GNU Linux-libre 4.19.286-gnu1
[releases.git] / lib / logic_pio.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 HiSilicon Limited, All Rights Reserved.
4  * Author: Gabriele Paoloni <gabriele.paoloni@huawei.com>
5  * Author: Zhichang Yuan <yuanzhichang@hisilicon.com>
6  */
7
8 #define pr_fmt(fmt)     "LOGIC PIO: " fmt
9
10 #include <linux/of.h>
11 #include <linux/io.h>
12 #include <linux/logic_pio.h>
13 #include <linux/mm.h>
14 #include <linux/rculist.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17
18 /* The unique hardware address list */
19 static LIST_HEAD(io_range_list);
20 static DEFINE_MUTEX(io_range_mutex);
21
22 /* Consider a kernel general helper for this */
23 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
24
25 /**
26  * logic_pio_register_range - register logical PIO range for a host
27  * @new_range: pointer to the IO range to be registered.
28  *
29  * Returns 0 on success, the error code in case of failure.
30  * If the range already exists, -EEXIST will be returned, which should be
31  * considered a success.
32  *
33  * Register a new IO range node in the IO range list.
34  */
35 int logic_pio_register_range(struct logic_pio_hwaddr *new_range)
36 {
37         struct logic_pio_hwaddr *range;
38         resource_size_t start;
39         resource_size_t end;
40         resource_size_t mmio_end = 0;
41         resource_size_t iio_sz = MMIO_UPPER_LIMIT;
42         int ret = 0;
43
44         if (!new_range || !new_range->fwnode || !new_range->size)
45                 return -EINVAL;
46
47         start = new_range->hw_start;
48         end = new_range->hw_start + new_range->size;
49
50         mutex_lock(&io_range_mutex);
51         list_for_each_entry(range, &io_range_list, list) {
52                 if (range->fwnode == new_range->fwnode) {
53                         /* range already there */
54                         ret = -EEXIST;
55                         goto end_register;
56                 }
57                 if (range->flags == LOGIC_PIO_CPU_MMIO &&
58                     new_range->flags == LOGIC_PIO_CPU_MMIO) {
59                         /* for MMIO ranges we need to check for overlap */
60                         if (start >= range->hw_start + range->size ||
61                             end < range->hw_start) {
62                                 mmio_end = range->io_start + range->size;
63                         } else {
64                                 ret = -EFAULT;
65                                 goto end_register;
66                         }
67                 } else if (range->flags == LOGIC_PIO_INDIRECT &&
68                            new_range->flags == LOGIC_PIO_INDIRECT) {
69                         iio_sz += range->size;
70                 }
71         }
72
73         /* range not registered yet, check for available space */
74         if (new_range->flags == LOGIC_PIO_CPU_MMIO) {
75                 if (mmio_end + new_range->size - 1 > MMIO_UPPER_LIMIT) {
76                         /* if it's too big check if 64K space can be reserved */
77                         if (mmio_end + SZ_64K - 1 > MMIO_UPPER_LIMIT) {
78                                 ret = -E2BIG;
79                                 goto end_register;
80                         }
81                         new_range->size = SZ_64K;
82                         pr_warn("Requested IO range too big, new size set to 64K\n");
83                 }
84                 new_range->io_start = mmio_end;
85         } else if (new_range->flags == LOGIC_PIO_INDIRECT) {
86                 if (iio_sz + new_range->size - 1 > IO_SPACE_LIMIT) {
87                         ret = -E2BIG;
88                         goto end_register;
89                 }
90                 new_range->io_start = iio_sz;
91         } else {
92                 /* invalid flag */
93                 ret = -EINVAL;
94                 goto end_register;
95         }
96
97         list_add_tail_rcu(&new_range->list, &io_range_list);
98
99 end_register:
100         mutex_unlock(&io_range_mutex);
101         return ret;
102 }
103
104 /**
105  * logic_pio_unregister_range - unregister a logical PIO range for a host
106  * @range: pointer to the IO range which has been already registered.
107  *
108  * Unregister a previously-registered IO range node.
109  */
110 void logic_pio_unregister_range(struct logic_pio_hwaddr *range)
111 {
112         mutex_lock(&io_range_mutex);
113         list_del_rcu(&range->list);
114         mutex_unlock(&io_range_mutex);
115         synchronize_rcu();
116 }
117
118 /**
119  * find_io_range_by_fwnode - find logical PIO range for given FW node
120  * @fwnode: FW node handle associated with logical PIO range
121  *
122  * Returns pointer to node on success, NULL otherwise.
123  *
124  * Traverse the io_range_list to find the registered node for @fwnode.
125  */
126 struct logic_pio_hwaddr *find_io_range_by_fwnode(struct fwnode_handle *fwnode)
127 {
128         struct logic_pio_hwaddr *range, *found_range = NULL;
129
130         rcu_read_lock();
131         list_for_each_entry_rcu(range, &io_range_list, list) {
132                 if (range->fwnode == fwnode) {
133                         found_range = range;
134                         break;
135                 }
136         }
137         rcu_read_unlock();
138
139         return found_range;
140 }
141
142 /* Return a registered range given an input PIO token */
143 static struct logic_pio_hwaddr *find_io_range(unsigned long pio)
144 {
145         struct logic_pio_hwaddr *range, *found_range = NULL;
146
147         rcu_read_lock();
148         list_for_each_entry_rcu(range, &io_range_list, list) {
149                 if (in_range(pio, range->io_start, range->size)) {
150                         found_range = range;
151                         break;
152                 }
153         }
154         rcu_read_unlock();
155
156         if (!found_range)
157                 pr_err("PIO entry token 0x%lx invalid\n", pio);
158
159         return found_range;
160 }
161
162 /**
163  * logic_pio_to_hwaddr - translate logical PIO to HW address
164  * @pio: logical PIO value
165  *
166  * Returns HW address if valid, ~0 otherwise.
167  *
168  * Translate the input logical PIO to the corresponding hardware address.
169  * The input PIO should be unique in the whole logical PIO space.
170  */
171 resource_size_t logic_pio_to_hwaddr(unsigned long pio)
172 {
173         struct logic_pio_hwaddr *range;
174
175         range = find_io_range(pio);
176         if (range)
177                 return range->hw_start + pio - range->io_start;
178
179         return (resource_size_t)~0;
180 }
181
182 /**
183  * logic_pio_trans_hwaddr - translate HW address to logical PIO
184  * @fwnode: FW node reference for the host
185  * @addr: Host-relative HW address
186  * @size: size to translate
187  *
188  * Returns Logical PIO value if successful, ~0UL otherwise
189  */
190 unsigned long logic_pio_trans_hwaddr(struct fwnode_handle *fwnode,
191                                      resource_size_t addr, resource_size_t size)
192 {
193         struct logic_pio_hwaddr *range;
194
195         range = find_io_range_by_fwnode(fwnode);
196         if (!range || range->flags == LOGIC_PIO_CPU_MMIO) {
197                 pr_err("IO range not found or invalid\n");
198                 return ~0UL;
199         }
200         if (range->size < size) {
201                 pr_err("resource size %pa cannot fit in IO range size %pa\n",
202                        &size, &range->size);
203                 return ~0UL;
204         }
205         return addr - range->hw_start + range->io_start;
206 }
207
208 unsigned long logic_pio_trans_cpuaddr(resource_size_t addr)
209 {
210         struct logic_pio_hwaddr *range;
211
212         rcu_read_lock();
213         list_for_each_entry_rcu(range, &io_range_list, list) {
214                 if (range->flags != LOGIC_PIO_CPU_MMIO)
215                         continue;
216                 if (in_range(addr, range->hw_start, range->size)) {
217                         unsigned long cpuaddr;
218
219                         cpuaddr = addr - range->hw_start + range->io_start;
220
221                         rcu_read_unlock();
222                         return cpuaddr;
223                 }
224         }
225         rcu_read_unlock();
226
227         pr_err("addr %pa not registered in io_range_list\n", &addr);
228
229         return ~0UL;
230 }
231
232 #if defined(CONFIG_INDIRECT_PIO) && defined(PCI_IOBASE)
233 #define BUILD_LOGIC_IO(bw, type)                                        \
234 type logic_in##bw(unsigned long addr)                                   \
235 {                                                                       \
236         type ret = (type)~0;                                            \
237                                                                         \
238         if (addr < MMIO_UPPER_LIMIT) {                                  \
239                 ret = read##bw(PCI_IOBASE + addr);                      \
240         } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
241                 struct logic_pio_hwaddr *entry = find_io_range(addr);   \
242                                                                         \
243                 if (entry && entry->ops)                                \
244                         ret = entry->ops->in(entry->hostdata,           \
245                                         addr, sizeof(type));            \
246                 else                                                    \
247                         WARN_ON_ONCE(1);                                \
248         }                                                               \
249         return ret;                                                     \
250 }                                                                       \
251                                                                         \
252 void logic_out##bw(type value, unsigned long addr)                      \
253 {                                                                       \
254         if (addr < MMIO_UPPER_LIMIT) {                                  \
255                 write##bw(value, PCI_IOBASE + addr);                    \
256         } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
257                 struct logic_pio_hwaddr *entry = find_io_range(addr);   \
258                                                                         \
259                 if (entry && entry->ops)                                \
260                         entry->ops->out(entry->hostdata,                \
261                                         addr, value, sizeof(type));     \
262                 else                                                    \
263                         WARN_ON_ONCE(1);                                \
264         }                                                               \
265 }                                                                       \
266                                                                         \
267 void logic_ins##bw(unsigned long addr, void *buffer,            \
268                    unsigned int count)                                  \
269 {                                                                       \
270         if (addr < MMIO_UPPER_LIMIT) {                                  \
271                 reads##bw(PCI_IOBASE + addr, buffer, count);            \
272         } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
273                 struct logic_pio_hwaddr *entry = find_io_range(addr);   \
274                                                                         \
275                 if (entry && entry->ops)                                \
276                         entry->ops->ins(entry->hostdata,                \
277                                 addr, buffer, sizeof(type), count);     \
278                 else                                                    \
279                         WARN_ON_ONCE(1);                                \
280         }                                                               \
281                                                                         \
282 }                                                                       \
283                                                                         \
284 void logic_outs##bw(unsigned long addr, const void *buffer,             \
285                     unsigned int count)                                 \
286 {                                                                       \
287         if (addr < MMIO_UPPER_LIMIT) {                                  \
288                 writes##bw(PCI_IOBASE + addr, buffer, count);           \
289         } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
290                 struct logic_pio_hwaddr *entry = find_io_range(addr);   \
291                                                                         \
292                 if (entry && entry->ops)                                \
293                         entry->ops->outs(entry->hostdata,               \
294                                 addr, buffer, sizeof(type), count);     \
295                 else                                                    \
296                         WARN_ON_ONCE(1);                                \
297         }                                                               \
298 }
299
300 BUILD_LOGIC_IO(b, u8)
301 EXPORT_SYMBOL(logic_inb);
302 EXPORT_SYMBOL(logic_insb);
303 EXPORT_SYMBOL(logic_outb);
304 EXPORT_SYMBOL(logic_outsb);
305
306 BUILD_LOGIC_IO(w, u16)
307 EXPORT_SYMBOL(logic_inw);
308 EXPORT_SYMBOL(logic_insw);
309 EXPORT_SYMBOL(logic_outw);
310 EXPORT_SYMBOL(logic_outsw);
311
312 BUILD_LOGIC_IO(l, u32)
313 EXPORT_SYMBOL(logic_inl);
314 EXPORT_SYMBOL(logic_insl);
315 EXPORT_SYMBOL(logic_outl);
316 EXPORT_SYMBOL(logic_outsl);
317
318 #endif /* CONFIG_INDIRECT_PIO && PCI_IOBASE */