace_recursive_unlock(cpu_buffer);
2703
2704         preempt_enable_notrace();
2705
2706         return 0;
2707 }
2708 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2709
2710 static noinline void
2711 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2712                     struct rb_event_info *info)
2713 {
2714         WARN_ONCE(info->delta > (1ULL << 59),
2715                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2716                   (unsigned long long)info->delta,
2717                   (unsigned long long)info->ts,
2718                   (unsigned long long)cpu_buffer->write_stamp,
2719                   sched_clock_stable() ? "" :
2720                   "If you just came from a suspend/resume,\n"
2721                   "please switch to the trace global clock:\n"
2722                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2723         info->add_timestamp = 1;
2724 }
2725
2726 static struct ring_buffer_event *
2727 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2728                   struct rb_event_info *info)
2729 {
2730         struct ring_buffer_event *event;
2731         struct buffer_page *tail_page;
2732         unsigned long tail, write;
2733
2734         /*
2735          * If the time delta since the last event is too big to
2736          * hold in the time field of the event, then we append a
2737          * TIME EXTEND event ahead of the data event.
2738          */
2739         if (unlikely(info->add_timestamp))
2740                 info->length += RB_LEN_TIME_EXTEND;
2741
2742         tail_page = info->tail_page = cpu_buffer->tail_page;
2743         write = local_add_return(info->length, &tail_page->write);
2744
2745         /* set write to only the index of the write */
2746         write &= RB_WRITE_MASK;
2747         tail = write - info->length;
2748
2749         /*
2750          * If this is the first commit on the page, then it has the same
2751          * timestamp as the page itself.
2752          */
2753         if (!tail)
2754                 info->delta = 0;
2755
2756         /* See if we shot pass the end of this buffer page */
2757         if (unlikely(write > BUF_PAGE_SIZE))
2758                 return rb_move_tail(cpu_buffer, tail, info);
2759
2760         /* We reserved something on the buffer */
2761
2762         event = __rb_page_index(tail_page, tail);
2763         kmemcheck_annotate_bitfield(event, bitfield);
2764         rb_update_event(cpu_buffer, event, info);
2765
2766         local_inc(&tail_page->entries);
2767
2768         /*
2769          * If this is the first commit on the page, then update
2770          * its timestamp.
2771          */
2772         if (!tail)
2773                 tail_page->page->time_stamp = info->ts;
2774
2775         /* account for these added bytes */
2776         local_add(info->length, &cpu_buffer->entries_bytes);
2777
2778         return event;
2779 }
2780
2781 static struct ring_buffer_event *
2782 rb_reserve_next_event(struct ring_buffer *buffer,
2783                       struct ring_buffer_per_cpu *cpu_buffer,
2784                       unsigned long length)
2785 {
2786         struct ring_buffer_event *event;
2787         struct rb_event_info info;
2788         int nr_loops = 0;
2789         u64 diff;
2790
2791         rb_start_commit(cpu_buffer);
2792
2793 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2794         /*
2795          * Due to the ability to swap a cpu buffer from a buffer
2796          * it is possible it was swapped before we committed.
2797          * (committing stops a swap). We check for it here and
2798          * if it happened, we have to fail the write.
2799          */
2800         barrier();
2801         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2802                 local_dec(&cpu_buffer->committing);
2803                 local_dec(&cpu_buffer->commits);
2804                 return NULL;
2805         }
2806 #endif
2807
2808         info.length = rb_calculate_event_length(length);
2809  again:
2810         info.add_timestamp = 0;
2811         info.delta = 0;
2812
2813         /*
2814          * We allow for interrupts to reenter here and do a trace.
2815          * If one does, it will cause this original code to loop
2816          * back here. Even with heavy interrupts happening, this
2817          * should only happen a few times in a row. If this happens
2818          * 1000 times in a row, there must be either an interrupt
2819          * storm or we have something buggy.
2820          * Bail!
2821          */
2822         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2823                 goto out_fail;
2824
2825         info.ts = rb_time_stamp(cpu_buffer->buffer);
2826         diff = info.ts - cpu_buffer->write_stamp;
2827
2828         /* make sure this diff is calculated here */
2829         barrier();
2830
2831         /* Did the write stamp get updated already? */
2832         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2833                 info.delta = diff;
2834                 if (unlikely(test_time_stamp(info.delta)))
2835                         rb_handle_timestamp(cpu_buffer, &info);
2836         }
2837
2838         event = __rb_reserve_next(cpu_buffer, &info);
2839
2840         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2841                 if (info.add_timestamp)
2842                         info.length -= RB_LEN_TIME_EXTEND;
2843                 goto again;
2844         }
2845
2846         if (!event)
2847                 goto out_fail;
2848
2849         return event;
2850
2851  out_fail:
2852         rb_end_commit(cpu_buffer);
2853         return NULL;
2854 }
2855
2856 /**
2857  * ring_buffer_lock_reserve - reserve a part of the buffer
2858  * @buffer: the ring buffer to reserve from
2859  * @length: the length of the data to reserve (excluding event header)
2860  *
2861  * Returns a reseverd event on the ring buffer to copy directly to.
2862  * The user of this interface will need to get the body to write into
2863  * and can use the ring_buffer_event_data() interface.
2864  *
2865  * The length is the length of the data needed, not the event length
2866  * which also includes the event header.
2867  *
2868  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2869  * If NULL is returned, then nothing has been allocated or locked.
2870  */
2871 struct ring_buffer_event *
2872 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2873 {
2874         struct ring_buffer_per_cpu *cpu_buffer;
2875         struct ring_buffer_event *event;
2876         int cpu;
2877
2878         /* If we are tracing schedule, we don't want to recurse */
2879         preempt_disable_notrace();
2880
2881         if (unlikely(atomic_read(&buffer->record_disabled)))
2882                 goto out;
2883
2884         cpu = raw_smp_processor_id();
2885
2886         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2887                 goto out;
2888
2889         cpu_buffer = buffer->buffers[cpu];
2890
2891         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2892                 goto out;
2893
2894         if (unlikely(length > BUF_MAX_DATA_SIZE))
2895                 goto out;
2896
2897         if (unlikely(trace_recursive_lock(cpu_buffer)))
2898                 goto out;
2899
2900         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2901         if (!event)
2902                 goto out_unlock;
2903
2904         return event;
2905
2906  out_unlock:
2907         trace_recursive_unlock(cpu_buffer);
2908  out:
2909         preempt_enable_notrace();
2910         return NULL;
2911 }
2912 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2913
2914 /*
2915  * Decrement the entries to the page that an event is on.
2916  * The event does not even need to exist, only the pointer
2917  * to the page it is on. This may only be called before the commit
2918  * takes place.
2919  */
2920 static inline void
2921 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2922                    struct ring_buffer_event *event)
2923 {
2924         unsigned long addr = (unsigned long)event;
2925         struct buffer_page *bpage = cpu_buffer->commit_page;
2926         struct buffer_page *start;
2927
2928         addr &= PAGE_MASK;
2929
2930         /* Do the likely case first */
2931         if (likely(bpage->page == (void *)addr)) {
2932                 local_dec(&bpage->entries);
2933                 return;
2934         }
2935
2936         /*
2937          * Because the commit page may be on the reader page we
2938          * start with the next page and check the end loop there.
2939          */
2940         rb_inc_page(cpu_buffer, &bpage);
2941         start = bpage;
2942         do {
2943                 if (bpage->page == (void *)addr) {
2944                         local_dec(&bpage->entries);
2945                         return;
2946                 }
2947                 rb_inc_page(cpu_buffer, &bpage);
2948         } while (bpage != start);
2949
2950         /* commit not part of this buffer?? */
2951         RB_WARN_ON(cpu_buffer, 1);
2952 }
2953
2954 /**
2955  * ring_buffer_commit_discard - discard an event that has not been committed
2956  * @buffer: the ring buffer
2957  * @event: non committed event to discard
2958  *
2959  * Sometimes an event that is in the ring buffer needs to be ignored.
2960  * This function lets the user discard an event in the ring buffer
2961  * and then that event will not be read later.
2962  *
2963  * This function only works if it is called before the the item has been
2964  * committed. It will try to free the event from the ring buffer
2965  * if another event has not been added behind it.
2966  *
2967  * If another event has been added behind it, it will set the event
2968  * up as discarded, and perform the commit.
2969  *
2970  * If this function is called, do not call ring_buffer_unlock_commit on
2971  * the event.
2972  */
2973 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2974                                 struct ring_buffer_event *event)
2975 {
2976         struct ring_buffer_per_cpu *cpu_buffer;
2977         int cpu;
2978
2979         /* The event is discarded regardless */
2980         rb_event_discard(event);
2981
2982         cpu = smp_processor_id();
2983         cpu_buffer = buffer->buffers[cpu];
2984
2985         /*
2986          * This must only be called if the event has not been
2987          * committed yet. Thus we can assume that preemption
2988          * is still disabled.
2989          */
2990         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2991
2992         rb_decrement_entry(cpu_buffer, event);
2993         if (rb_try_to_discard(cpu_buffer, event))
2994                 goto out;
2995
2996         /*
2997          * The commit is still visible by the reader, so we
2998          * must still update the timestamp.
2999          */
3000         rb_update_write_stamp(cpu_buffer, event);
3001  out:
3002         rb_end_commit(cpu_buffer);
3003
3004         trace_recursive_unlock(cpu_buffer);
3005
3006         preempt_enable_notrace();
3007
3008 }
3009 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3010
3011 /**
3012  * ring_buffer_write - write data to the buffer without reserving
3013  * @buffer: The ring buffer to write to.
3014  * @length: The length of the data being written (excluding the event header)
3015  * @data: The data to write to the buffer.
3016  *
3017  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3018  * one function. If you already have the data to write to the buffer, it
3019  * may be easier to simply call this function.
3020  *
3021  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3022  * and not the length of the event which would hold the header.
3023  */
3024 int ring_buffer_write(struct ring_buffer *buffer,
3025                       unsigned long length,
3026                       void *data)
3027 {
3028         struct ring_buffer_per_cpu *cpu_buffer;
3029         struct ring_buffer_event *event;
3030         void *body;
3031         int ret = -EBUSY;
3032         int cpu;
3033
3034         preempt_disable_notrace();
3035
3036         if (atomic_read(&buffer->record_disabled))
3037                 goto out;
3038
3039         cpu = raw_smp_processor_id();
3040
3041         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3042                 goto out;
3043
3044         cpu_buffer = buffer->buffers[cpu];
3045
3046         if (atomic_read(&cpu_buffer->record_disabled))
3047                 goto out;
3048
3049         if (length > BUF_MAX_DATA_SIZE)
3050                 goto out;
3051
3052         if (unlikely(trace_recursive_lock(cpu_buffer)))
3053                 goto out;
3054
3055         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3056         if (!event)
3057                 goto out_unlock;
3058
3059         body = rb_event_data(event);
3060
3061         memcpy(body, data, length);
3062
3063         rb_commit(cpu_buffer, event);
3064
3065         rb_wakeups(buffer, cpu_buffer);
3066
3067         ret = 0;
3068
3069  out_unlock:
3070         trace_recursive_unlock(cpu_buffer);
3071
3072  out:
3073         preempt_enable_notrace();
3074
3075         return ret;
3076 }
3077 EXPORT_SYMBOL_GPL(ring_buffer_write);
3078
3079 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3080 {
3081         struct buffer_page *reader = cpu_buffer->reader_page;
3082         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3083         struct buffer_page *commit = cpu_buffer->commit_page;
3084
3085         /* In case of error, head will be NULL */
3086         if (unlikely(!head))
3087                 return true;
3088
3089         /* Reader should exhaust content in reader page */
3090         if (reader->read != rb_page_commit(reader))
3091                 return false;
3092
3093         /*
3094          * If writers are committing on the reader page, knowing all
3095          * committed content has been read, the ring buffer is empty.
3096          */
3097         if (commit == reader)
3098                 return true;
3099
3100         /*
3101          * If writers are committing on a page other than reader page
3102          * and head page, there should always be content to read.
3103          */
3104         if (commit != head)
3105                 return false;
3106
3107         /*
3108          * Writers are committing on the head page, we just need
3109          * to care about there're committed data, and the reader will
3110          * swap reader page with head page when it is to read data.
3111          */
3112         return rb_page_commit(commit) == 0;
3113 }
3114
3115 /**
3116  * ring_buffer_record_disable - stop all writes into the buffer
3117  * @buffer: The ring buffer to stop writes to.
3118  *
3119  * This prevents all writes to the buffer. Any attempt to write
3120  * to the buffer after this will fail and return NULL.
3121  *
3122  * The caller should call synchronize_sched() after this.
3123  */
3124 void ring_buffer_record_disable(struct ring_buffer *buffer)
3125 {
3126         atomic_inc(&buffer->record_disabled);
3127 }
3128 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3129
3130 /**
3131  * ring_buffer_record_enable - enable writes to the buffer
3132  * @buffer: The ring buffer to enable writes
3133  *
3134  * Note, multiple disables will need the same number of enables
3135  * to truly enable the writing (much like preempt_disable).
3136  */
3137 void ring_buffer_record_enable(struct ring_buffer *buffer)
3138 {
3139         atomic_dec(&buffer->record_disabled);
3140 }
3141 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3142
3143 /**
3144  * ring_buffer_record_off - stop all writes into the buffer
3145  * @buffer: The ring buffer to stop writes to.
3146  *
3147  * This prevents all writes to the buffer. Any attempt to write
3148  * to the buffer after this will fail and return NULL.
3149  *
3150  * This is different than ring_buffer_record_disable() as
3151  * it works like an on/off switch, where as the disable() version
3152  * must be paired with a enable().
3153  */
3154 void ring_buffer_record_off(struct ring_buffer *buffer)
3155 {
3156         unsigned int rd;
3157         unsigned int new_rd;
3158
3159         do {
3160                 rd = atomic_read(&buffer->record_disabled);
3161                 new_rd = rd | RB_BUFFER_OFF;
3162         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3163 }
3164 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3165
3166 /**
3167  * ring_buffer_record_on - restart writes into the buffer
3168  * @buffer: The ring buffer to start writes to.
3169  *
3170  * This enables all writes to the buffer that was disabled by
3171  * ring_buffer_record_off().
3172  *
3173  * This is different than ring_buffer_record_enable() as
3174  * it works like an on/off switch, where as the enable() version
3175  * must be paired with a disable().
3176  */
3177 void ring_buffer_record_on(struct ring_buffer *buffer)
3178 {
3179         unsigned int rd;
3180         unsigned int new_rd;
3181
3182         do {
3183                 rd = atomic_read(&buffer->record_disabled);
3184                 new_rd = rd & ~RB_BUFFER_OFF;
3185         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3186 }
3187 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3188
3189 /**
3190  * ring_buffer_record_is_on - return true if the ring buffer can write
3191  * @buffer: The ring buffer to see if write is enabled
3192  *
3193  * Returns true if the ring buffer is in a state that it accepts writes.
3194  */
3195 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3196 {
3197         return !atomic_read(&buffer->record_disabled);
3198 }
3199
3200 /**
3201  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3202  * @buffer: The ring buffer to see if write is set enabled
3203  *
3204  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3205  * Note that this does NOT mean it is in a writable state.
3206  *
3207  * It may return true when the ring buffer has been disabled by
3208  * ring_buffer_record_disable(), as that is a temporary disabling of
3209  * the ring buffer.
3210  */
3211 int ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3212 {
3213         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3214 }
3215
3216 /**
3217  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3218  * @buffer: The ring buffer to stop writes to.
3219  * @cpu: The CPU buffer to stop
3220  *
3221  * This prevents all writes to the buffer. Any attempt to write
3222  * to the buffer after this will fail and return NULL.
3223  *
3224  * The caller should call synchronize_sched() after this.
3225  */
3226 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3227 {
3228         struct ring_buffer_per_cpu *cpu_buffer;
3229
3230         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3231                 return;
3232
3233         cpu_buffer = buffer->buffers[cpu];
3234         atomic_inc(&cpu_buffer->record_disabled);
3235 }
3236 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3237
3238 /**
3239  * ring_buffer_record_enable_cpu - enable writes to the buffer
3240  * @buffer: The ring buffer to enable writes
3241  * @cpu: The CPU to enable.
3242  *
3243  * Note, multiple disables will need the same number of enables
3244  * to truly enable the writing (much like preempt_disable).
3245  */
3246 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3247 {
3248         struct ring_buffer_per_cpu *cpu_buffer;
3249
3250         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3251                 return;
3252
3253         cpu_buffer = buffer->buffers[cpu];
3254         atomic_dec(&cpu_buffer->record_disabled);
3255 }
3256 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3257
3258 /*
3259  * The total entries in the ring buffer is the running counter
3260  * of entries entered into the ring buffer, minus the sum of
3261  * the entries read from the ring buffer and the number of
3262  * entries that were overwritten.
3263  */
3264 static inline unsigned long
3265 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3266 {
3267         return local_read(&cpu_buffer->entries) -
3268                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3269 }
3270
3271 /**
3272  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3273  * @buffer: The ring buffer
3274  * @cpu: The per CPU buffer to read from.
3275  */
3276 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3277 {
3278         unsigned long flags;
3279         struct ring_buffer_per_cpu *cpu_buffer;
3280         struct buffer_page *bpage;
3281         u64 ret = 0;
3282
3283         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3284                 return 0;
3285
3286         cpu_buffer = buffer->buffers[cpu];
3287         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3288         /*
3289          * if the tail is on reader_page, oldest time stamp is on the reader
3290          * page
3291          */
3292         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3293                 bpage = cpu_buffer->reader_page;
3294         else
3295                 bpage = rb_set_head_page(cpu_buffer);
3296         if (bpage)
3297                 ret = bpage->page->time_stamp;
3298         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3299
3300         return ret;
3301 }
3302 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3303
3304 /**
3305  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3306  * @buffer: The ring buffer
3307  * @cpu: The per CPU buffer to read from.
3308  */
3309 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3310 {
3311         struct ring_buffer_per_cpu *cpu_buffer;
3312         unsigned long ret;
3313
3314         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3315                 return 0;
3316
3317         cpu_buffer = buffer->buffers[cpu];
3318         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3319
3320         return ret;
3321 }
3322 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3323
3324 /**
3325  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3326  * @buffer: The ring buffer
3327  * @cpu: The per CPU buffer to get the entries from.
3328  */
3329 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3330 {
3331         struct ring_buffer_per_cpu *cpu_buffer;
3332
3333         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3334                 return 0;
3335
3336         cpu_buffer = buffer->buffers[cpu];
3337
3338         return rb_num_of_entries(cpu_buffer);
3339 }
3340 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3341
3342 /**
3343  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3344  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3345  * @buffer: The ring buffer
3346  * @cpu: The per CPU buffer to get the number of overruns from
3347  */
3348 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3349 {
3350         struct ring_buffer_per_cpu *cpu_buffer;
3351         unsigned long ret;
3352
3353         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3354                 return 0;
3355
3356         cpu_buffer = buffer->buffers[cpu];
3357         ret = local_read(&cpu_buffer->overrun);
3358
3359         return ret;
3360 }
3361 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3362
3363 /**
3364  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3365  * commits failing due to the buffer wrapping around while there are uncommitted
3366  * events, such as during an interrupt storm.
3367  * @buffer: The ring buffer
3368  * @cpu: The per CPU buffer to get the number of overruns from
3369  */
3370 unsigned long
3371 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3372 {
3373         struct ring_buffer_per_cpu *cpu_buffer;
3374         unsigned long ret;
3375
3376         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3377                 return 0;
3378
3379         cpu_buffer = buffer->buffers[cpu];
3380         ret = local_read(&cpu_buffer->commit_overrun);
3381
3382         return ret;
3383 }
3384 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3385
3386 /**
3387  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3388  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3389  * @buffer: The ring buffer
3390  * @cpu: The per CPU buffer to get the number of overruns from
3391  */
3392 unsigned long
3393 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3394 {
3395         struct ring_buffer_per_cpu *cpu_buffer;
3396         unsigned long ret;
3397
3398         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3399                 return 0;
3400
3401         cpu_buffer = buffer->buffers[cpu];
3402         ret = local_read(&cpu_buffer->dropped_events);
3403
3404         return ret;
3405 }
3406 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3407
3408 /**
3409  * ring_buffer_read_events_cpu - get the number of events successfully read
3410  * @buffer: The ring buffer
3411  * @cpu: The per CPU buffer to get the number of events read
3412  */
3413 unsigned long
3414 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3415 {
3416         struct ring_buffer_per_cpu *cpu_buffer;
3417
3418         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3419                 return 0;
3420
3421         cpu_buffer = buffer->buffers[cpu];
3422         return cpu_buffer->read;
3423 }
3424 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3425
3426 /**
3427  * ring_buffer_entries - get the number of entries in a buffer
3428  * @buffer: The ring buffer
3429  *
3430  * Returns the total number of entries in the ring buffer
3431  * (all CPU entries)
3432  */
3433 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3434 {
3435         struct ring_buffer_per_cpu *cpu_buffer;
3436         unsigned long entries = 0;
3437         int cpu;
3438
3439         /* if you care about this being correct, lock the buffer */
3440         for_each_buffer_cpu(buffer, cpu) {
3441                 cpu_buffer = buffer->buffers[cpu];
3442                 entries += rb_num_of_entries(cpu_buffer);
3443         }
3444
3445         return entries;
3446 }
3447 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3448
3449 /**
3450  * ring_buffer_overruns - get the number of overruns in buffer
3451  * @buffer: The ring buffer
3452  *
3453  * Returns the total number of overruns in the ring buffer
3454  * (all CPU entries)
3455  */
3456 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3457 {
3458         struct ring_buffer_per_cpu *cpu_buffer;
3459         unsigned long overruns = 0;
3460         int cpu;
3461
3462         /* if you care about this being correct, lock the buffer */
3463         for_each_buffer_cpu(buffer, cpu) {
3464                 cpu_buffer = buffer->buffers[cpu];
3465                 overruns += local_read(&cpu_buffer->overrun);
3466         }
3467
3468         return overruns;
3469 }
3470 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3471
3472 static void rb_iter_reset(struct ring_buffer_iter *iter)
3473 {
3474         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3475
3476         /* Iterator usage is expected to have record disabled */
3477         iter->head_page = cpu_buffer->reader_page;
3478         iter->head = cpu_buffer->reader_page->read;
3479
3480         iter->cache_reader_page = iter->head_page;
3481         iter->cache_read = cpu_buffer->read;
3482
3483         if (iter->head)
3484                 iter->read_stamp = cpu_buffer->read_stamp;
3485         else
3486                 iter->read_stamp = iter->head_page->page->time_stamp;
3487 }
3488
3489 /**
3490  * ring_buffer_iter_reset - reset an iterator
3491  * @iter: The iterator to reset
3492  *
3493  * Resets the iterator, so that it will start from the beginning
3494  * again.
3495  */
3496 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3497 {
3498         struct ring_buffer_per_cpu *cpu_buffer;
3499         unsigned long flags;
3500
3501         if (!iter)
3502                 return;
3503
3504         cpu_buffer = iter->cpu_buffer;
3505
3506         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3507         rb_iter_reset(iter);
3508         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3509 }
3510 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3511
3512 /**
3513  * ring_buffer_iter_empty - check if an iterator has no more to read
3514  * @iter: The iterator to check
3515  */
3516 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3517 {
3518         struct ring_buffer_per_cpu *cpu_buffer;
3519         struct buffer_page *reader;
3520         struct buffer_page *head_page;
3521         struct buffer_page *commit_page;
3522         unsigned commit;
3523
3524         cpu_buffer = iter->cpu_buffer;
3525
3526         /* Remember, trace recording is off when iterator is in use */
3527         reader = cpu_buffer->reader_page;
3528         head_page = cpu_buffer->head_page;
3529         commit_page = cpu_buffer->commit_page;
3530         commit = rb_page_commit(commit_page);
3531
3532         return ((iter->head_page == commit_page && iter->head == commit) ||
3533                 (iter->head_page == reader && commit_page == head_page &&
3534                  head_page->read == commit &&
3535                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3536 }
3537 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3538
3539 static void
3540 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3541                      struct ring_buffer_event *event)
3542 {
3543         u64 delta;
3544
3545         switch (event->type_len) {
3546         case RINGBUF_TYPE_PADDING:
3547                 return;
3548
3549         case RINGBUF_TYPE_TIME_EXTEND:
3550                 delta = event->array[0];
3551                 delta <<= TS_SHIFT;
3552                 delta += event->time_delta;
3553                 cpu_buffer->read_stamp += delta;
3554                 return;
3555
3556         case RINGBUF_TYPE_TIME_STAMP:
3557                 /* FIXME: not implemented */
3558                 return;
3559
3560         case RINGBUF_TYPE_DATA:
3561                 cpu_buffer->read_stamp += event->time_delta;
3562                 return;
3563
3564         default:
3565                 BUG();
3566         }
3567         return;
3568 }
3569
3570 static void
3571 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3572                           struct ring_buffer_event *event)
3573 {
3574         u64 delta;
3575
3576         switch (event->type_len) {
3577         case RINGBUF_TYPE_PADDING:
3578                 return;
3579
3580         case RINGBUF_TYPE_TIME_EXTEND:
3581                 delta = event->array[0];
3582                 delta <<= TS_SHIFT;
3583                 delta += event->time_delta;
3584                 iter->read_stamp += delta;
3585                 return;
3586
3587         case RINGBUF_TYPE_TIME_STAMP:
3588                 /* FIXME: not implemented */
3589                 return;
3590
3591         case RINGBUF_TYPE_DATA:
3592                 iter->read_stamp += event->time_delta;
3593                 return;
3594
3595         default:
3596                 BUG();
3597         }
3598         return;
3599 }
3600
3601 static struct buffer_page *
3602 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3603 {
3604         struct buffer_page *reader = NULL;
3605         unsigned long overwrite;
3606         unsigned long flags;
3607         int nr_loops = 0;
3608         int ret;
3609
3610         local_irq_save(flags);
3611         arch_spin_lock(&cpu_buffer->lock);
3612
3613  again:
3614         /*
3615          * This should normally only loop twice. But because the
3616          * start of the reader inserts an empty page, it causes
3617          * a case where we will loop three times. There should be no
3618          * reason to loop four times (that I know of).
3619          */
3620         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3621                 reader = NULL;
3622                 goto out;
3623         }
3624
3625         reader = cpu_buffer->reader_page;
3626
3627         /* If there's more to read, return this page */
3628         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3629                 goto out;
3630
3631         /* Never should we have an index greater than the size */
3632         if (RB_WARN_ON(cpu_buffer,
3633                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3634                 goto out;
3635
3636         /* check if we caught up to the tail */
3637         reader = NULL;
3638         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3639                 goto out;
3640
3641         /* Don't bother swapping if the ring buffer is empty */
3642         if (rb_num_of_entries(cpu_buffer) == 0)
3643                 goto out;
3644
3645         /*
3646          * Reset the reader page to size zero.
3647          */
3648         local_set(&cpu_buffer->reader_page->write, 0);
3649         local_set(&cpu_buffer->reader_page->entries, 0);
3650         local_set(&cpu_buffer->reader_page->page->commit, 0);
3651         cpu_buffer->reader_page->real_end = 0;
3652
3653  spin:
3654         /*
3655          * Splice the empty reader page into the list around the head.
3656          */
3657         reader = rb_set_head_page(cpu_buffer);
3658         if (!reader)
3659                 goto out;
3660         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3661         cpu_buffer->reader_page->list.prev = reader->list.prev;
3662
3663         /*
3664          * cpu_buffer->pages just needs to point to the buffer, it
3665          *  has no specific buffer page to point to. Lets move it out
3666          *  of our way so we don't accidentally swap it.
3667          */
3668         cpu_buffer->pages = reader->list.prev;
3669
3670         /* The reader page will be pointing to the new head */
3671         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3672
3673         /*
3674          * We want to make sure we read the overruns after we set up our
3675          * pointers to the next object. The writer side does a
3676          * cmpxchg to cross pages which acts as the mb on the writer
3677          * side. Note, the reader will constantly fail the swap
3678          * while the writer is updating the pointers, so this
3679          * guarantees that the overwrite recorded here is the one we
3680          * want to compare with the last_overrun.
3681          */
3682         smp_mb();
3683         overwrite = local_read(&(cpu_buffer->overrun));
3684
3685         /*
3686          * Here's the tricky part.
3687          *
3688          * We need to move the pointer past the header page.
3689          * But we can only do that if a writer is not currently
3690          * moving it. The page before the header page has the
3691          * flag bit '1' set if it is pointing to the page we want.
3692          * but if the writer is in the process of moving it
3693          * than it will be '2' or already moved '0'.
3694          */
3695
3696         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3697
3698         /*
3699          * If we did not convert it, then we must try again.
3700          */
3701         if (!ret)
3702                 goto spin;
3703
3704         /*
3705          * Yeah! We succeeded in replacing the page.
3706          *
3707          * Now make the new head point back to the reader page.
3708          */
3709         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3710         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3711
3712         /* Finally update the reader page to the new head */
3713         cpu_buffer->reader_page = reader;
3714         cpu_buffer->reader_page->read = 0;
3715
3716         if (overwrite != cpu_buffer->last_overrun) {
3717                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3718                 cpu_buffer->last_overrun = overwrite;
3719         }
3720
3721         goto again;
3722
3723  out:
3724         /* Update the read_stamp on the first event */
3725         if (reader && reader->read == 0)
3726                 cpu_buffer->read_stamp = reader->page->time_stamp;
3727
3728         arch_spin_unlock(&cpu_buffer->lock);
3729         local_irq_restore(flags);
3730
3731         return reader;
3732 }
3733
3734 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3735 {
3736         struct ring_buffer_event *event;
3737         struct buffer_page *reader;
3738         unsigned length;
3739
3740         reader = rb_get_reader_page(cpu_buffer);
3741
3742         /* This function should not be called when buffer is empty */
3743         if (RB_WARN_ON(cpu_buffer, !reader))
3744                 return;
3745
3746         event = rb_reader_event(cpu_buffer);
3747
3748         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3749                 cpu_buffer->read++;
3750
3751         rb_update_read_stamp(cpu_buffer, event);
3752
3753         length = rb_event_length(event);
3754         cpu_buffer->reader_page->read += length;
3755 }
3756
3757 static void rb_advance_iter(struct ring_buffer_iter *iter)
3758 {
3759         struct ring_buffer_per_cpu *cpu_buffer;
3760         struct ring_buffer_event *event;
3761         unsigned length;
3762
3763         cpu_buffer = iter->cpu_buffer;
3764
3765         /*
3766          * Check if we are at the end of the buffer.
3767          */
3768         if (iter->head >= rb_page_size(iter->head_page)) {
3769                 /* discarded commits can make the page empty */
3770                 if (iter->head_page == cpu_buffer->commit_page)
3771                         return;
3772                 rb_inc_iter(iter);
3773                 return;
3774         }
3775
3776         event = rb_iter_head_event(iter);
3777
3778         length = rb_event_length(event);
3779
3780         /*
3781          * This should not be called to advance the header if we are
3782          * at the tail of the buffer.
3783          */
3784         if (RB_WARN_ON(cpu_buffer,
3785                        (iter->head_page == cpu_buffer->commit_page) &&
3786                        (iter->head + length > rb_commit_index(cpu_buffer))))
3787                 return;
3788
3789         rb_update_iter_read_stamp(iter, event);
3790
3791         iter->head += length;
3792
3793         /* check for end of page padding */
3794         if ((iter->head >= rb_page_size(iter->head_page)) &&
3795             (iter->head_page != cpu_buffer->commit_page))
3796                 rb_inc_iter(iter);
3797 }
3798
3799 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3800 {
3801         return cpu_buffer->lost_events;
3802 }
3803
3804 static struct ring_buffer_event *
3805 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3806                unsigned long *lost_events)
3807 {
3808         struct ring_buffer_event *event;
3809         struct buffer_page *reader;
3810         int nr_loops = 0;
3811
3812  again:
3813         /*
3814          * We repeat when a time extend is encountered.
3815          * Since the time extend is always attached to a data event,
3816          * we should never loop more than once.
3817          * (We never hit the following condition more than twice).
3818          */
3819         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3820                 return NULL;
3821
3822         reader = rb_get_reader_page(cpu_buffer);
3823         if (!reader)
3824                 return NULL;
3825
3826         event = rb_reader_event(cpu_buffer);
3827
3828         switch (event->type_len) {
3829         case RINGBUF_TYPE_PADDING:
3830                 if (rb_null_event(event))
3831                         RB_WARN_ON(cpu_buffer, 1);
3832                 /*
3833                  * Because the writer could be discarding every
3834                  * event it creates (which would probably be bad)
3835                  * if we were to go back to "again" then we may never
3836                  * catch up, and will trigger the warn on, or lock
3837                  * the box. Return the padding, and we will release
3838                  * the current locks, and try again.
3839                  */
3840                 return event;
3841
3842         case RINGBUF_TYPE_TIME_EXTEND:
3843                 /* Internal data, OK to advance */
3844                 rb_advance_reader(cpu_buffer);
3845                 goto again;
3846
3847         case RINGBUF_TYPE_TIME_STAMP:
3848                 /* FIXME: not implemented */
3849                 rb_advance_reader(cpu_buffer);
3850                 goto again;
3851
3852         case RINGBUF_TYPE_DATA:
3853                 if (ts) {
3854                         *ts = cpu_buffer->read_stamp + event->time_delta;
3855                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3856                                                          cpu_buffer->cpu, ts);
3857                 }
3858                 if (lost_events)
3859                         *lost_events = rb_lost_events(cpu_buffer);
3860                 return event;
3861
3862         default:
3863                 BUG();
3864         }
3865
3866         return NULL;
3867 }
3868 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3869
3870 static struct ring_buffer_event *
3871 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3872 {
3873         struct ring_buffer *buffer;
3874         struct ring_buffer_per_cpu *cpu_buffer;
3875         struct ring_buffer_event *event;
3876         int nr_loops = 0;
3877
3878         cpu_buffer = iter->cpu_buffer;
3879         buffer = cpu_buffer->buffer;
3880
3881         /*
3882          * Check if someone performed a consuming read to
3883          * the buffer. A consuming read invalidates the iterator
3884          * and we need to reset the iterator in this case.
3885          */
3886         if (unlikely(iter->cache_read != cpu_buffer->read ||
3887                      iter->cache_reader_page != cpu_buffer->reader_page))
3888                 rb_iter_reset(iter);
3889
3890  again:
3891         if (ring_buffer_iter_empty(iter))
3892                 return NULL;
3893
3894         /*
3895          * We repeat when a time extend is encountered or we hit
3896          * the end of the page. Since the time extend is always attached
3897          * to a data event, we should never loop more than three times.
3898          * Once for going to next page, once on time extend, and
3899          * finally once to get the event.
3900          * (We never hit the following condition more than thrice).
3901          */
3902         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3903                 return NULL;
3904
3905         if (rb_per_cpu_empty(cpu_buffer))
3906                 return NULL;
3907
3908         if (iter->head >= rb_page_size(iter->head_page)) {
3909                 rb_inc_iter(iter);
3910                 goto again;
3911         }
3912
3913         event = rb_iter_head_event(iter);
3914
3915         switch (event->type_len) {
3916         case RINGBUF_TYPE_PADDING:
3917                 if (rb_null_event(event)) {
3918                         rb_inc_iter(iter);
3919                         goto again;
3920                 }
3921                 rb_advance_iter(iter);
3922                 return event;
3923
3924         case RINGBUF_TYPE_TIME_EXTEND:
3925                 /* Internal data, OK to advance */
3926                 rb_advance_iter(iter);
3927                 goto again;
3928
3929         case RINGBUF_TYPE_TIME_STAMP:
3930                 /* FIXME: not implemented */
3931                 rb_advance_iter(iter);
3932                 goto again;
3933
3934         case RINGBUF_TYPE_DATA:
3935                 if (ts) {
3936                         *ts = iter->read_stamp + event->time_delta;
3937                         ring_buffer_normalize_time_stamp(buffer,
3938                                                          cpu_buffer->cpu, ts);
3939                 }
3940                 return event;
3941
3942         default:
3943                 BUG();
3944         }
3945
3946         return NULL;
3947 }
3948 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3949
3950 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3951 {
3952         if (likely(!in_nmi())) {
3953                 raw_spin_lock(&cpu_buffer->reader_lock);
3954                 return true;
3955         }
3956
3957         /*
3958          * If an NMI die dumps out the content of the ring buffer
3959          * trylock must be used to prevent a deadlock if the NMI
3960          * preempted a task that holds the ring buffer locks. If
3961          * we get the lock then all is fine, if not, then continue
3962          * to do the read, but this can corrupt the ring buffer,
3963          * so it must be permanently disabled from future writes.
3964          * Reading from NMI is a oneshot deal.
3965          */
3966         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3967                 return true;
3968
3969         /* Continue without locking, but disable the ring buffer */
3970         atomic_inc(&cpu_buffer->record_disabled);
3971         return false;
3972 }
3973
3974 static inline void
3975 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3976 {
3977         if (likely(locked))
3978                 raw_spin_unlock(&cpu_buffer->reader_lock);
3979         return;
3980 }
3981
3982 /**
3983  * ring_buffer_peek - peek at the next event to be read
3984  * @buffer: The ring buffer to read
3985  * @cpu: The cpu to peak at
3986  * @ts: The timestamp counter of this event.
3987  * @lost_events: a variable to store if events were lost (may be NULL)
3988  *
3989  * This will return the event that will be read next, but does
3990  * not consume the data.
3991  */
3992 struct ring_buffer_event *
3993 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3994                  unsigned long *lost_events)
3995 {
3996         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3997         struct ring_buffer_event *event;
3998         unsigned long flags;
3999         bool dolock;
4000
4001         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4002                 return NULL;
4003
4004  again:
4005         local_irq_save(flags);
4006         dolock = rb_reader_lock(cpu_buffer);
4007         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4008         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4009                 rb_advance_reader(cpu_buffer);
4010         rb_reader_unlock(cpu_buffer, dolock);
4011         local_irq_restore(flags);
4012
4013         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4014                 goto again;
4015
4016         return event;
4017 }
4018
4019 /**
4020  * ring_buffer_iter_peek - peek at the next event to be read
4021  * @iter: The ring buffer iterator
4022  * @ts: The timestamp counter of this event.
4023  *
4024  * This will return the event that will be read next, but does
4025  * not increment the iterator.
4026  */
4027 struct ring_buffer_event *
4028 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4029 {
4030         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4031         struct ring_buffer_event *event;
4032         unsigned long flags;
4033
4034  again:
4035         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4036         event = rb_iter_peek(iter, ts);
4037         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4038
4039         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4040                 goto again;
4041
4042         return event;
4043 }
4044
4045 /**
4046  * ring_buffer_consume - return an event and consume it
4047  * @buffer: The ring buffer to get the next event from
4048  * @cpu: the cpu to read the buffer from
4049  * @ts: a variable to store the timestamp (may be NULL)
4050  * @lost_events: a variable to store if events were lost (may be NULL)
4051  *
4052  * Returns the next event in the ring buffer, and that event is consumed.
4053  * Meaning, that sequential reads will keep returning a different event,
4054  * and eventually empty the ring buffer if the producer is slower.
4055  */
4056 struct ring_buffer_event *
4057 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4058                     unsigned long *lost_events)
4059 {
4060         struct ring_buffer_per_cpu *cpu_buffer;
4061         struct ring_buffer_event *event = NULL;
4062         unsigned long flags;
4063         bool dolock;
4064
4065  again:
4066         /* might be called in atomic */
4067         preempt_disable();
4068
4069         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4070                 goto out;
4071
4072         cpu_buffer = buffer->buffers[cpu];
4073         local_irq_save(flags);
4074         dolock = rb_reader_lock(cpu_buffer);
4075
4076         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4077         if (event) {
4078                 cpu_buffer->lost_events = 0;
4079                 rb_advance_reader(cpu_buffer);
4080         }
4081
4082         rb_reader_unlock(cpu_buffer, dolock);
4083         local_irq_restore(flags);
4084
4085  out:
4086         preempt_enable();
4087
4088         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4089                 goto again;
4090
4091         return event;
4092 }
4093 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4094
4095 /**
4096  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4097  * @buffer: The ring buffer to read from
4098  * @cpu: The cpu buffer to iterate over
4099  * @flags: gfp flags to use for memory allocation
4100  *
4101  * This performs the initial preparations necessary to iterate
4102  * through the buffer.  Memory is allocated, buffer recording
4103  * is disabled, and the iterator pointer is returned to the caller.
4104  *
4105  * Disabling buffer recordng prevents the reading from being
4106  * corrupted. This is not a consuming read, so a producer is not
4107  * expected.
4108  *
4109  * After a sequence of ring_buffer_read_prepare calls, the user is
4110  * expected to make at least one call to ring_buffer_read_prepare_sync.
4111  * Afterwards, ring_buffer_read_start is invoked to get things going
4112  * for real.
4113  *
4114  * This overall must be paired with ring_buffer_read_finish.
4115  */
4116 struct ring_buffer_iter *
4117 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4118 {
4119         struct ring_buffer_per_cpu *cpu_buffer;
4120         struct ring_buffer_iter *iter;
4121
4122         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4123                 return NULL;
4124
4125         iter = kmalloc(sizeof(*iter), flags);
4126         if (!iter)
4127                 return NULL;
4128
4129         cpu_buffer = buffer->buffers[cpu];
4130
4131         iter->cpu_buffer = cpu_buffer;
4132
4133         atomic_inc(&buffer->resize_disabled);
4134         atomic_inc(&cpu_buffer->record_disabled);
4135
4136         return iter;
4137 }
4138 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4139
4140 /**
4141  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4142  *
4143  * All previously invoked ring_buffer_read_prepare calls to prepare
4144  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4145  * calls on those iterators are allowed.
4146  */
4147 void
4148 ring_buffer_read_prepare_sync(void)
4149 {
4150         synchronize_sched();
4151 }
4152 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4153
4154 /**
4155  * ring_buffer_read_start - start a non consuming read of the buffer
4156  * @iter: The iterator returned by ring_buffer_read_prepare
4157  *
4158  * This finalizes the startup of an iteration through the buffer.
4159  * The iterator comes from a call to ring_buffer_read_prepare and
4160  * an intervening ring_buffer_read_prepare_sync must have been
4161  * performed.
4162  *
4163  * Must be paired with ring_buffer_read_finish.
4164  */
4165 void
4166 ring_buffer_read_start(struct ring_buffer_iter *iter)
4167 {
4168         struct ring_buffer_per_cpu *cpu_buffer;
4169         unsigned long flags;
4170
4171         if (!iter)
4172                 return;
4173
4174         cpu_buffer = iter->cpu_buffer;
4175
4176         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4177         arch_spin_lock(&cpu_buffer->lock);
4178         rb_iter_reset(iter);
4179         arch_spin_unlock(&cpu_buffer->lock);
4180         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4181 }
4182 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4183
4184 /**
4185  * ring_buffer_read_finish - finish reading the iterator of the buffer
4186  * @iter: The iterator retrieved by ring_buffer_start
4187  *
4188  * This re-enables the recording to the buffer, and frees the
4189  * iterator.
4190  */
4191 void
4192 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4193 {
4194         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4195         unsigned long flags;
4196
4197         /*
4198          * Ring buffer is disabled from recording, here's a good place
4199          * to check the integrity of the ring buffer.
4200          * Must prevent readers from trying to read, as the check
4201          * clears the HEAD page and readers require it.
4202          */
4203         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4204         rb_check_pages(cpu_buffer);
4205         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4206
4207         atomic_dec(&cpu_buffer->record_disabled);
4208         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4209         kfree(iter);
4210 }
4211 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4212
4213 /**
4214  * ring_buffer_read - read the next item in the ring buffer by the iterator
4215  * @iter: The ring buffer iterator
4216  * @ts: The time stamp of the event read.
4217  *
4218  * This reads the next event in the ring buffer and increments the iterator.
4219  */
4220 struct ring_buffer_event *
4221 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4222 {
4223         struct ring_buffer_event *event;
4224         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4225         unsigned long flags;
4226
4227         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4228  again:
4229         event = rb_iter_peek(iter, ts);
4230         if (!event)
4231                 goto out;
4232
4233         if (event->type_len == RINGBUF_TYPE_PADDING)
4234                 goto again;
4235
4236         rb_advance_iter(iter);
4237  out:
4238         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4239
4240         return event;
4241 }
4242 EXPORT_SYMBOL_GPL(ring_buffer_read);
4243
4244 /**
4245  * ring_buffer_size - return the size of the ring buffer (in bytes)
4246  * @buffer: The ring buffer.
4247  */
4248 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4249 {
4250         /*
4251          * Earlier, this method returned
4252          *      BUF_PAGE_SIZE * buffer->nr_pages
4253          * Since the nr_pages field is now removed, we have converted this to
4254          * return the per cpu buffer value.
4255          */
4256         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4257                 return 0;
4258
4259         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4260 }
4261 EXPORT_SYMBOL_GPL(ring_buffer_size);
4262
4263 static void
4264 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4265 {
4266         rb_head_page_deactivate(cpu_buffer);
4267
4268         cpu_buffer->head_page
4269                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4270         local_set(&cpu_buffer->head_page->write, 0);
4271         local_set(&cpu_buffer->head_page->entries, 0);
4272         local_set(&cpu_buffer->head_page->page->commit, 0);
4273
4274         cpu_buffer->head_page->read = 0;
4275
4276         cpu_buffer->tail_page = cpu_buffer->head_page;
4277         cpu_buffer->commit_page = cpu_buffer->head_page;
4278
4279         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4280         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4281         local_set(&cpu_buffer->reader_page->write, 0);
4282         local_set(&cpu_buffer->reader_page->entries, 0);
4283         local_set(&cpu_buffer->reader_page->page->commit, 0);
4284         cpu_buffer->reader_page->read = 0;
4285
4286         local_set(&cpu_buffer->entries_bytes, 0);
4287         local_set(&cpu_buffer->overrun, 0);
4288         local_set(&cpu_buffer->commit_overrun, 0);
4289         local_set(&cpu_buffer->dropped_events, 0);
4290         local_set(&cpu_buffer->entries, 0);
4291         local_set(&cpu_buffer->committing, 0);
4292         local_set(&cpu_buffer->commits, 0);
4293         cpu_buffer->read = 0;
4294         cpu_buffer->read_bytes = 0;
4295
4296         cpu_buffer->write_stamp = 0;
4297         cpu_buffer->read_stamp = 0;
4298
4299         cpu_buffer->lost_events = 0;
4300         cpu_buffer->last_overrun = 0;
4301
4302         rb_head_page_activate(cpu_buffer);
4303 }
4304
4305 /**
4306  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4307  * @buffer: The ring buffer to reset a per cpu buffer of
4308  * @cpu: The CPU buffer to be reset
4309  */
4310 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4311 {
4312         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4313         unsigned long flags;
4314
4315         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4316                 return;
4317         /* prevent another thread from changing buffer sizes */
4318         mutex_lock(&buffer->mutex);
4319
4320         atomic_inc(&buffer->resize_disabled);
4321         atomic_inc(&cpu_buffer->record_disabled);
4322
4323         /* Make sure all commits have finished */
4324         synchronize_sched();
4325
4326         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4327
4328         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4329                 goto out;
4330
4331         arch_spin_lock(&cpu_buffer->lock);
4332
4333         rb_reset_cpu(cpu_buffer);
4334
4335         arch_spin_unlock(&cpu_buffer->lock);
4336
4337  out:
4338         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4339
4340         atomic_dec(&cpu_buffer->record_disabled);
4341         atomic_dec(&buffer->resize_disabled);
4342
4343         mutex_unlock(&buffer->mutex);
4344 }
4345 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4346
4347 /**
4348  * ring_buffer_reset - reset a ring buffer
4349  * @buffer: The ring buffer to reset all cpu buffers
4350  */
4351 void ring_buffer_reset(struct ring_buffer *buffer)
4352 {
4353         int cpu;
4354
4355         for_each_buffer_cpu(buffer, cpu)
4356                 ring_buffer_reset_cpu(buffer, cpu);
4357 }
4358 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4359
4360 /**
4361  * rind_buffer_empty - is the ring buffer empty?
4362  * @buffer: The ring buffer to test
4363  */
4364 bool ring_buffer_empty(struct ring_buffer *buffer)
4365 {
4366         struct ring_buffer_per_cpu *cpu_buffer;
4367         unsigned long flags;
4368         bool dolock;
4369         int cpu;
4370         int ret;
4371
4372         /* yes this is racy, but if you don't like the race, lock the buffer */
4373         for_each_buffer_cpu(buffer, cpu) {
4374                 cpu_buffer = buffer->buffers[cpu];
4375                 local_irq_save(flags);
4376                 dolock = rb_reader_lock(cpu_buffer);
4377                 ret = rb_per_cpu_empty(cpu_buffer);
4378                 rb_reader_unlock(cpu_buffer, dolock);
4379                 local_irq_restore(flags);
4380
4381                 if (!ret)
4382                         return false;
4383         }
4384
4385         return true;
4386 }
4387 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4388
4389 /**
4390  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4391  * @buffer: The ring buffer
4392  * @cpu: The CPU buffer to test
4393  */
4394 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4395 {
4396         struct ring_buffer_per_cpu *cpu_buffer;
4397         unsigned long flags;
4398         bool dolock;
4399         int ret;
4400
4401         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4402                 return true;
4403
4404         cpu_buffer = buffer->buffers[cpu];
4405         local_irq_save(flags);
4406         dolock = rb_reader_lock(cpu_buffer);
4407         ret = rb_per_cpu_empty(cpu_buffer);
4408         rb_reader_unlock(cpu_buffer, dolock);
4409         local_irq_restore(flags);
4410
4411         return ret;
4412 }
4413 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4414
4415 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4416 /**
4417  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4418  * @buffer_a: One buffer to swap with
4419  * @buffer_b: The other buffer to swap with
4420  *
4421  * This function is useful for tracers that want to take a "snapshot"
4422  * of a CPU buffer and has another back up buffer lying around.
4423  * it is expected that the tracer handles the cpu buffer not being
4424  * used at the moment.
4425  */
4426 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4427                          struct ring_buffer *buffer_b, int cpu)
4428 {
4429         struct ring_buffer_per_cpu *cpu_buffer_a;
4430         struct ring_buffer_per_cpu *cpu_buffer_b;
4431         int ret = -EINVAL;
4432
4433         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4434             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4435                 goto out;
4436
4437         cpu_buffer_a = buffer_a->buffers[cpu];
4438         cpu_buffer_b = buffer_b->buffers[cpu];
4439
4440         /* At least make sure the two buffers are somewhat the same */
4441         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4442                 goto out;
4443
4444         ret = -EAGAIN;
4445
4446         if (atomic_read(&buffer_a->record_disabled))
4447                 goto out;
4448
4449         if (atomic_read(&buffer_b->record_disabled))
4450                 goto out;
4451
4452         if (atomic_read(&cpu_buffer_a->record_disabled))
4453                 goto out;
4454
4455         if (atomic_read(&cpu_buffer_b->record_disabled))
4456                 goto out;
4457
4458         /*
4459          * We can't do a synchronize_sched here because this
4460          * function can be called in atomic context.
4461          * Normally this will be called from the same CPU as cpu.
4462          * If not it's up to the caller to protect this.
4463          */
4464         atomic_inc(&cpu_buffer_a->record_disabled);
4465         atomic_inc(&cpu_buffer_b->record_disabled);
4466
4467         ret = -EBUSY;
4468         if (local_read(&cpu_buffer_a->committing))
4469                 goto out_dec;
4470         if (local_read(&cpu_buffer_b->committing))
4471                 goto out_dec;
4472
4473         buffer_a->buffers[cpu] = cpu_buffer_b;
4474         buffer_b->buffers[cpu] = cpu_buffer_a;
4475
4476         cpu_buffer_b->buffer = buffer_a;
4477         cpu_buffer_a->buffer = buffer_b;
4478
4479         ret = 0;
4480
4481 out_dec:
4482         atomic_dec(&cpu_buffer_a->record_disabled);
4483         atomic_dec(&cpu_buffer_b->record_disabled);
4484 out:
4485         return ret;
4486 }
4487 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4488 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4489
4490 /**
4491  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4492  * @buffer: the buffer to allocate for.
4493  * @cpu: the cpu buffer to allocate.
4494  *
4495  * This function is used in conjunction with ring_buffer_read_page.
4496  * When reading a full page from the ring buffer, these functions
4497  * can be used to speed up the process. The calling function should
4498  * allocate a few pages first with this function. Then when it
4499  * needs to get pages from the ring buffer, it passes the result
4500  * of this function into ring_buffer_read_page, which will swap
4501  * the page that was allocated, with the read page of the buffer.
4502  *
4503  * Returns:
4504  *  The page allocated, or NULL on error.
4505  */
4506 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4507 {
4508         struct buffer_data_page *bpage;
4509         struct page *page;
4510
4511         page = alloc_pages_node(cpu_to_node(cpu),
4512                                 GFP_KERNEL | __GFP_NORETRY, 0);
4513         if (!page)
4514                 return NULL;
4515
4516         bpage = page_address(page);
4517
4518         rb_init_page(bpage);
4519
4520         return bpage;
4521 }
4522 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4523
4524 /**
4525  * ring_buffer_free_read_page - free an allocated read page
4526  * @buffer: the buffer the page was allocate for
4527  * @data: the page to free
4528  *
4529  * Free a page allocated from ring_buffer_alloc_read_page.
4530  */
4531 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4532 {
4533         free_page((unsigned long)data);
4534 }
4535 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4536
4537 /**
4538  * ring_buffer_read_page - extract a page from the ring buffer
4539  * @buffer: buffer to extract from
4540  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4541  * @len: amount to extract
4542  * @cpu: the cpu of the buffer to extract
4543  * @full: should the extraction only happen when the page is full.
4544  *
4545  * This function will pull out a page from the ring buffer and consume it.
4546  * @data_page must be the address of the variable that was returned
4547  * from ring_buffer_alloc_read_page. This is because the page might be used
4548  * to swap with a page in the ring buffer.
4549  *
4550  * for example:
4551  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4552  *      if (!rpage)
4553  *              return error;
4554  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4555  *      if (ret >= 0)
4556  *              process_page(rpage, ret);
4557  *
4558  * When @full is set, the function will not return true unless
4559  * the writer is off the reader page.
4560  *
4561  * Note: it is up to the calling functions to handle sleeps and wakeups.
4562  *  The ring buffer can be used anywhere in the kernel and can not
4563  *  blindly call wake_up. The layer that uses the ring buffer must be
4564  *  responsible for that.
4565  *
4566  * Returns:
4567  *  >=0 if data has been transferred, returns the offset of consumed data.
4568  *  <0 if no data has been transferred.
4569  */
4570 int ring_buffer_read_page(struct ring_buffer *buffer,
4571                           void **data_page, size_t len, int cpu, int full)
4572 {
4573         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4574         struct ring_buffer_event *event;
4575         struct buffer_data_page *bpage;
4576         struct buffer_page *reader;
4577         unsigned long missed_events;
4578         unsigned long flags;
4579         unsigned int commit;
4580         unsigned int read;
4581         u64 save_timestamp;
4582         int ret = -1;
4583
4584         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4585                 goto out;
4586
4587         /*
4588          * If len is not big enough to hold the page header, then
4589          * we can not copy anything.
4590          */
4591         if (len <= BUF_PAGE_HDR_SIZE)
4592                 goto out;
4593
4594         len -= BUF_PAGE_HDR_SIZE;
4595
4596         if (!data_page)
4597                 goto out;
4598
4599         bpage = *data_page;
4600         if (!bpage)
4601                 goto out;
4602
4603         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4604
4605         reader = rb_get_reader_page(cpu_buffer);
4606         if (!reader)
4607                 goto out_unlock;
4608
4609         event = rb_reader_event(cpu_buffer);
4610
4611         read = reader->read;
4612         commit = rb_page_commit(reader);
4613
4614         /* Check if any events were dropped */
4615         missed_events = cpu_buffer->lost_events;
4616
4617         /*
4618          * If this page has been partially read or
4619          * if len is not big enough to read the rest of the page or
4620          * a writer is still on the page, then
4621          * we must copy the data from the page to the buffer.
4622          * Otherwise, we can simply swap the page with the one passed in.
4623          */
4624         if (read || (len < (commit - read)) ||
4625             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4626                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4627                 unsigned int rpos = read;
4628                 unsigned int pos = 0;
4629                 unsigned int size;
4630
4631                 if (full)
4632                         goto out_unlock;
4633
4634                 if (len > (commit - read))
4635                         len = (commit - read);
4636
4637                 /* Always keep the time extend and data together */
4638                 size = rb_event_ts_length(event);
4639
4640                 if (len < size)
4641                         goto out_unlock;
4642
4643                 /* save the current timestamp, since the user will need it */
4644                 save_timestamp = cpu_buffer->read_stamp;
4645
4646                 /* Need to copy one event at a time */
4647                 do {
4648                         /* We need the size of one event, because
4649                          * rb_advance_reader only advances by one event,
4650                          * whereas rb_event_ts_length may include the size of
4651                          * one or two events.
4652                          * We have already ensured there's enough space if this
4653                          * is a time extend. */
4654                         size = rb_event_length(event);
4655                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4656
4657                         len -= size;
4658
4659                         rb_advance_reader(cpu_buffer);
4660                         rpos = reader->read;
4661                         pos += size;
4662
4663                         if (rpos >= commit)
4664                                 break;
4665
4666                         event = rb_reader_event(cpu_buffer);
4667                         /* Always keep the time extend and data together */
4668                         size = rb_event_ts_length(event);
4669                 } while (len >= size);
4670
4671                 /* update bpage */
4672                 local_set(&bpage->commit, pos);
4673                 bpage->time_stamp = save_timestamp;
4674
4675                 /* we copied everything to the beginning */
4676                 read = 0;
4677         } else {
4678                 /* update the entry counter */
4679                 cpu_buffer->read += rb_page_entries(reader);
4680                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4681
4682                 /* swap the pages */
4683                 rb_init_page(bpage);
4684                 bpage = reader->page;
4685                 reader->page = *data_page;
4686                 local_set(&reader->write, 0);
4687                 local_set(&reader->entries, 0);
4688                 reader->read = 0;
4689                 *data_page = bpage;
4690
4691                 /*
4692                  * Use the real_end for the data size,
4693                  * This gives us a chance to store the lost events
4694                  * on the page.
4695                  */
4696                 if (reader->real_end)
4697                         local_set(&bpage->commit, reader->real_end);
4698         }
4699         ret = read;
4700
4701         cpu_buffer->lost_events = 0;
4702
4703         commit = local_read(&bpage->commit);
4704         /*
4705          * Set a flag in the commit field if we lost events
4706          */
4707         if (missed_events) {
4708                 /* If there is room at the end of the page to save the
4709                  * missed events, then record it there.
4710                  */
4711                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4712                         memcpy(&bpage->data[commit], &missed_events,
4713                                sizeof(missed_events));
4714                         local_add(RB_MISSED_STORED, &bpage->commit);
4715                         commit += sizeof(missed_events);
4716                 }
4717                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4718         }
4719
4720         /*
4721          * This page may be off to user land. Zero it out here.
4722          */
4723         if (commit < BUF_PAGE_SIZE)
4724                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4725
4726  out_unlock:
4727         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4728
4729  out:
4730         return ret;
4731 }
4732 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4733
4734 #ifdef CONFIG_HOTPLUG_CPU
4735 static int rb_cpu_notify(struct notifier_block *self,
4736                          unsigned long action, void *hcpu)
4737 {
4738         struct ring_buffer *buffer =
4739                 container_of(self, struct ring_buffer, cpu_notify);
4740         long cpu = (long)hcpu;
4741         long nr_pages_same;
4742         int cpu_i;
4743         unsigned long nr_pages;
4744
4745         switch (action) {
4746         case CPU_UP_PREPARE:
4747         case CPU_UP_PREPARE_FROZEN:
4748                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4749                         return NOTIFY_OK;
4750
4751                 nr_pages = 0;
4752                 nr_pages_same = 1;
4753                 /* check if all cpu sizes are same */
4754                 for_each_buffer_cpu(buffer, cpu_i) {
4755                         /* fill in the size from first enabled cpu */
4756                         if (nr_pages == 0)
4757                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4758                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4759                                 nr_pages_same = 0;
4760                                 break;
4761                         }
4762                 }
4763                 /* allocate minimum pages, user can later expand it */
4764                 if (!nr_pages_same)
4765                         nr_pages = 2;
4766                 buffer->buffers[cpu] =
4767                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4768                 if (!buffer->buffers[cpu]) {
4769                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4770                              cpu);
4771                         return NOTIFY_OK;
4772                 }
4773                 smp_wmb();
4774                 cpumask_set_cpu(cpu, buffer->cpumask);
4775                 break;
4776         case CPU_DOWN_PREPARE:
4777         case CPU_DOWN_PREPARE_FROZEN:
4778                 /*
4779                  * Do nothing.
4780                  *  If we were to free the buffer, then the user would
4781                  *  lose any trace that was in the buffer.
4782                  */
4783                 break;
4784         default:
4785                 break;
4786         }
4787         return NOTIFY_OK;
4788 }
4789 #endif
4790
4791 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4792 /*
4793  * This is a basic integrity check of the ring buffer.
4794  * Late in the boot cycle this test will run when configured in.
4795  * It will kick off a thread per CPU that will go into a loop
4796  * writing to the per cpu ring buffer various sizes of data.
4797  * Some of the data will be large items, some small.
4798  *
4799  * Another thread is created that goes into a spin, sending out
4800  * IPIs to the other CPUs to also write into the ring buffer.
4801  * this is to test the nesting ability of the buffer.
4802  *
4803  * Basic stats are recorded and reported. If something in the
4804  * ring buffer should happen that's not expected, a big warning
4805  * is displayed and all ring buffers are disabled.
4806  */
4807 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4808
4809 struct rb_test_data {
4810         struct ring_buffer      *buffer;
4811         unsigned long           events;
4812         unsigned long           bytes_written;
4813         unsigned long           bytes_alloc;
4814         unsigned long           bytes_dropped;
4815         unsigned long           events_nested;
4816         unsigned long           bytes_written_nested;
4817         unsigned long           bytes_alloc_nested;
4818         unsigned long           bytes_dropped_nested;
4819         int                     min_size_nested;
4820         int                     max_size_nested;
4821         int                     max_size;
4822         int                     min_size;
4823         int                     cpu;
4824         int                     cnt;
4825 };
4826
4827 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4828
4829 /* 1 meg per cpu */
4830 #define RB_TEST_BUFFER_SIZE     1048576
4831
4832 static char rb_string[] __initdata =
4833         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4834         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4835         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4836
4837 static bool rb_test_started __initdata;
4838
4839 struct rb_item {
4840         int size;
4841         char str[];
4842 };
4843
4844 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4845 {
4846         struct ring_buffer_event *event;
4847         struct rb_item *item;
4848         bool started;
4849         int event_len;
4850         int size;
4851         int len;
4852         int cnt;
4853
4854         /* Have nested writes different that what is written */
4855         cnt = data->cnt + (nested ? 27 : 0);
4856
4857         /* Multiply cnt by ~e, to make some unique increment */
4858         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4859
4860         len = size + sizeof(struct rb_item);
4861
4862         started = rb_test_started;
4863         /* read rb_test_started before checking buffer enabled */
4864         smp_rmb();
4865
4866         event = ring_buffer_lock_reserve(data->buffer, len);
4867         if (!event) {
4868                 /* Ignore dropped events before test starts. */
4869                 if (started) {
4870                         if (nested)
4871                                 data->bytes_dropped += len;
4872                         else
4873                                 data->bytes_dropped_nested += len;
4874                 }
4875                 return len;
4876         }
4877
4878         event_len = ring_buffer_event_length(event);
4879
4880         if (RB_WARN_ON(data->buffer, event_len < len))
4881                 goto out;
4882
4883         item = ring_buffer_event_data(event);
4884         item->size = size;
4885         memcpy(item->str, rb_string, size);
4886
4887         if (nested) {
4888                 data->bytes_alloc_nested += event_len;
4889                 data->bytes_written_nested += len;
4890                 data->events_nested++;
4891                 if (!data->min_size_nested || len < data->min_size_nested)
4892                         data->min_size_nested = len;
4893                 if (len > data->max_size_nested)
4894                         data->max_size_nested = len;
4895         } else {
4896                 data->bytes_alloc += event_len;
4897                 data->bytes_written += len;
4898                 data->events++;
4899                 if (!data->min_size || len < data->min_size)
4900                         data->max_size = len;
4901                 if (len > data->max_size)
4902                         data->max_size = len;
4903         }
4904
4905  out:
4906         ring_buffer_unlock_commit(data->buffer, event);
4907
4908         return 0;
4909 }
4910
4911 static __init int rb_test(void *arg)
4912 {
4913         struct rb_test_data *data = arg;
4914
4915         while (!kthread_should_stop()) {
4916                 rb_write_something(data, false);
4917                 data->cnt++;
4918
4919                 set_current_state(TASK_INTERRUPTIBLE);
4920                 /* Now sleep between a min of 100-300us and a max of 1ms */
4921                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4922         }
4923
4924         return 0;
4925 }
4926
4927 static __init void rb_ipi(void *ignore)
4928 {
4929         struct rb_test_data *data;
4930         int cpu = smp_processor_id();
4931
4932         data = &rb_data[cpu];
4933         rb_write_something(data, true);
4934 }
4935
4936 static __init int rb_hammer_test(void *arg)
4937 {
4938         while (!kthread_should_stop()) {
4939
4940                 /* Send an IPI to all cpus to write data! */
4941                 smp_call_function(rb_ipi, NULL, 1);
4942                 /* No sleep, but for non preempt, let others run */
4943                 schedule();
4944         }
4945
4946         return 0;
4947 }
4948
4949 static __init int test_ringbuffer(void)
4950 {
4951         struct task_struct *rb_hammer;
4952         struct ring_buffer *buffer;
4953         int cpu;
4954         int ret = 0;
4955
4956         pr_info("Running ring buffer tests...\n");
4957
4958         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4959         if (WARN_ON(!buffer))
4960                 return 0;
4961
4962         /* Disable buffer so that threads can't write to it yet */
4963         ring_buffer_record_off(buffer);
4964
4965         for_each_online_cpu(cpu) {
4966                 rb_data[cpu].buffer = buffer;
4967                 rb_data[cpu].cpu = cpu;
4968                 rb_data[cpu].cnt = cpu;
4969                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4970                                                  "rbtester/%d", cpu);
4971                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4972                         pr_cont("FAILED\n");
4973                         ret = PTR_ERR(rb_threads[cpu]);
4974                         goto out_free;
4975                 }
4976
4977                 kthread_bind(rb_threads[cpu], cpu);
4978                 wake_up_process(rb_threads[cpu]);
4979         }
4980
4981         /* Now create the rb hammer! */
4982         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4983         if (WARN_ON(IS_ERR(rb_hammer))) {
4984                 pr_cont("FAILED\n");
4985                 ret = PTR_ERR(rb_hammer);
4986                 goto out_free;
4987         }
4988
4989         ring_buffer_record_on(buffer);
4990         /*
4991          * Show buffer is enabled before setting rb_test_started.
4992          * Yes there's a small race window where events could be
4993          * dropped and the thread wont catch it. But when a ring
4994          * buffer gets enabled, there will always be some kind of
4995          * delay before other CPUs see it. Thus, we don't care about
4996          * those dropped events. We care about events dropped after
4997          * the threads see that the buffer is active.
4998          */
4999         smp_wmb();
5000         rb_test_started = true;
5001
5002         set_current_state(TASK_INTERRUPTIBLE);
5003         /* Just run for 10 seconds */;
5004         schedule_timeout(10 * HZ);
5005
5006         kthread_stop(rb_hammer);
5007
5008  out_free:
5009         for_each_online_cpu(cpu) {
5010                 if (!rb_threads[cpu])
5011                         break;
5012                 kthread_stop(rb_threads[cpu]);
5013         }
5014         if (ret) {
5015                 ring_buffer_free(buffer);
5016                 return ret;
5017         }
5018
5019         /* Report! */
5020         pr_info("finished\n");
5021         for_each_online_cpu(cpu) {
5022                 struct ring_buffer_event *event;
5023                 struct rb_test_data *data = &rb_data[cpu];
5024                 struct rb_item *item;
5025                 unsigned long total_events;
5026                 unsigned long total_dropped;
5027                 unsigned long total_written;
5028                 unsigned long total_alloc;
5029                 unsigned long total_read = 0;
5030                 unsigned long total_size = 0;
5031                 unsigned long total_len = 0;
5032                 unsigned long total_lost = 0;
5033                 unsigned long lost;
5034                 int big_event_size;
5035                 int small_event_size;
5036
5037                 ret = -1;
5038
5039                 total_events = data->events + data->events_nested;
5040                 total_written = data->bytes_written + data->bytes_written_nested;
5041                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5042                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5043
5044                 big_event_size = data->max_size + data->max_size_nested;
5045                 small_event_size = data->min_size + data->min_size_nested;
5046
5047                 pr_info("CPU %d:\n", cpu);
5048                 pr_info("              events:    %ld\n", total_events);
5049                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5050                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5051                 pr_info("       written bytes:    %ld\n", total_written);
5052                 pr_info("       biggest event:    %d\n", big_event_size);
5053                 pr_info("      smallest event:    %d\n", small_event_size);
5054
5055                 if (RB_WARN_ON(buffer, total_dropped))
5056                         break;
5057
5058                 ret = 0;
5059
5060                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5061                         total_lost += lost;
5062                         item = ring_buffer_event_data(event);
5063                         total_len += ring_buffer_event_length(event);
5064                         total_size += item->size + sizeof(struct rb_item);
5065                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5066                                 pr_info("FAILED!\n");
5067                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5068                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5069                                 RB_WARN_ON(buffer, 1);
5070                                 ret = -1;
5071                                 break;
5072                         }
5073                         total_read++;
5074                 }
5075                 if (ret)
5076                         break;
5077
5078                 ret = -1;
5079
5080                 pr_info("         read events:   %ld\n", total_read);
5081                 pr_info("         lost events:   %ld\n", total_lost);
5082                 pr_info("        total events:   %ld\n", total_lost + total_read);
5083                 pr_info("  recorded len bytes:   %ld\n", total_len);
5084                 pr_info(" recorded size bytes:   %ld\n", total_size);
5085                 if (total_lost)
5086                         pr_info(" With dropped events, record len and size may not match\n"
5087                                 " alloced and written from above\n");
5088                 if (!total_lost) {
5089                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5090                                        total_size != total_written))
5091                                 break;
5092                 }
5093                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5094                         break;
5095
5096                 ret = 0;
5097         }
5098         if (!ret)
5099                 pr_info("Ring buffer PASSED!\n");
5100
5101         ring_buffer_free(buffer);
5102         return 0;
5103 }
5104
5105 late_initcall(test_ringbuffer);
5106 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */