GNU Linux-libre 4.9.337-gnu1
[releases.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114                                   struct page *page, void **shadowp)
115 {
116         struct radix_tree_node *node;
117         void **slot;
118         int error;
119
120         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121                                     &node, &slot);
122         if (error)
123                 return error;
124         if (*slot) {
125                 void *p;
126
127                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128                 if (!radix_tree_exceptional_entry(p))
129                         return -EEXIST;
130
131                 mapping->nrexceptional--;
132                 if (!dax_mapping(mapping)) {
133                         if (shadowp)
134                                 *shadowp = p;
135                         if (node)
136                                 workingset_node_shadows_dec(node);
137                 } else {
138                         /* DAX can replace empty locked entry with a hole */
139                         WARN_ON_ONCE(p !=
140                                 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141                                          RADIX_DAX_ENTRY_LOCK));
142                         /* DAX accounts exceptional entries as normal pages */
143                         if (node)
144                                 workingset_node_pages_dec(node);
145                         /* Wakeup waiters for exceptional entry lock */
146                         dax_wake_mapping_entry_waiter(mapping, page->index,
147                                                       true);
148                 }
149         }
150         radix_tree_replace_slot(slot, page);
151         mapping->nrpages++;
152         if (node) {
153                 workingset_node_pages_inc(node);
154                 /*
155                  * Don't track node that contains actual pages.
156                  *
157                  * Avoid acquiring the list_lru lock if already
158                  * untracked.  The list_empty() test is safe as
159                  * node->private_list is protected by
160                  * mapping->tree_lock.
161                  */
162                 if (!list_empty(&node->private_list))
163                         list_lru_del(&workingset_shadow_nodes,
164                                      &node->private_list);
165         }
166         return 0;
167 }
168
169 static void page_cache_tree_delete(struct address_space *mapping,
170                                    struct page *page, void *shadow)
171 {
172         int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
173
174         VM_BUG_ON_PAGE(!PageLocked(page), page);
175         VM_BUG_ON_PAGE(PageTail(page), page);
176         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
177
178         for (i = 0; i < nr; i++) {
179                 struct radix_tree_node *node;
180                 void **slot;
181
182                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
183                                     &node, &slot);
184
185                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
186
187                 if (!node) {
188                         VM_BUG_ON_PAGE(nr != 1, page);
189                         /*
190                          * We need a node to properly account shadow
191                          * entries. Don't plant any without. XXX
192                          */
193                         shadow = NULL;
194                 }
195
196                 radix_tree_replace_slot(slot, shadow);
197
198                 if (!node)
199                         break;
200
201                 workingset_node_pages_dec(node);
202                 if (shadow)
203                         workingset_node_shadows_inc(node);
204                 else
205                         if (__radix_tree_delete_node(&mapping->page_tree, node))
206                                 continue;
207
208                 /*
209                  * Track node that only contains shadow entries. DAX mappings
210                  * contain no shadow entries and may contain other exceptional
211                  * entries so skip those.
212                  *
213                  * Avoid acquiring the list_lru lock if already tracked.
214                  * The list_empty() test is safe as node->private_list is
215                  * protected by mapping->tree_lock.
216                  */
217                 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
218                                 list_empty(&node->private_list)) {
219                         node->private_data = mapping;
220                         list_lru_add(&workingset_shadow_nodes,
221                                         &node->private_list);
222                 }
223         }
224
225         if (shadow) {
226                 mapping->nrexceptional += nr;
227                 /*
228                  * Make sure the nrexceptional update is committed before
229                  * the nrpages update so that final truncate racing
230                  * with reclaim does not see both counters 0 at the
231                  * same time and miss a shadow entry.
232                  */
233                 smp_wmb();
234         }
235         mapping->nrpages -= nr;
236 }
237
238 /*
239  * Delete a page from the page cache and free it. Caller has to make
240  * sure the page is locked and that nobody else uses it - or that usage
241  * is safe.  The caller must hold the mapping's tree_lock.
242  */
243 void __delete_from_page_cache(struct page *page, void *shadow)
244 {
245         struct address_space *mapping = page->mapping;
246         int nr = hpage_nr_pages(page);
247
248         trace_mm_filemap_delete_from_page_cache(page);
249         /*
250          * if we're uptodate, flush out into the cleancache, otherwise
251          * invalidate any existing cleancache entries.  We can't leave
252          * stale data around in the cleancache once our page is gone
253          */
254         if (PageUptodate(page) && PageMappedToDisk(page))
255                 cleancache_put_page(page);
256         else
257                 cleancache_invalidate_page(mapping, page);
258
259         VM_BUG_ON_PAGE(PageTail(page), page);
260         VM_BUG_ON_PAGE(page_mapped(page), page);
261         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
262                 int mapcount;
263
264                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
265                          current->comm, page_to_pfn(page));
266                 dump_page(page, "still mapped when deleted");
267                 dump_stack();
268                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
269
270                 mapcount = page_mapcount(page);
271                 if (mapping_exiting(mapping) &&
272                     page_count(page) >= mapcount + 2) {
273                         /*
274                          * All vmas have already been torn down, so it's
275                          * a good bet that actually the page is unmapped,
276                          * and we'd prefer not to leak it: if we're wrong,
277                          * some other bad page check should catch it later.
278                          */
279                         page_mapcount_reset(page);
280                         page_ref_sub(page, mapcount);
281                 }
282         }
283
284         page_cache_tree_delete(mapping, page, shadow);
285
286         page->mapping = NULL;
287         /* Leave page->index set: truncation lookup relies upon it */
288
289         /* hugetlb pages do not participate in page cache accounting. */
290         if (!PageHuge(page))
291                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
292         if (PageSwapBacked(page)) {
293                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
294                 if (PageTransHuge(page))
295                         __dec_node_page_state(page, NR_SHMEM_THPS);
296         } else {
297                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
298         }
299
300         /*
301          * At this point page must be either written or cleaned by truncate.
302          * Dirty page here signals a bug and loss of unwritten data.
303          *
304          * This fixes dirty accounting after removing the page entirely but
305          * leaves PageDirty set: it has no effect for truncated page and
306          * anyway will be cleared before returning page into buddy allocator.
307          */
308         if (WARN_ON_ONCE(PageDirty(page)))
309                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
310 }
311
312 /**
313  * delete_from_page_cache - delete page from page cache
314  * @page: the page which the kernel is trying to remove from page cache
315  *
316  * This must be called only on pages that have been verified to be in the page
317  * cache and locked.  It will never put the page into the free list, the caller
318  * has a reference on the page.
319  */
320 void delete_from_page_cache(struct page *page)
321 {
322         struct address_space *mapping = page_mapping(page);
323         unsigned long flags;
324         void (*freepage)(struct page *);
325
326         BUG_ON(!PageLocked(page));
327
328         freepage = mapping->a_ops->freepage;
329
330         spin_lock_irqsave(&mapping->tree_lock, flags);
331         __delete_from_page_cache(page, NULL);
332         spin_unlock_irqrestore(&mapping->tree_lock, flags);
333
334         if (freepage)
335                 freepage(page);
336
337         if (PageTransHuge(page) && !PageHuge(page)) {
338                 page_ref_sub(page, HPAGE_PMD_NR);
339                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
340         } else {
341                 put_page(page);
342         }
343 }
344 EXPORT_SYMBOL(delete_from_page_cache);
345
346 int filemap_check_errors(struct address_space *mapping)
347 {
348         int ret = 0;
349         /* Check for outstanding write errors */
350         if (test_bit(AS_ENOSPC, &mapping->flags) &&
351             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352                 ret = -ENOSPC;
353         if (test_bit(AS_EIO, &mapping->flags) &&
354             test_and_clear_bit(AS_EIO, &mapping->flags))
355                 ret = -EIO;
356         return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359
360 /**
361  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
362  * @mapping:    address space structure to write
363  * @start:      offset in bytes where the range starts
364  * @end:        offset in bytes where the range ends (inclusive)
365  * @sync_mode:  enable synchronous operation
366  *
367  * Start writeback against all of a mapping's dirty pages that lie
368  * within the byte offsets <start, end> inclusive.
369  *
370  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
371  * opposed to a regular memory cleansing writeback.  The difference between
372  * these two operations is that if a dirty page/buffer is encountered, it must
373  * be waited upon, and not just skipped over.
374  */
375 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
376                                 loff_t end, int sync_mode)
377 {
378         int ret;
379         struct writeback_control wbc = {
380                 .sync_mode = sync_mode,
381                 .nr_to_write = LONG_MAX,
382                 .range_start = start,
383                 .range_end = end,
384         };
385
386         if (!mapping_cap_writeback_dirty(mapping) ||
387             !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
388                 return 0;
389
390         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
391         ret = do_writepages(mapping, &wbc);
392         wbc_detach_inode(&wbc);
393         return ret;
394 }
395
396 static inline int __filemap_fdatawrite(struct address_space *mapping,
397         int sync_mode)
398 {
399         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
400 }
401
402 int filemap_fdatawrite(struct address_space *mapping)
403 {
404         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
405 }
406 EXPORT_SYMBOL(filemap_fdatawrite);
407
408 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
409                                 loff_t end)
410 {
411         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
412 }
413 EXPORT_SYMBOL(filemap_fdatawrite_range);
414
415 /**
416  * filemap_flush - mostly a non-blocking flush
417  * @mapping:    target address_space
418  *
419  * This is a mostly non-blocking flush.  Not suitable for data-integrity
420  * purposes - I/O may not be started against all dirty pages.
421  */
422 int filemap_flush(struct address_space *mapping)
423 {
424         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
425 }
426 EXPORT_SYMBOL(filemap_flush);
427
428 static int __filemap_fdatawait_range(struct address_space *mapping,
429                                      loff_t start_byte, loff_t end_byte)
430 {
431         pgoff_t index = start_byte >> PAGE_SHIFT;
432         pgoff_t end = end_byte >> PAGE_SHIFT;
433         struct pagevec pvec;
434         int nr_pages;
435         int ret = 0;
436
437         if (end_byte < start_byte)
438                 goto out;
439
440         pagevec_init(&pvec, 0);
441         while ((index <= end) &&
442                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
443                         PAGECACHE_TAG_WRITEBACK,
444                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
445                 unsigned i;
446
447                 for (i = 0; i < nr_pages; i++) {
448                         struct page *page = pvec.pages[i];
449
450                         /* until radix tree lookup accepts end_index */
451                         if (page->index > end)
452                                 continue;
453
454                         wait_on_page_writeback(page);
455                         if (TestClearPageError(page))
456                                 ret = -EIO;
457                 }
458                 pagevec_release(&pvec);
459                 cond_resched();
460         }
461 out:
462         return ret;
463 }
464
465 /**
466  * filemap_fdatawait_range - wait for writeback to complete
467  * @mapping:            address space structure to wait for
468  * @start_byte:         offset in bytes where the range starts
469  * @end_byte:           offset in bytes where the range ends (inclusive)
470  *
471  * Walk the list of under-writeback pages of the given address space
472  * in the given range and wait for all of them.  Check error status of
473  * the address space and return it.
474  *
475  * Since the error status of the address space is cleared by this function,
476  * callers are responsible for checking the return value and handling and/or
477  * reporting the error.
478  */
479 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
480                             loff_t end_byte)
481 {
482         int ret, ret2;
483
484         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
485         ret2 = filemap_check_errors(mapping);
486         if (!ret)
487                 ret = ret2;
488
489         return ret;
490 }
491 EXPORT_SYMBOL(filemap_fdatawait_range);
492
493 /**
494  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
495  * @mapping: address space structure to wait for
496  *
497  * Walk the list of under-writeback pages of the given address space
498  * and wait for all of them.  Unlike filemap_fdatawait(), this function
499  * does not clear error status of the address space.
500  *
501  * Use this function if callers don't handle errors themselves.  Expected
502  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
503  * fsfreeze(8)
504  */
505 void filemap_fdatawait_keep_errors(struct address_space *mapping)
506 {
507         loff_t i_size = i_size_read(mapping->host);
508
509         if (i_size == 0)
510                 return;
511
512         __filemap_fdatawait_range(mapping, 0, i_size - 1);
513 }
514
515 /**
516  * filemap_fdatawait - wait for all under-writeback pages to complete
517  * @mapping: address space structure to wait for
518  *
519  * Walk the list of under-writeback pages of the given address space
520  * and wait for all of them.  Check error status of the address space
521  * and return it.
522  *
523  * Since the error status of the address space is cleared by this function,
524  * callers are responsible for checking the return value and handling and/or
525  * reporting the error.
526  */
527 int filemap_fdatawait(struct address_space *mapping)
528 {
529         loff_t i_size = i_size_read(mapping->host);
530
531         if (i_size == 0)
532                 return 0;
533
534         return filemap_fdatawait_range(mapping, 0, i_size - 1);
535 }
536 EXPORT_SYMBOL(filemap_fdatawait);
537
538 int filemap_write_and_wait(struct address_space *mapping)
539 {
540         int err = 0;
541
542         if ((!dax_mapping(mapping) && mapping->nrpages) ||
543             (dax_mapping(mapping) && mapping->nrexceptional)) {
544                 err = filemap_fdatawrite(mapping);
545                 /*
546                  * Even if the above returned error, the pages may be
547                  * written partially (e.g. -ENOSPC), so we wait for it.
548                  * But the -EIO is special case, it may indicate the worst
549                  * thing (e.g. bug) happened, so we avoid waiting for it.
550                  */
551                 if (err != -EIO) {
552                         int err2 = filemap_fdatawait(mapping);
553                         if (!err)
554                                 err = err2;
555                 }
556         } else {
557                 err = filemap_check_errors(mapping);
558         }
559         return err;
560 }
561 EXPORT_SYMBOL(filemap_write_and_wait);
562
563 /**
564  * filemap_write_and_wait_range - write out & wait on a file range
565  * @mapping:    the address_space for the pages
566  * @lstart:     offset in bytes where the range starts
567  * @lend:       offset in bytes where the range ends (inclusive)
568  *
569  * Write out and wait upon file offsets lstart->lend, inclusive.
570  *
571  * Note that `lend' is inclusive (describes the last byte to be written) so
572  * that this function can be used to write to the very end-of-file (end = -1).
573  */
574 int filemap_write_and_wait_range(struct address_space *mapping,
575                                  loff_t lstart, loff_t lend)
576 {
577         int err = 0;
578
579         if ((!dax_mapping(mapping) && mapping->nrpages) ||
580             (dax_mapping(mapping) && mapping->nrexceptional)) {
581                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
582                                                  WB_SYNC_ALL);
583                 /* See comment of filemap_write_and_wait() */
584                 if (err != -EIO) {
585                         int err2 = filemap_fdatawait_range(mapping,
586                                                 lstart, lend);
587                         if (!err)
588                                 err = err2;
589                 }
590         } else {
591                 err = filemap_check_errors(mapping);
592         }
593         return err;
594 }
595 EXPORT_SYMBOL(filemap_write_and_wait_range);
596
597 /**
598  * replace_page_cache_page - replace a pagecache page with a new one
599  * @old:        page to be replaced
600  * @new:        page to replace with
601  * @gfp_mask:   allocation mode
602  *
603  * This function replaces a page in the pagecache with a new one.  On
604  * success it acquires the pagecache reference for the new page and
605  * drops it for the old page.  Both the old and new pages must be
606  * locked.  This function does not add the new page to the LRU, the
607  * caller must do that.
608  *
609  * The remove + add is atomic.  The only way this function can fail is
610  * memory allocation failure.
611  */
612 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
613 {
614         int error;
615
616         VM_BUG_ON_PAGE(!PageLocked(old), old);
617         VM_BUG_ON_PAGE(!PageLocked(new), new);
618         VM_BUG_ON_PAGE(new->mapping, new);
619
620         error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
621         if (!error) {
622                 struct address_space *mapping = old->mapping;
623                 void (*freepage)(struct page *);
624                 unsigned long flags;
625
626                 pgoff_t offset = old->index;
627                 freepage = mapping->a_ops->freepage;
628
629                 get_page(new);
630                 new->mapping = mapping;
631                 new->index = offset;
632
633                 spin_lock_irqsave(&mapping->tree_lock, flags);
634                 __delete_from_page_cache(old, NULL);
635                 error = page_cache_tree_insert(mapping, new, NULL);
636                 BUG_ON(error);
637
638                 /*
639                  * hugetlb pages do not participate in page cache accounting.
640                  */
641                 if (!PageHuge(new))
642                         __inc_node_page_state(new, NR_FILE_PAGES);
643                 if (PageSwapBacked(new))
644                         __inc_node_page_state(new, NR_SHMEM);
645                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
646                 mem_cgroup_migrate(old, new);
647                 radix_tree_preload_end();
648                 if (freepage)
649                         freepage(old);
650                 put_page(old);
651         }
652
653         return error;
654 }
655 EXPORT_SYMBOL_GPL(replace_page_cache_page);
656
657 static int __add_to_page_cache_locked(struct page *page,
658                                       struct address_space *mapping,
659                                       pgoff_t offset, gfp_t gfp_mask,
660                                       void **shadowp)
661 {
662         int huge = PageHuge(page);
663         struct mem_cgroup *memcg;
664         int error;
665
666         VM_BUG_ON_PAGE(!PageLocked(page), page);
667         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
668
669         if (!huge) {
670                 error = mem_cgroup_try_charge(page, current->mm,
671                                               gfp_mask, &memcg, false);
672                 if (error)
673                         return error;
674         }
675
676         error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
677         if (error) {
678                 if (!huge)
679                         mem_cgroup_cancel_charge(page, memcg, false);
680                 return error;
681         }
682
683         get_page(page);
684         page->mapping = mapping;
685         page->index = offset;
686
687         spin_lock_irq(&mapping->tree_lock);
688         error = page_cache_tree_insert(mapping, page, shadowp);
689         radix_tree_preload_end();
690         if (unlikely(error))
691                 goto err_insert;
692
693         /* hugetlb pages do not participate in page cache accounting. */
694         if (!huge)
695                 __inc_node_page_state(page, NR_FILE_PAGES);
696         spin_unlock_irq(&mapping->tree_lock);
697         if (!huge)
698                 mem_cgroup_commit_charge(page, memcg, false, false);
699         trace_mm_filemap_add_to_page_cache(page);
700         return 0;
701 err_insert:
702         page->mapping = NULL;
703         /* Leave page->index set: truncation relies upon it */
704         spin_unlock_irq(&mapping->tree_lock);
705         if (!huge)
706                 mem_cgroup_cancel_charge(page, memcg, false);
707         put_page(page);
708         return error;
709 }
710
711 /**
712  * add_to_page_cache_locked - add a locked page to the pagecache
713  * @page:       page to add
714  * @mapping:    the page's address_space
715  * @offset:     page index
716  * @gfp_mask:   page allocation mode
717  *
718  * This function is used to add a page to the pagecache. It must be locked.
719  * This function does not add the page to the LRU.  The caller must do that.
720  */
721 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
722                 pgoff_t offset, gfp_t gfp_mask)
723 {
724         return __add_to_page_cache_locked(page, mapping, offset,
725                                           gfp_mask, NULL);
726 }
727 EXPORT_SYMBOL(add_to_page_cache_locked);
728
729 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
730                                 pgoff_t offset, gfp_t gfp_mask)
731 {
732         void *shadow = NULL;
733         int ret;
734
735         __SetPageLocked(page);
736         ret = __add_to_page_cache_locked(page, mapping, offset,
737                                          gfp_mask, &shadow);
738         if (unlikely(ret))
739                 __ClearPageLocked(page);
740         else {
741                 /*
742                  * The page might have been evicted from cache only
743                  * recently, in which case it should be activated like
744                  * any other repeatedly accessed page.
745                  * The exception is pages getting rewritten; evicting other
746                  * data from the working set, only to cache data that will
747                  * get overwritten with something else, is a waste of memory.
748                  */
749                 if (!(gfp_mask & __GFP_WRITE) &&
750                     shadow && workingset_refault(shadow)) {
751                         SetPageActive(page);
752                         workingset_activation(page);
753                 } else
754                         ClearPageActive(page);
755                 lru_cache_add(page);
756         }
757         return ret;
758 }
759 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
760
761 #ifdef CONFIG_NUMA
762 struct page *__page_cache_alloc(gfp_t gfp)
763 {
764         int n;
765         struct page *page;
766
767         if (cpuset_do_page_mem_spread()) {
768                 unsigned int cpuset_mems_cookie;
769                 do {
770                         cpuset_mems_cookie = read_mems_allowed_begin();
771                         n = cpuset_mem_spread_node();
772                         page = __alloc_pages_node(n, gfp, 0);
773                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
774
775                 return page;
776         }
777         return alloc_pages(gfp, 0);
778 }
779 EXPORT_SYMBOL(__page_cache_alloc);
780 #endif
781
782 /*
783  * In order to wait for pages to become available there must be
784  * waitqueues associated with pages. By using a hash table of
785  * waitqueues where the bucket discipline is to maintain all
786  * waiters on the same queue and wake all when any of the pages
787  * become available, and for the woken contexts to check to be
788  * sure the appropriate page became available, this saves space
789  * at a cost of "thundering herd" phenomena during rare hash
790  * collisions.
791  */
792 wait_queue_head_t *page_waitqueue(struct page *page)
793 {
794         return bit_waitqueue(page, 0);
795 }
796 EXPORT_SYMBOL(page_waitqueue);
797
798 void wait_on_page_bit(struct page *page, int bit_nr)
799 {
800         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
801
802         if (test_bit(bit_nr, &page->flags))
803                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
804                                                         TASK_UNINTERRUPTIBLE);
805 }
806 EXPORT_SYMBOL(wait_on_page_bit);
807
808 int wait_on_page_bit_killable(struct page *page, int bit_nr)
809 {
810         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
811
812         if (!test_bit(bit_nr, &page->flags))
813                 return 0;
814
815         return __wait_on_bit(page_waitqueue(page), &wait,
816                              bit_wait_io, TASK_KILLABLE);
817 }
818
819 int wait_on_page_bit_killable_timeout(struct page *page,
820                                        int bit_nr, unsigned long timeout)
821 {
822         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
823
824         wait.key.timeout = jiffies + timeout;
825         if (!test_bit(bit_nr, &page->flags))
826                 return 0;
827         return __wait_on_bit(page_waitqueue(page), &wait,
828                              bit_wait_io_timeout, TASK_KILLABLE);
829 }
830 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
831
832 /**
833  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
834  * @page: Page defining the wait queue of interest
835  * @waiter: Waiter to add to the queue
836  *
837  * Add an arbitrary @waiter to the wait queue for the nominated @page.
838  */
839 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
840 {
841         wait_queue_head_t *q = page_waitqueue(page);
842         unsigned long flags;
843
844         spin_lock_irqsave(&q->lock, flags);
845         __add_wait_queue(q, waiter);
846         spin_unlock_irqrestore(&q->lock, flags);
847 }
848 EXPORT_SYMBOL_GPL(add_page_wait_queue);
849
850 /**
851  * unlock_page - unlock a locked page
852  * @page: the page
853  *
854  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
855  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
856  * mechanism between PageLocked pages and PageWriteback pages is shared.
857  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
858  *
859  * The mb is necessary to enforce ordering between the clear_bit and the read
860  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
861  */
862 void unlock_page(struct page *page)
863 {
864         page = compound_head(page);
865         VM_BUG_ON_PAGE(!PageLocked(page), page);
866         clear_bit_unlock(PG_locked, &page->flags);
867         smp_mb__after_atomic();
868         wake_up_page(page, PG_locked);
869 }
870 EXPORT_SYMBOL(unlock_page);
871
872 /**
873  * end_page_writeback - end writeback against a page
874  * @page: the page
875  */
876 void end_page_writeback(struct page *page)
877 {
878         /*
879          * TestClearPageReclaim could be used here but it is an atomic
880          * operation and overkill in this particular case. Failing to
881          * shuffle a page marked for immediate reclaim is too mild to
882          * justify taking an atomic operation penalty at the end of
883          * ever page writeback.
884          */
885         if (PageReclaim(page)) {
886                 ClearPageReclaim(page);
887                 rotate_reclaimable_page(page);
888         }
889
890         if (!test_clear_page_writeback(page))
891                 BUG();
892
893         smp_mb__after_atomic();
894         wake_up_page(page, PG_writeback);
895 }
896 EXPORT_SYMBOL(end_page_writeback);
897
898 /*
899  * After completing I/O on a page, call this routine to update the page
900  * flags appropriately
901  */
902 void page_endio(struct page *page, bool is_write, int err)
903 {
904         if (!is_write) {
905                 if (!err) {
906                         SetPageUptodate(page);
907                 } else {
908                         ClearPageUptodate(page);
909                         SetPageError(page);
910                 }
911                 unlock_page(page);
912         } else {
913                 if (err) {
914                         struct address_space *mapping;
915
916                         SetPageError(page);
917                         mapping = page_mapping(page);
918                         if (mapping)
919                                 mapping_set_error(mapping, err);
920                 }
921                 end_page_writeback(page);
922         }
923 }
924 EXPORT_SYMBOL_GPL(page_endio);
925
926 /**
927  * __lock_page - get a lock on the page, assuming we need to sleep to get it
928  * @page: the page to lock
929  */
930 void __lock_page(struct page *page)
931 {
932         struct page *page_head = compound_head(page);
933         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
934
935         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
936                                                         TASK_UNINTERRUPTIBLE);
937 }
938 EXPORT_SYMBOL(__lock_page);
939
940 int __lock_page_killable(struct page *page)
941 {
942         struct page *page_head = compound_head(page);
943         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
944
945         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
946                                         bit_wait_io, TASK_KILLABLE);
947 }
948 EXPORT_SYMBOL_GPL(__lock_page_killable);
949
950 /*
951  * Return values:
952  * 1 - page is locked; mmap_sem is still held.
953  * 0 - page is not locked.
954  *     mmap_sem has been released (up_read()), unless flags had both
955  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
956  *     which case mmap_sem is still held.
957  *
958  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
959  * with the page locked and the mmap_sem unperturbed.
960  */
961 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
962                          unsigned int flags)
963 {
964         if (flags & FAULT_FLAG_ALLOW_RETRY) {
965                 /*
966                  * CAUTION! In this case, mmap_sem is not released
967                  * even though return 0.
968                  */
969                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
970                         return 0;
971
972                 up_read(&mm->mmap_sem);
973                 if (flags & FAULT_FLAG_KILLABLE)
974                         wait_on_page_locked_killable(page);
975                 else
976                         wait_on_page_locked(page);
977                 return 0;
978         } else {
979                 if (flags & FAULT_FLAG_KILLABLE) {
980                         int ret;
981
982                         ret = __lock_page_killable(page);
983                         if (ret) {
984                                 up_read(&mm->mmap_sem);
985                                 return 0;
986                         }
987                 } else
988                         __lock_page(page);
989                 return 1;
990         }
991 }
992
993 /**
994  * page_cache_next_hole - find the next hole (not-present entry)
995  * @mapping: mapping
996  * @index: index
997  * @max_scan: maximum range to search
998  *
999  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1000  * lowest indexed hole.
1001  *
1002  * Returns: the index of the hole if found, otherwise returns an index
1003  * outside of the set specified (in which case 'return - index >=
1004  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1005  * be returned.
1006  *
1007  * page_cache_next_hole may be called under rcu_read_lock. However,
1008  * like radix_tree_gang_lookup, this will not atomically search a
1009  * snapshot of the tree at a single point in time. For example, if a
1010  * hole is created at index 5, then subsequently a hole is created at
1011  * index 10, page_cache_next_hole covering both indexes may return 10
1012  * if called under rcu_read_lock.
1013  */
1014 pgoff_t page_cache_next_hole(struct address_space *mapping,
1015                              pgoff_t index, unsigned long max_scan)
1016 {
1017         unsigned long i;
1018
1019         for (i = 0; i < max_scan; i++) {
1020                 struct page *page;
1021
1022                 page = radix_tree_lookup(&mapping->page_tree, index);
1023                 if (!page || radix_tree_exceptional_entry(page))
1024                         break;
1025                 index++;
1026                 if (index == 0)
1027                         break;
1028         }
1029
1030         return index;
1031 }
1032 EXPORT_SYMBOL(page_cache_next_hole);
1033
1034 /**
1035  * page_cache_prev_hole - find the prev hole (not-present entry)
1036  * @mapping: mapping
1037  * @index: index
1038  * @max_scan: maximum range to search
1039  *
1040  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1041  * the first hole.
1042  *
1043  * Returns: the index of the hole if found, otherwise returns an index
1044  * outside of the set specified (in which case 'index - return >=
1045  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1046  * will be returned.
1047  *
1048  * page_cache_prev_hole may be called under rcu_read_lock. However,
1049  * like radix_tree_gang_lookup, this will not atomically search a
1050  * snapshot of the tree at a single point in time. For example, if a
1051  * hole is created at index 10, then subsequently a hole is created at
1052  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1053  * called under rcu_read_lock.
1054  */
1055 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1056                              pgoff_t index, unsigned long max_scan)
1057 {
1058         unsigned long i;
1059
1060         for (i = 0; i < max_scan; i++) {
1061                 struct page *page;
1062
1063                 page = radix_tree_lookup(&mapping->page_tree, index);
1064                 if (!page || radix_tree_exceptional_entry(page))
1065                         break;
1066                 index--;
1067                 if (index == ULONG_MAX)
1068                         break;
1069         }
1070
1071         return index;
1072 }
1073 EXPORT_SYMBOL(page_cache_prev_hole);
1074
1075 /**
1076  * find_get_entry - find and get a page cache entry
1077  * @mapping: the address_space to search
1078  * @offset: the page cache index
1079  *
1080  * Looks up the page cache slot at @mapping & @offset.  If there is a
1081  * page cache page, it is returned with an increased refcount.
1082  *
1083  * If the slot holds a shadow entry of a previously evicted page, or a
1084  * swap entry from shmem/tmpfs, it is returned.
1085  *
1086  * Otherwise, %NULL is returned.
1087  */
1088 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1089 {
1090         void **pagep;
1091         struct page *head, *page;
1092
1093         rcu_read_lock();
1094 repeat:
1095         page = NULL;
1096         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1097         if (pagep) {
1098                 page = radix_tree_deref_slot(pagep);
1099                 if (unlikely(!page))
1100                         goto out;
1101                 if (radix_tree_exception(page)) {
1102                         if (radix_tree_deref_retry(page))
1103                                 goto repeat;
1104                         /*
1105                          * A shadow entry of a recently evicted page,
1106                          * or a swap entry from shmem/tmpfs.  Return
1107                          * it without attempting to raise page count.
1108                          */
1109                         goto out;
1110                 }
1111
1112                 head = compound_head(page);
1113                 if (!page_cache_get_speculative(head))
1114                         goto repeat;
1115
1116                 /* The page was split under us? */
1117                 if (compound_head(page) != head) {
1118                         put_page(head);
1119                         goto repeat;
1120                 }
1121
1122                 /*
1123                  * Has the page moved?
1124                  * This is part of the lockless pagecache protocol. See
1125                  * include/linux/pagemap.h for details.
1126                  */
1127                 if (unlikely(page != *pagep)) {
1128                         put_page(head);
1129                         goto repeat;
1130                 }
1131         }
1132 out:
1133         rcu_read_unlock();
1134
1135         return page;
1136 }
1137 EXPORT_SYMBOL(find_get_entry);
1138
1139 /**
1140  * find_lock_entry - locate, pin and lock a page cache entry
1141  * @mapping: the address_space to search
1142  * @offset: the page cache index
1143  *
1144  * Looks up the page cache slot at @mapping & @offset.  If there is a
1145  * page cache page, it is returned locked and with an increased
1146  * refcount.
1147  *
1148  * If the slot holds a shadow entry of a previously evicted page, or a
1149  * swap entry from shmem/tmpfs, it is returned.
1150  *
1151  * Otherwise, %NULL is returned.
1152  *
1153  * find_lock_entry() may sleep.
1154  */
1155 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1156 {
1157         struct page *page;
1158
1159 repeat:
1160         page = find_get_entry(mapping, offset);
1161         if (page && !radix_tree_exception(page)) {
1162                 lock_page(page);
1163                 /* Has the page been truncated? */
1164                 if (unlikely(page_mapping(page) != mapping)) {
1165                         unlock_page(page);
1166                         put_page(page);
1167                         goto repeat;
1168                 }
1169                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1170         }
1171         return page;
1172 }
1173 EXPORT_SYMBOL(find_lock_entry);
1174
1175 /**
1176  * pagecache_get_page - find and get a page reference
1177  * @mapping: the address_space to search
1178  * @offset: the page index
1179  * @fgp_flags: PCG flags
1180  * @gfp_mask: gfp mask to use for the page cache data page allocation
1181  *
1182  * Looks up the page cache slot at @mapping & @offset.
1183  *
1184  * PCG flags modify how the page is returned.
1185  *
1186  * FGP_ACCESSED: the page will be marked accessed
1187  * FGP_LOCK: Page is return locked
1188  * FGP_CREAT: If page is not present then a new page is allocated using
1189  *              @gfp_mask and added to the page cache and the VM's LRU
1190  *              list. The page is returned locked and with an increased
1191  *              refcount. Otherwise, %NULL is returned.
1192  *
1193  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1194  * if the GFP flags specified for FGP_CREAT are atomic.
1195  *
1196  * If there is a page cache page, it is returned with an increased refcount.
1197  */
1198 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1199         int fgp_flags, gfp_t gfp_mask)
1200 {
1201         struct page *page;
1202
1203 repeat:
1204         page = find_get_entry(mapping, offset);
1205         if (radix_tree_exceptional_entry(page))
1206                 page = NULL;
1207         if (!page)
1208                 goto no_page;
1209
1210         if (fgp_flags & FGP_LOCK) {
1211                 if (fgp_flags & FGP_NOWAIT) {
1212                         if (!trylock_page(page)) {
1213                                 put_page(page);
1214                                 return NULL;
1215                         }
1216                 } else {
1217                         lock_page(page);
1218                 }
1219
1220                 /* Has the page been truncated? */
1221                 if (unlikely(page->mapping != mapping)) {
1222                         unlock_page(page);
1223                         put_page(page);
1224                         goto repeat;
1225                 }
1226                 VM_BUG_ON_PAGE(page->index != offset, page);
1227         }
1228
1229         if (page && (fgp_flags & FGP_ACCESSED))
1230                 mark_page_accessed(page);
1231
1232 no_page:
1233         if (!page && (fgp_flags & FGP_CREAT)) {
1234                 int err;
1235                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1236                         gfp_mask |= __GFP_WRITE;
1237                 if (fgp_flags & FGP_NOFS)
1238                         gfp_mask &= ~__GFP_FS;
1239
1240                 page = __page_cache_alloc(gfp_mask);
1241                 if (!page)
1242                         return NULL;
1243
1244                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1245                         fgp_flags |= FGP_LOCK;
1246
1247                 /* Init accessed so avoid atomic mark_page_accessed later */
1248                 if (fgp_flags & FGP_ACCESSED)
1249                         __SetPageReferenced(page);
1250
1251                 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1252                 if (unlikely(err)) {
1253                         put_page(page);
1254                         page = NULL;
1255                         if (err == -EEXIST)
1256                                 goto repeat;
1257                 }
1258         }
1259
1260         return page;
1261 }
1262 EXPORT_SYMBOL(pagecache_get_page);
1263
1264 /**
1265  * find_get_entries - gang pagecache lookup
1266  * @mapping:    The address_space to search
1267  * @start:      The starting page cache index
1268  * @nr_entries: The maximum number of entries
1269  * @entries:    Where the resulting entries are placed
1270  * @indices:    The cache indices corresponding to the entries in @entries
1271  *
1272  * find_get_entries() will search for and return a group of up to
1273  * @nr_entries entries in the mapping.  The entries are placed at
1274  * @entries.  find_get_entries() takes a reference against any actual
1275  * pages it returns.
1276  *
1277  * The search returns a group of mapping-contiguous page cache entries
1278  * with ascending indexes.  There may be holes in the indices due to
1279  * not-present pages.
1280  *
1281  * Any shadow entries of evicted pages, or swap entries from
1282  * shmem/tmpfs, are included in the returned array.
1283  *
1284  * find_get_entries() returns the number of pages and shadow entries
1285  * which were found.
1286  */
1287 unsigned find_get_entries(struct address_space *mapping,
1288                           pgoff_t start, unsigned int nr_entries,
1289                           struct page **entries, pgoff_t *indices)
1290 {
1291         void **slot;
1292         unsigned int ret = 0;
1293         struct radix_tree_iter iter;
1294
1295         if (!nr_entries)
1296                 return 0;
1297
1298         rcu_read_lock();
1299         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1300                 struct page *head, *page;
1301 repeat:
1302                 page = radix_tree_deref_slot(slot);
1303                 if (unlikely(!page))
1304                         continue;
1305                 if (radix_tree_exception(page)) {
1306                         if (radix_tree_deref_retry(page)) {
1307                                 slot = radix_tree_iter_retry(&iter);
1308                                 continue;
1309                         }
1310                         /*
1311                          * A shadow entry of a recently evicted page, a swap
1312                          * entry from shmem/tmpfs or a DAX entry.  Return it
1313                          * without attempting to raise page count.
1314                          */
1315                         goto export;
1316                 }
1317
1318                 head = compound_head(page);
1319                 if (!page_cache_get_speculative(head))
1320                         goto repeat;
1321
1322                 /* The page was split under us? */
1323                 if (compound_head(page) != head) {
1324                         put_page(head);
1325                         goto repeat;
1326                 }
1327
1328                 /* Has the page moved? */
1329                 if (unlikely(page != *slot)) {
1330                         put_page(head);
1331                         goto repeat;
1332                 }
1333 export:
1334                 indices[ret] = iter.index;
1335                 entries[ret] = page;
1336                 if (++ret == nr_entries)
1337                         break;
1338         }
1339         rcu_read_unlock();
1340         return ret;
1341 }
1342
1343 /**
1344  * find_get_pages - gang pagecache lookup
1345  * @mapping:    The address_space to search
1346  * @start:      The starting page index
1347  * @nr_pages:   The maximum number of pages
1348  * @pages:      Where the resulting pages are placed
1349  *
1350  * find_get_pages() will search for and return a group of up to
1351  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1352  * find_get_pages() takes a reference against the returned pages.
1353  *
1354  * The search returns a group of mapping-contiguous pages with ascending
1355  * indexes.  There may be holes in the indices due to not-present pages.
1356  *
1357  * find_get_pages() returns the number of pages which were found.
1358  */
1359 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1360                             unsigned int nr_pages, struct page **pages)
1361 {
1362         struct radix_tree_iter iter;
1363         void **slot;
1364         unsigned ret = 0;
1365
1366         if (unlikely(!nr_pages))
1367                 return 0;
1368
1369         rcu_read_lock();
1370         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1371                 struct page *head, *page;
1372 repeat:
1373                 page = radix_tree_deref_slot(slot);
1374                 if (unlikely(!page))
1375                         continue;
1376
1377                 if (radix_tree_exception(page)) {
1378                         if (radix_tree_deref_retry(page)) {
1379                                 slot = radix_tree_iter_retry(&iter);
1380                                 continue;
1381                         }
1382                         /*
1383                          * A shadow entry of a recently evicted page,
1384                          * or a swap entry from shmem/tmpfs.  Skip
1385                          * over it.
1386                          */
1387                         continue;
1388                 }
1389
1390                 head = compound_head(page);
1391                 if (!page_cache_get_speculative(head))
1392                         goto repeat;
1393
1394                 /* The page was split under us? */
1395                 if (compound_head(page) != head) {
1396                         put_page(head);
1397                         goto repeat;
1398                 }
1399
1400                 /* Has the page moved? */
1401                 if (unlikely(page != *slot)) {
1402                         put_page(head);
1403                         goto repeat;
1404                 }
1405
1406                 pages[ret] = page;
1407                 if (++ret == nr_pages)
1408                         break;
1409         }
1410
1411         rcu_read_unlock();
1412         return ret;
1413 }
1414
1415 /**
1416  * find_get_pages_contig - gang contiguous pagecache lookup
1417  * @mapping:    The address_space to search
1418  * @index:      The starting page index
1419  * @nr_pages:   The maximum number of pages
1420  * @pages:      Where the resulting pages are placed
1421  *
1422  * find_get_pages_contig() works exactly like find_get_pages(), except
1423  * that the returned number of pages are guaranteed to be contiguous.
1424  *
1425  * find_get_pages_contig() returns the number of pages which were found.
1426  */
1427 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1428                                unsigned int nr_pages, struct page **pages)
1429 {
1430         struct radix_tree_iter iter;
1431         void **slot;
1432         unsigned int ret = 0;
1433
1434         if (unlikely(!nr_pages))
1435                 return 0;
1436
1437         rcu_read_lock();
1438         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1439                 struct page *head, *page;
1440 repeat:
1441                 page = radix_tree_deref_slot(slot);
1442                 /* The hole, there no reason to continue */
1443                 if (unlikely(!page))
1444                         break;
1445
1446                 if (radix_tree_exception(page)) {
1447                         if (radix_tree_deref_retry(page)) {
1448                                 slot = radix_tree_iter_retry(&iter);
1449                                 continue;
1450                         }
1451                         /*
1452                          * A shadow entry of a recently evicted page,
1453                          * or a swap entry from shmem/tmpfs.  Stop
1454                          * looking for contiguous pages.
1455                          */
1456                         break;
1457                 }
1458
1459                 head = compound_head(page);
1460                 if (!page_cache_get_speculative(head))
1461                         goto repeat;
1462
1463                 /* The page was split under us? */
1464                 if (compound_head(page) != head) {
1465                         put_page(head);
1466                         goto repeat;
1467                 }
1468
1469                 /* Has the page moved? */
1470                 if (unlikely(page != *slot)) {
1471                         put_page(head);
1472                         goto repeat;
1473                 }
1474
1475                 /*
1476                  * must check mapping and index after taking the ref.
1477                  * otherwise we can get both false positives and false
1478                  * negatives, which is just confusing to the caller.
1479                  */
1480                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1481                         put_page(page);
1482                         break;
1483                 }
1484
1485                 pages[ret] = page;
1486                 if (++ret == nr_pages)
1487                         break;
1488         }
1489         rcu_read_unlock();
1490         return ret;
1491 }
1492 EXPORT_SYMBOL(find_get_pages_contig);
1493
1494 /**
1495  * find_get_pages_tag - find and return pages that match @tag
1496  * @mapping:    the address_space to search
1497  * @index:      the starting page index
1498  * @tag:        the tag index
1499  * @nr_pages:   the maximum number of pages
1500  * @pages:      where the resulting pages are placed
1501  *
1502  * Like find_get_pages, except we only return pages which are tagged with
1503  * @tag.   We update @index to index the next page for the traversal.
1504  */
1505 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1506                         int tag, unsigned int nr_pages, struct page **pages)
1507 {
1508         struct radix_tree_iter iter;
1509         void **slot;
1510         unsigned ret = 0;
1511
1512         if (unlikely(!nr_pages))
1513                 return 0;
1514
1515         rcu_read_lock();
1516         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1517                                    &iter, *index, tag) {
1518                 struct page *head, *page;
1519 repeat:
1520                 page = radix_tree_deref_slot(slot);
1521                 if (unlikely(!page))
1522                         continue;
1523
1524                 if (radix_tree_exception(page)) {
1525                         if (radix_tree_deref_retry(page)) {
1526                                 slot = radix_tree_iter_retry(&iter);
1527                                 continue;
1528                         }
1529                         /*
1530                          * A shadow entry of a recently evicted page.
1531                          *
1532                          * Those entries should never be tagged, but
1533                          * this tree walk is lockless and the tags are
1534                          * looked up in bulk, one radix tree node at a
1535                          * time, so there is a sizable window for page
1536                          * reclaim to evict a page we saw tagged.
1537                          *
1538                          * Skip over it.
1539                          */
1540                         continue;
1541                 }
1542
1543                 head = compound_head(page);
1544                 if (!page_cache_get_speculative(head))
1545                         goto repeat;
1546
1547                 /* The page was split under us? */
1548                 if (compound_head(page) != head) {
1549                         put_page(head);
1550                         goto repeat;
1551                 }
1552
1553                 /* Has the page moved? */
1554                 if (unlikely(page != *slot)) {
1555                         put_page(head);
1556                         goto repeat;
1557                 }
1558
1559                 pages[ret] = page;
1560                 if (++ret == nr_pages)
1561                         break;
1562         }
1563
1564         rcu_read_unlock();
1565
1566         if (ret)
1567                 *index = pages[ret - 1]->index + 1;
1568
1569         return ret;
1570 }
1571 EXPORT_SYMBOL(find_get_pages_tag);
1572
1573 /**
1574  * find_get_entries_tag - find and return entries that match @tag
1575  * @mapping:    the address_space to search
1576  * @start:      the starting page cache index
1577  * @tag:        the tag index
1578  * @nr_entries: the maximum number of entries
1579  * @entries:    where the resulting entries are placed
1580  * @indices:    the cache indices corresponding to the entries in @entries
1581  *
1582  * Like find_get_entries, except we only return entries which are tagged with
1583  * @tag.
1584  */
1585 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1586                         int tag, unsigned int nr_entries,
1587                         struct page **entries, pgoff_t *indices)
1588 {
1589         void **slot;
1590         unsigned int ret = 0;
1591         struct radix_tree_iter iter;
1592
1593         if (!nr_entries)
1594                 return 0;
1595
1596         rcu_read_lock();
1597         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1598                                    &iter, start, tag) {
1599                 struct page *head, *page;
1600 repeat:
1601                 page = radix_tree_deref_slot(slot);
1602                 if (unlikely(!page))
1603                         continue;
1604                 if (radix_tree_exception(page)) {
1605                         if (radix_tree_deref_retry(page)) {
1606                                 slot = radix_tree_iter_retry(&iter);
1607                                 continue;
1608                         }
1609
1610                         /*
1611                          * A shadow entry of a recently evicted page, a swap
1612                          * entry from shmem/tmpfs or a DAX entry.  Return it
1613                          * without attempting to raise page count.
1614                          */
1615                         goto export;
1616                 }
1617
1618                 head = compound_head(page);
1619                 if (!page_cache_get_speculative(head))
1620                         goto repeat;
1621
1622                 /* The page was split under us? */
1623                 if (compound_head(page) != head) {
1624                         put_page(head);
1625                         goto repeat;
1626                 }
1627
1628                 /* Has the page moved? */
1629                 if (unlikely(page != *slot)) {
1630                         put_page(head);
1631                         goto repeat;
1632                 }
1633 export:
1634                 indices[ret] = iter.index;
1635                 entries[ret] = page;
1636                 if (++ret == nr_entries)
1637                         break;
1638         }
1639         rcu_read_unlock();
1640         return ret;
1641 }
1642 EXPORT_SYMBOL(find_get_entries_tag);
1643
1644 /*
1645  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1646  * a _large_ part of the i/o request. Imagine the worst scenario:
1647  *
1648  *      ---R__________________________________________B__________
1649  *         ^ reading here                             ^ bad block(assume 4k)
1650  *
1651  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1652  * => failing the whole request => read(R) => read(R+1) =>
1653  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1654  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1655  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1656  *
1657  * It is going insane. Fix it by quickly scaling down the readahead size.
1658  */
1659 static void shrink_readahead_size_eio(struct file *filp,
1660                                         struct file_ra_state *ra)
1661 {
1662         ra->ra_pages /= 4;
1663 }
1664
1665 /**
1666  * do_generic_file_read - generic file read routine
1667  * @filp:       the file to read
1668  * @ppos:       current file position
1669  * @iter:       data destination
1670  * @written:    already copied
1671  *
1672  * This is a generic file read routine, and uses the
1673  * mapping->a_ops->readpage() function for the actual low-level stuff.
1674  *
1675  * This is really ugly. But the goto's actually try to clarify some
1676  * of the logic when it comes to error handling etc.
1677  */
1678 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1679                 struct iov_iter *iter, ssize_t written)
1680 {
1681         struct address_space *mapping = filp->f_mapping;
1682         struct inode *inode = mapping->host;
1683         struct file_ra_state *ra = &filp->f_ra;
1684         pgoff_t index;
1685         pgoff_t last_index;
1686         pgoff_t prev_index;
1687         unsigned long offset;      /* offset into pagecache page */
1688         unsigned int prev_offset;
1689         int error = 0;
1690
1691         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1692                 return 0;
1693         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1694
1695         index = *ppos >> PAGE_SHIFT;
1696         prev_index = ra->prev_pos >> PAGE_SHIFT;
1697         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1698         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1699         offset = *ppos & ~PAGE_MASK;
1700
1701         for (;;) {
1702                 struct page *page;
1703                 pgoff_t end_index;
1704                 loff_t isize;
1705                 unsigned long nr, ret;
1706
1707                 cond_resched();
1708 find_page:
1709                 if (fatal_signal_pending(current)) {
1710                         error = -EINTR;
1711                         goto out;
1712                 }
1713
1714                 page = find_get_page(mapping, index);
1715                 if (!page) {
1716                         page_cache_sync_readahead(mapping,
1717                                         ra, filp,
1718                                         index, last_index - index);
1719                         page = find_get_page(mapping, index);
1720                         if (unlikely(page == NULL))
1721                                 goto no_cached_page;
1722                 }
1723                 if (PageReadahead(page)) {
1724                         page_cache_async_readahead(mapping,
1725                                         ra, filp, page,
1726                                         index, last_index - index);
1727                 }
1728                 if (!PageUptodate(page)) {
1729                         /*
1730                          * See comment in do_read_cache_page on why
1731                          * wait_on_page_locked is used to avoid unnecessarily
1732                          * serialisations and why it's safe.
1733                          */
1734                         error = wait_on_page_locked_killable(page);
1735                         if (unlikely(error))
1736                                 goto readpage_error;
1737                         if (PageUptodate(page))
1738                                 goto page_ok;
1739
1740                         if (inode->i_blkbits == PAGE_SHIFT ||
1741                                         !mapping->a_ops->is_partially_uptodate)
1742                                 goto page_not_up_to_date;
1743                         /* pipes can't handle partially uptodate pages */
1744                         if (unlikely(iter->type & ITER_PIPE))
1745                                 goto page_not_up_to_date;
1746                         if (!trylock_page(page))
1747                                 goto page_not_up_to_date;
1748                         /* Did it get truncated before we got the lock? */
1749                         if (!page->mapping)
1750                                 goto page_not_up_to_date_locked;
1751                         if (!mapping->a_ops->is_partially_uptodate(page,
1752                                                         offset, iter->count))
1753                                 goto page_not_up_to_date_locked;
1754                         unlock_page(page);
1755                 }
1756 page_ok:
1757                 /*
1758                  * i_size must be checked after we know the page is Uptodate.
1759                  *
1760                  * Checking i_size after the check allows us to calculate
1761                  * the correct value for "nr", which means the zero-filled
1762                  * part of the page is not copied back to userspace (unless
1763                  * another truncate extends the file - this is desired though).
1764                  */
1765
1766                 isize = i_size_read(inode);
1767                 end_index = (isize - 1) >> PAGE_SHIFT;
1768                 if (unlikely(!isize || index > end_index)) {
1769                         put_page(page);
1770                         goto out;
1771                 }
1772
1773                 /* nr is the maximum number of bytes to copy from this page */
1774                 nr = PAGE_SIZE;
1775                 if (index == end_index) {
1776                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1777                         if (nr <= offset) {
1778                                 put_page(page);
1779                                 goto out;
1780                         }
1781                 }
1782                 nr = nr - offset;
1783
1784                 /* If users can be writing to this page using arbitrary
1785                  * virtual addresses, take care about potential aliasing
1786                  * before reading the page on the kernel side.
1787                  */
1788                 if (mapping_writably_mapped(mapping))
1789                         flush_dcache_page(page);
1790
1791                 /*
1792                  * When a sequential read accesses a page several times,
1793                  * only mark it as accessed the first time.
1794                  */
1795                 if (prev_index != index || offset != prev_offset)
1796                         mark_page_accessed(page);
1797                 prev_index = index;
1798
1799                 /*
1800                  * Ok, we have the page, and it's up-to-date, so
1801                  * now we can copy it to user space...
1802                  */
1803
1804                 ret = copy_page_to_iter(page, offset, nr, iter);
1805                 offset += ret;
1806                 index += offset >> PAGE_SHIFT;
1807                 offset &= ~PAGE_MASK;
1808                 prev_offset = offset;
1809
1810                 put_page(page);
1811                 written += ret;
1812                 if (!iov_iter_count(iter))
1813                         goto out;
1814                 if (ret < nr) {
1815                         error = -EFAULT;
1816                         goto out;
1817                 }
1818                 continue;
1819
1820 page_not_up_to_date:
1821                 /* Get exclusive access to the page ... */
1822                 error = lock_page_killable(page);
1823                 if (unlikely(error))
1824                         goto readpage_error;
1825
1826 page_not_up_to_date_locked:
1827                 /* Did it get truncated before we got the lock? */
1828                 if (!page->mapping) {
1829                         unlock_page(page);
1830                         put_page(page);
1831                         continue;
1832                 }
1833
1834                 /* Did somebody else fill it already? */
1835                 if (PageUptodate(page)) {
1836                         unlock_page(page);
1837                         goto page_ok;
1838                 }
1839
1840 readpage:
1841                 /*
1842                  * A previous I/O error may have been due to temporary
1843                  * failures, eg. multipath errors.
1844                  * PG_error will be set again if readpage fails.
1845                  */
1846                 ClearPageError(page);
1847                 /* Start the actual read. The read will unlock the page. */
1848                 error = mapping->a_ops->readpage(filp, page);
1849
1850                 if (unlikely(error)) {
1851                         if (error == AOP_TRUNCATED_PAGE) {
1852                                 put_page(page);
1853                                 error = 0;
1854                                 goto find_page;
1855                         }
1856                         goto readpage_error;
1857                 }
1858
1859                 if (!PageUptodate(page)) {
1860                         error = lock_page_killable(page);
1861                         if (unlikely(error))
1862                                 goto readpage_error;
1863                         if (!PageUptodate(page)) {
1864                                 if (page->mapping == NULL) {
1865                                         /*
1866                                          * invalidate_mapping_pages got it
1867                                          */
1868                                         unlock_page(page);
1869                                         put_page(page);
1870                                         goto find_page;
1871                                 }
1872                                 unlock_page(page);
1873                                 shrink_readahead_size_eio(filp, ra);
1874                                 error = -EIO;
1875                                 goto readpage_error;
1876                         }
1877                         unlock_page(page);
1878                 }
1879
1880                 goto page_ok;
1881
1882 readpage_error:
1883                 /* UHHUH! A synchronous read error occurred. Report it */
1884                 put_page(page);
1885                 goto out;
1886
1887 no_cached_page:
1888                 /*
1889                  * Ok, it wasn't cached, so we need to create a new
1890                  * page..
1891                  */
1892                 page = page_cache_alloc_cold(mapping);
1893                 if (!page) {
1894                         error = -ENOMEM;
1895                         goto out;
1896                 }
1897                 error = add_to_page_cache_lru(page, mapping, index,
1898                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1899                 if (error) {
1900                         put_page(page);
1901                         if (error == -EEXIST) {
1902                                 error = 0;
1903                                 goto find_page;
1904                         }
1905                         goto out;
1906                 }
1907                 goto readpage;
1908         }
1909
1910 out:
1911         ra->prev_pos = prev_index;
1912         ra->prev_pos <<= PAGE_SHIFT;
1913         ra->prev_pos |= prev_offset;
1914
1915         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1916         file_accessed(filp);
1917         return written ? written : error;
1918 }
1919
1920 /**
1921  * generic_file_read_iter - generic filesystem read routine
1922  * @iocb:       kernel I/O control block
1923  * @iter:       destination for the data read
1924  *
1925  * This is the "read_iter()" routine for all filesystems
1926  * that can use the page cache directly.
1927  */
1928 ssize_t
1929 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1930 {
1931         struct file *file = iocb->ki_filp;
1932         ssize_t retval = 0;
1933         size_t count = iov_iter_count(iter);
1934
1935         if (!count)
1936                 goto out; /* skip atime */
1937
1938         if (iocb->ki_flags & IOCB_DIRECT) {
1939                 struct address_space *mapping = file->f_mapping;
1940                 struct inode *inode = mapping->host;
1941                 struct iov_iter data = *iter;
1942                 loff_t size;
1943
1944                 size = i_size_read(inode);
1945                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1946                                         iocb->ki_pos + count - 1);
1947                 if (retval < 0)
1948                         goto out;
1949
1950                 file_accessed(file);
1951
1952                 retval = mapping->a_ops->direct_IO(iocb, &data);
1953                 if (retval >= 0) {
1954                         iocb->ki_pos += retval;
1955                         iov_iter_advance(iter, retval);
1956                 }
1957
1958                 /*
1959                  * Btrfs can have a short DIO read if we encounter
1960                  * compressed extents, so if there was an error, or if
1961                  * we've already read everything we wanted to, or if
1962                  * there was a short read because we hit EOF, go ahead
1963                  * and return.  Otherwise fallthrough to buffered io for
1964                  * the rest of the read.  Buffered reads will not work for
1965                  * DAX files, so don't bother trying.
1966                  */
1967                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1968                     IS_DAX(inode))
1969                         goto out;
1970         }
1971
1972         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1973 out:
1974         return retval;
1975 }
1976 EXPORT_SYMBOL(generic_file_read_iter);
1977
1978 #ifdef CONFIG_MMU
1979 /**
1980  * page_cache_read - adds requested page to the page cache if not already there
1981  * @file:       file to read
1982  * @offset:     page index
1983  * @gfp_mask:   memory allocation flags
1984  *
1985  * This adds the requested page to the page cache if it isn't already there,
1986  * and schedules an I/O to read in its contents from disk.
1987  */
1988 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1989 {
1990         struct address_space *mapping = file->f_mapping;
1991         struct page *page;
1992         int ret;
1993
1994         do {
1995                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1996                 if (!page)
1997                         return -ENOMEM;
1998
1999                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2000                 if (ret == 0)
2001                         ret = mapping->a_ops->readpage(file, page);
2002                 else if (ret == -EEXIST)
2003                         ret = 0; /* losing race to add is OK */
2004
2005                 put_page(page);
2006
2007         } while (ret == AOP_TRUNCATED_PAGE);
2008
2009         return ret;
2010 }
2011
2012 #define MMAP_LOTSAMISS  (100)
2013
2014 /*
2015  * Synchronous readahead happens when we don't even find
2016  * a page in the page cache at all.
2017  */
2018 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2019                                    struct file_ra_state *ra,
2020                                    struct file *file,
2021                                    pgoff_t offset)
2022 {
2023         struct address_space *mapping = file->f_mapping;
2024
2025         /* If we don't want any read-ahead, don't bother */
2026         if (vma->vm_flags & VM_RAND_READ)
2027                 return;
2028         if (!ra->ra_pages)
2029                 return;
2030
2031         if (vma->vm_flags & VM_SEQ_READ) {
2032                 page_cache_sync_readahead(mapping, ra, file, offset,
2033                                           ra->ra_pages);
2034                 return;
2035         }
2036
2037         /* Avoid banging the cache line if not needed */
2038         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2039                 ra->mmap_miss++;
2040
2041         /*
2042          * Do we miss much more than hit in this file? If so,
2043          * stop bothering with read-ahead. It will only hurt.
2044          */
2045         if (ra->mmap_miss > MMAP_LOTSAMISS)
2046                 return;
2047
2048         /*
2049          * mmap read-around
2050          */
2051         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2052         ra->size = ra->ra_pages;
2053         ra->async_size = ra->ra_pages / 4;
2054         ra_submit(ra, mapping, file);
2055 }
2056
2057 /*
2058  * Asynchronous readahead happens when we find the page and PG_readahead,
2059  * so we want to possibly extend the readahead further..
2060  */
2061 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2062                                     struct file_ra_state *ra,
2063                                     struct file *file,
2064                                     struct page *page,
2065                                     pgoff_t offset)
2066 {
2067         struct address_space *mapping = file->f_mapping;
2068
2069         /* If we don't want any read-ahead, don't bother */
2070         if (vma->vm_flags & VM_RAND_READ)
2071                 return;
2072         if (ra->mmap_miss > 0)
2073                 ra->mmap_miss--;
2074         if (PageReadahead(page))
2075                 page_cache_async_readahead(mapping, ra, file,
2076                                            page, offset, ra->ra_pages);
2077 }
2078
2079 /**
2080  * filemap_fault - read in file data for page fault handling
2081  * @vma:        vma in which the fault was taken
2082  * @vmf:        struct vm_fault containing details of the fault
2083  *
2084  * filemap_fault() is invoked via the vma operations vector for a
2085  * mapped memory region to read in file data during a page fault.
2086  *
2087  * The goto's are kind of ugly, but this streamlines the normal case of having
2088  * it in the page cache, and handles the special cases reasonably without
2089  * having a lot of duplicated code.
2090  *
2091  * vma->vm_mm->mmap_sem must be held on entry.
2092  *
2093  * If our return value has VM_FAULT_RETRY set, it's because
2094  * lock_page_or_retry() returned 0.
2095  * The mmap_sem has usually been released in this case.
2096  * See __lock_page_or_retry() for the exception.
2097  *
2098  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2099  * has not been released.
2100  *
2101  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2102  */
2103 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2104 {
2105         int error;
2106         struct file *file = vma->vm_file;
2107         struct address_space *mapping = file->f_mapping;
2108         struct file_ra_state *ra = &file->f_ra;
2109         struct inode *inode = mapping->host;
2110         pgoff_t offset = vmf->pgoff;
2111         struct page *page;
2112         loff_t size;
2113         int ret = 0;
2114
2115         size = round_up(i_size_read(inode), PAGE_SIZE);
2116         if (offset >= size >> PAGE_SHIFT)
2117                 return VM_FAULT_SIGBUS;
2118
2119         /*
2120          * Do we have something in the page cache already?
2121          */
2122         page = find_get_page(mapping, offset);
2123         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2124                 /*
2125                  * We found the page, so try async readahead before
2126                  * waiting for the lock.
2127                  */
2128                 do_async_mmap_readahead(vma, ra, file, page, offset);
2129         } else if (!page) {
2130                 /* No page in the page cache at all */
2131                 do_sync_mmap_readahead(vma, ra, file, offset);
2132                 count_vm_event(PGMAJFAULT);
2133                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2134                 ret = VM_FAULT_MAJOR;
2135 retry_find:
2136                 page = find_get_page(mapping, offset);
2137                 if (!page)
2138                         goto no_cached_page;
2139         }
2140
2141         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2142                 put_page(page);
2143                 return ret | VM_FAULT_RETRY;
2144         }
2145
2146         /* Did it get truncated? */
2147         if (unlikely(page->mapping != mapping)) {
2148                 unlock_page(page);
2149                 put_page(page);
2150                 goto retry_find;
2151         }
2152         VM_BUG_ON_PAGE(page->index != offset, page);
2153
2154         /*
2155          * We have a locked page in the page cache, now we need to check
2156          * that it's up-to-date. If not, it is going to be due to an error.
2157          */
2158         if (unlikely(!PageUptodate(page)))
2159                 goto page_not_uptodate;
2160
2161         /*
2162          * Found the page and have a reference on it.
2163          * We must recheck i_size under page lock.
2164          */
2165         size = round_up(i_size_read(inode), PAGE_SIZE);
2166         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2167                 unlock_page(page);
2168                 put_page(page);
2169                 return VM_FAULT_SIGBUS;
2170         }
2171
2172         vmf->page = page;
2173         return ret | VM_FAULT_LOCKED;
2174
2175 no_cached_page:
2176         /*
2177          * We're only likely to ever get here if MADV_RANDOM is in
2178          * effect.
2179          */
2180         error = page_cache_read(file, offset, vmf->gfp_mask);
2181
2182         /*
2183          * The page we want has now been added to the page cache.
2184          * In the unlikely event that someone removed it in the
2185          * meantime, we'll just come back here and read it again.
2186          */
2187         if (error >= 0)
2188                 goto retry_find;
2189
2190         /*
2191          * An error return from page_cache_read can result if the
2192          * system is low on memory, or a problem occurs while trying
2193          * to schedule I/O.
2194          */
2195         if (error == -ENOMEM)
2196                 return VM_FAULT_OOM;
2197         return VM_FAULT_SIGBUS;
2198
2199 page_not_uptodate:
2200         /*
2201          * Umm, take care of errors if the page isn't up-to-date.
2202          * Try to re-read it _once_. We do this synchronously,
2203          * because there really aren't any performance issues here
2204          * and we need to check for errors.
2205          */
2206         ClearPageError(page);
2207         error = mapping->a_ops->readpage(file, page);
2208         if (!error) {
2209                 wait_on_page_locked(page);
2210                 if (!PageUptodate(page))
2211                         error = -EIO;
2212         }
2213         put_page(page);
2214
2215         if (!error || error == AOP_TRUNCATED_PAGE)
2216                 goto retry_find;
2217
2218         /* Things didn't work out. Return zero to tell the mm layer so. */
2219         shrink_readahead_size_eio(file, ra);
2220         return VM_FAULT_SIGBUS;
2221 }
2222 EXPORT_SYMBOL(filemap_fault);
2223
2224 void filemap_map_pages(struct fault_env *fe,
2225                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2226 {
2227         struct radix_tree_iter iter;
2228         void **slot;
2229         struct file *file = fe->vma->vm_file;
2230         struct address_space *mapping = file->f_mapping;
2231         pgoff_t last_pgoff = start_pgoff;
2232         loff_t size;
2233         struct page *head, *page;
2234
2235         rcu_read_lock();
2236         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2237                         start_pgoff) {
2238                 if (iter.index > end_pgoff)
2239                         break;
2240 repeat:
2241                 page = radix_tree_deref_slot(slot);
2242                 if (unlikely(!page))
2243                         goto next;
2244                 if (radix_tree_exception(page)) {
2245                         if (radix_tree_deref_retry(page)) {
2246                                 slot = radix_tree_iter_retry(&iter);
2247                                 continue;
2248                         }
2249                         goto next;
2250                 }
2251
2252                 head = compound_head(page);
2253                 if (!page_cache_get_speculative(head))
2254                         goto repeat;
2255
2256                 /* The page was split under us? */
2257                 if (compound_head(page) != head) {
2258                         put_page(head);
2259                         goto repeat;
2260                 }
2261
2262                 /* Has the page moved? */
2263                 if (unlikely(page != *slot)) {
2264                         put_page(head);
2265                         goto repeat;
2266                 }
2267
2268                 if (!PageUptodate(page) ||
2269                                 PageReadahead(page) ||
2270                                 PageHWPoison(page))
2271                         goto skip;
2272                 if (!trylock_page(page))
2273                         goto skip;
2274
2275                 if (page->mapping != mapping || !PageUptodate(page))
2276                         goto unlock;
2277
2278                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2279                 if (page->index >= size >> PAGE_SHIFT)
2280                         goto unlock;
2281
2282                 if (file->f_ra.mmap_miss > 0)
2283                         file->f_ra.mmap_miss--;
2284
2285                 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2286                 if (fe->pte)
2287                         fe->pte += iter.index - last_pgoff;
2288                 last_pgoff = iter.index;
2289                 if (alloc_set_pte(fe, NULL, page))
2290                         goto unlock;
2291                 unlock_page(page);
2292                 goto next;
2293 unlock:
2294                 unlock_page(page);
2295 skip:
2296                 put_page(page);
2297 next:
2298                 /* Huge page is mapped? No need to proceed. */
2299                 if (pmd_trans_huge(*fe->pmd))
2300                         break;
2301                 if (iter.index == end_pgoff)
2302                         break;
2303         }
2304         rcu_read_unlock();
2305 }
2306 EXPORT_SYMBOL(filemap_map_pages);
2307
2308 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2309 {
2310         struct page *page = vmf->page;
2311         struct inode *inode = file_inode(vma->vm_file);
2312         int ret = VM_FAULT_LOCKED;
2313
2314         sb_start_pagefault(inode->i_sb);
2315         file_update_time(vma->vm_file);
2316         lock_page(page);
2317         if (page->mapping != inode->i_mapping) {
2318                 unlock_page(page);
2319                 ret = VM_FAULT_NOPAGE;
2320                 goto out;
2321         }
2322         /*
2323          * We mark the page dirty already here so that when freeze is in
2324          * progress, we are guaranteed that writeback during freezing will
2325          * see the dirty page and writeprotect it again.
2326          */
2327         set_page_dirty(page);
2328         wait_for_stable_page(page);
2329 out:
2330         sb_end_pagefault(inode->i_sb);
2331         return ret;
2332 }
2333 EXPORT_SYMBOL(filemap_page_mkwrite);
2334
2335 const struct vm_operations_struct generic_file_vm_ops = {
2336         .fault          = filemap_fault,
2337         .map_pages      = filemap_map_pages,
2338         .page_mkwrite   = filemap_page_mkwrite,
2339 };
2340
2341 /* This is used for a general mmap of a disk file */
2342
2343 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2344 {
2345         struct address_space *mapping = file->f_mapping;
2346
2347         if (!mapping->a_ops->readpage)
2348                 return -ENOEXEC;
2349         file_accessed(file);
2350         vma->vm_ops = &generic_file_vm_ops;
2351         return 0;
2352 }
2353
2354 /*
2355  * This is for filesystems which do not implement ->writepage.
2356  */
2357 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2358 {
2359         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2360                 return -EINVAL;
2361         return generic_file_mmap(file, vma);
2362 }
2363 #else
2364 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2365 {
2366         return -ENOSYS;
2367 }
2368 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2369 {
2370         return -ENOSYS;
2371 }
2372 #endif /* CONFIG_MMU */
2373
2374 EXPORT_SYMBOL(generic_file_mmap);
2375 EXPORT_SYMBOL(generic_file_readonly_mmap);
2376
2377 static struct page *wait_on_page_read(struct page *page)
2378 {
2379         if (!IS_ERR(page)) {
2380                 wait_on_page_locked(page);
2381                 if (!PageUptodate(page)) {
2382                         put_page(page);
2383                         page = ERR_PTR(-EIO);
2384                 }
2385         }
2386         return page;
2387 }
2388
2389 static struct page *do_read_cache_page(struct address_space *mapping,
2390                                 pgoff_t index,
2391                                 int (*filler)(void *, struct page *),
2392                                 void *data,
2393                                 gfp_t gfp)
2394 {
2395         struct page *page;
2396         int err;
2397 repeat:
2398         page = find_get_page(mapping, index);
2399         if (!page) {
2400                 page = __page_cache_alloc(gfp | __GFP_COLD);
2401                 if (!page)
2402                         return ERR_PTR(-ENOMEM);
2403                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2404                 if (unlikely(err)) {
2405                         put_page(page);
2406                         if (err == -EEXIST)
2407                                 goto repeat;
2408                         /* Presumably ENOMEM for radix tree node */
2409                         return ERR_PTR(err);
2410                 }
2411
2412 filler:
2413                 err = filler(data, page);
2414                 if (err < 0) {
2415                         put_page(page);
2416                         return ERR_PTR(err);
2417                 }
2418
2419                 page = wait_on_page_read(page);
2420                 if (IS_ERR(page))
2421                         return page;
2422                 goto out;
2423         }
2424         if (PageUptodate(page))
2425                 goto out;
2426
2427         /*
2428          * Page is not up to date and may be locked due one of the following
2429          * case a: Page is being filled and the page lock is held
2430          * case b: Read/write error clearing the page uptodate status
2431          * case c: Truncation in progress (page locked)
2432          * case d: Reclaim in progress
2433          *
2434          * Case a, the page will be up to date when the page is unlocked.
2435          *    There is no need to serialise on the page lock here as the page
2436          *    is pinned so the lock gives no additional protection. Even if the
2437          *    the page is truncated, the data is still valid if PageUptodate as
2438          *    it's a race vs truncate race.
2439          * Case b, the page will not be up to date
2440          * Case c, the page may be truncated but in itself, the data may still
2441          *    be valid after IO completes as it's a read vs truncate race. The
2442          *    operation must restart if the page is not uptodate on unlock but
2443          *    otherwise serialising on page lock to stabilise the mapping gives
2444          *    no additional guarantees to the caller as the page lock is
2445          *    released before return.
2446          * Case d, similar to truncation. If reclaim holds the page lock, it
2447          *    will be a race with remove_mapping that determines if the mapping
2448          *    is valid on unlock but otherwise the data is valid and there is
2449          *    no need to serialise with page lock.
2450          *
2451          * As the page lock gives no additional guarantee, we optimistically
2452          * wait on the page to be unlocked and check if it's up to date and
2453          * use the page if it is. Otherwise, the page lock is required to
2454          * distinguish between the different cases. The motivation is that we
2455          * avoid spurious serialisations and wakeups when multiple processes
2456          * wait on the same page for IO to complete.
2457          */
2458         wait_on_page_locked(page);
2459         if (PageUptodate(page))
2460                 goto out;
2461
2462         /* Distinguish between all the cases under the safety of the lock */
2463         lock_page(page);
2464
2465         /* Case c or d, restart the operation */
2466         if (!page->mapping) {
2467                 unlock_page(page);
2468                 put_page(page);
2469                 goto repeat;
2470         }
2471
2472         /* Someone else locked and filled the page in a very small window */
2473         if (PageUptodate(page)) {
2474                 unlock_page(page);
2475                 goto out;
2476         }
2477
2478         /*
2479          * A previous I/O error may have been due to temporary
2480          * failures.
2481          * Clear page error before actual read, PG_error will be
2482          * set again if read page fails.
2483          */
2484         ClearPageError(page);
2485         goto filler;
2486
2487 out:
2488         mark_page_accessed(page);
2489         return page;
2490 }
2491
2492 /**
2493  * read_cache_page - read into page cache, fill it if needed
2494  * @mapping:    the page's address_space
2495  * @index:      the page index
2496  * @filler:     function to perform the read
2497  * @data:       first arg to filler(data, page) function, often left as NULL
2498  *
2499  * Read into the page cache. If a page already exists, and PageUptodate() is
2500  * not set, try to fill the page and wait for it to become unlocked.
2501  *
2502  * If the page does not get brought uptodate, return -EIO.
2503  */
2504 struct page *read_cache_page(struct address_space *mapping,
2505                                 pgoff_t index,
2506                                 int (*filler)(void *, struct page *),
2507                                 void *data)
2508 {
2509         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2510 }
2511 EXPORT_SYMBOL(read_cache_page);
2512
2513 /**
2514  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2515  * @mapping:    the page's address_space
2516  * @index:      the page index
2517  * @gfp:        the page allocator flags to use if allocating
2518  *
2519  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2520  * any new page allocations done using the specified allocation flags.
2521  *
2522  * If the page does not get brought uptodate, return -EIO.
2523  */
2524 struct page *read_cache_page_gfp(struct address_space *mapping,
2525                                 pgoff_t index,
2526                                 gfp_t gfp)
2527 {
2528         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2529
2530         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2531 }
2532 EXPORT_SYMBOL(read_cache_page_gfp);
2533
2534 /*
2535  * Performs necessary checks before doing a write
2536  *
2537  * Can adjust writing position or amount of bytes to write.
2538  * Returns appropriate error code that caller should return or
2539  * zero in case that write should be allowed.
2540  */
2541 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2542 {
2543         struct file *file = iocb->ki_filp;
2544         struct inode *inode = file->f_mapping->host;
2545         unsigned long limit = rlimit(RLIMIT_FSIZE);
2546         loff_t pos;
2547
2548         if (!iov_iter_count(from))
2549                 return 0;
2550
2551         /* FIXME: this is for backwards compatibility with 2.4 */
2552         if (iocb->ki_flags & IOCB_APPEND)
2553                 iocb->ki_pos = i_size_read(inode);
2554
2555         pos = iocb->ki_pos;
2556
2557         if (limit != RLIM_INFINITY) {
2558                 if (iocb->ki_pos >= limit) {
2559                         send_sig(SIGXFSZ, current, 0);
2560                         return -EFBIG;
2561                 }
2562                 iov_iter_truncate(from, limit - (unsigned long)pos);
2563         }
2564
2565         /*
2566          * LFS rule
2567          */
2568         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2569                                 !(file->f_flags & O_LARGEFILE))) {
2570                 if (pos >= MAX_NON_LFS)
2571                         return -EFBIG;
2572                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2573         }
2574
2575         /*
2576          * Are we about to exceed the fs block limit ?
2577          *
2578          * If we have written data it becomes a short write.  If we have
2579          * exceeded without writing data we send a signal and return EFBIG.
2580          * Linus frestrict idea will clean these up nicely..
2581          */
2582         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2583                 return -EFBIG;
2584
2585         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2586         return iov_iter_count(from);
2587 }
2588 EXPORT_SYMBOL(generic_write_checks);
2589
2590 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2591                                 loff_t pos, unsigned len, unsigned flags,
2592                                 struct page **pagep, void **fsdata)
2593 {
2594         const struct address_space_operations *aops = mapping->a_ops;
2595
2596         return aops->write_begin(file, mapping, pos, len, flags,
2597                                                         pagep, fsdata);
2598 }
2599 EXPORT_SYMBOL(pagecache_write_begin);
2600
2601 int pagecache_write_end(struct file *file, struct address_space *mapping,
2602                                 loff_t pos, unsigned len, unsigned copied,
2603                                 struct page *page, void *fsdata)
2604 {
2605         const struct address_space_operations *aops = mapping->a_ops;
2606
2607         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2608 }
2609 EXPORT_SYMBOL(pagecache_write_end);
2610
2611 ssize_t
2612 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2613 {
2614         struct file     *file = iocb->ki_filp;
2615         struct address_space *mapping = file->f_mapping;
2616         struct inode    *inode = mapping->host;
2617         loff_t          pos = iocb->ki_pos;
2618         ssize_t         written;
2619         size_t          write_len;
2620         pgoff_t         end;
2621         struct iov_iter data;
2622
2623         write_len = iov_iter_count(from);
2624         end = (pos + write_len - 1) >> PAGE_SHIFT;
2625
2626         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2627         if (written)
2628                 goto out;
2629
2630         /*
2631          * After a write we want buffered reads to be sure to go to disk to get
2632          * the new data.  We invalidate clean cached page from the region we're
2633          * about to write.  We do this *before* the write so that we can return
2634          * without clobbering -EIOCBQUEUED from ->direct_IO().
2635          */
2636         if (mapping->nrpages) {
2637                 written = invalidate_inode_pages2_range(mapping,
2638                                         pos >> PAGE_SHIFT, end);
2639                 /*
2640                  * If a page can not be invalidated, return 0 to fall back
2641                  * to buffered write.
2642                  */
2643                 if (written) {
2644                         if (written == -EBUSY)
2645                                 return 0;
2646                         goto out;
2647                 }
2648         }
2649
2650         data = *from;
2651         written = mapping->a_ops->direct_IO(iocb, &data);
2652
2653         /*
2654          * Finally, try again to invalidate clean pages which might have been
2655          * cached by non-direct readahead, or faulted in by get_user_pages()
2656          * if the source of the write was an mmap'ed region of the file
2657          * we're writing.  Either one is a pretty crazy thing to do,
2658          * so we don't support it 100%.  If this invalidation
2659          * fails, tough, the write still worked...
2660          */
2661         if (mapping->nrpages) {
2662                 invalidate_inode_pages2_range(mapping,
2663                                               pos >> PAGE_SHIFT, end);
2664         }
2665
2666         if (written > 0) {
2667                 pos += written;
2668                 iov_iter_advance(from, written);
2669                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2670                         i_size_write(inode, pos);
2671                         mark_inode_dirty(inode);
2672                 }
2673                 iocb->ki_pos = pos;
2674         }
2675 out:
2676         return written;
2677 }
2678 EXPORT_SYMBOL(generic_file_direct_write);
2679
2680 /*
2681  * Find or create a page at the given pagecache position. Return the locked
2682  * page. This function is specifically for buffered writes.
2683  */
2684 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2685                                         pgoff_t index, unsigned flags)
2686 {
2687         struct page *page;
2688         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2689
2690         if (flags & AOP_FLAG_NOFS)
2691                 fgp_flags |= FGP_NOFS;
2692
2693         page = pagecache_get_page(mapping, index, fgp_flags,
2694                         mapping_gfp_mask(mapping));
2695         if (page)
2696                 wait_for_stable_page(page);
2697
2698         return page;
2699 }
2700 EXPORT_SYMBOL(grab_cache_page_write_begin);
2701
2702 ssize_t generic_perform_write(struct file *file,
2703                                 struct iov_iter *i, loff_t pos)
2704 {
2705         struct address_space *mapping = file->f_mapping;
2706         const struct address_space_operations *a_ops = mapping->a_ops;
2707         long status = 0;
2708         ssize_t written = 0;
2709         unsigned int flags = 0;
2710
2711         /*
2712          * Copies from kernel address space cannot fail (NFSD is a big user).
2713          */
2714         if (!iter_is_iovec(i))
2715                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2716
2717         do {
2718                 struct page *page;
2719                 unsigned long offset;   /* Offset into pagecache page */
2720                 unsigned long bytes;    /* Bytes to write to page */
2721                 size_t copied;          /* Bytes copied from user */
2722                 void *fsdata = NULL;
2723
2724                 offset = (pos & (PAGE_SIZE - 1));
2725                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2726                                                 iov_iter_count(i));
2727
2728 again:
2729                 /*
2730                  * Bring in the user page that we will copy from _first_.
2731                  * Otherwise there's a nasty deadlock on copying from the
2732                  * same page as we're writing to, without it being marked
2733                  * up-to-date.
2734                  *
2735                  * Not only is this an optimisation, but it is also required
2736                  * to check that the address is actually valid, when atomic
2737                  * usercopies are used, below.
2738                  */
2739                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2740                         status = -EFAULT;
2741                         break;
2742                 }
2743
2744                 if (fatal_signal_pending(current)) {
2745                         status = -EINTR;
2746                         break;
2747                 }
2748
2749                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2750                                                 &page, &fsdata);
2751                 if (unlikely(status < 0))
2752                         break;
2753
2754                 if (mapping_writably_mapped(mapping))
2755                         flush_dcache_page(page);
2756
2757                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2758                 flush_dcache_page(page);
2759
2760                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2761                                                 page, fsdata);
2762                 if (unlikely(status < 0))
2763                         break;
2764                 copied = status;
2765
2766                 cond_resched();
2767
2768                 iov_iter_advance(i, copied);
2769                 if (unlikely(copied == 0)) {
2770                         /*
2771                          * If we were unable to copy any data at all, we must
2772                          * fall back to a single segment length write.
2773                          *
2774                          * If we didn't fallback here, we could livelock
2775                          * because not all segments in the iov can be copied at
2776                          * once without a pagefault.
2777                          */
2778                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2779                                                 iov_iter_single_seg_count(i));
2780                         goto again;
2781                 }
2782                 pos += copied;
2783                 written += copied;
2784
2785                 balance_dirty_pages_ratelimited(mapping);
2786         } while (iov_iter_count(i));
2787
2788         return written ? written : status;
2789 }
2790 EXPORT_SYMBOL(generic_perform_write);
2791
2792 /**
2793  * __generic_file_write_iter - write data to a file
2794  * @iocb:       IO state structure (file, offset, etc.)
2795  * @from:       iov_iter with data to write
2796  *
2797  * This function does all the work needed for actually writing data to a
2798  * file. It does all basic checks, removes SUID from the file, updates
2799  * modification times and calls proper subroutines depending on whether we
2800  * do direct IO or a standard buffered write.
2801  *
2802  * It expects i_mutex to be grabbed unless we work on a block device or similar
2803  * object which does not need locking at all.
2804  *
2805  * This function does *not* take care of syncing data in case of O_SYNC write.
2806  * A caller has to handle it. This is mainly due to the fact that we want to
2807  * avoid syncing under i_mutex.
2808  */
2809 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2810 {
2811         struct file *file = iocb->ki_filp;
2812         struct address_space * mapping = file->f_mapping;
2813         struct inode    *inode = mapping->host;
2814         ssize_t         written = 0;
2815         ssize_t         err;
2816         ssize_t         status;
2817
2818         /* We can write back this queue in page reclaim */
2819         current->backing_dev_info = inode_to_bdi(inode);
2820         err = file_remove_privs(file);
2821         if (err)
2822                 goto out;
2823
2824         err = file_update_time(file);
2825         if (err)
2826                 goto out;
2827
2828         if (iocb->ki_flags & IOCB_DIRECT) {
2829                 loff_t pos, endbyte;
2830
2831                 written = generic_file_direct_write(iocb, from);
2832                 /*
2833                  * If the write stopped short of completing, fall back to
2834                  * buffered writes.  Some filesystems do this for writes to
2835                  * holes, for example.  For DAX files, a buffered write will
2836                  * not succeed (even if it did, DAX does not handle dirty
2837                  * page-cache pages correctly).
2838                  */
2839                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2840                         goto out;
2841
2842                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2843                 /*
2844                  * If generic_perform_write() returned a synchronous error
2845                  * then we want to return the number of bytes which were
2846                  * direct-written, or the error code if that was zero.  Note
2847                  * that this differs from normal direct-io semantics, which
2848                  * will return -EFOO even if some bytes were written.
2849                  */
2850                 if (unlikely(status < 0)) {
2851                         err = status;
2852                         goto out;
2853                 }
2854                 /*
2855                  * We need to ensure that the page cache pages are written to
2856                  * disk and invalidated to preserve the expected O_DIRECT
2857                  * semantics.
2858                  */
2859                 endbyte = pos + status - 1;
2860                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2861                 if (err == 0) {
2862                         iocb->ki_pos = endbyte + 1;
2863                         written += status;
2864                         invalidate_mapping_pages(mapping,
2865                                                  pos >> PAGE_SHIFT,
2866                                                  endbyte >> PAGE_SHIFT);
2867                 } else {
2868                         /*
2869                          * We don't know how much we wrote, so just return
2870                          * the number of bytes which were direct-written
2871                          */
2872                 }
2873         } else {
2874                 written = generic_perform_write(file, from, iocb->ki_pos);
2875                 if (likely(written > 0))
2876                         iocb->ki_pos += written;
2877         }
2878 out:
2879         current->backing_dev_info = NULL;
2880         return written ? written : err;
2881 }
2882 EXPORT_SYMBOL(__generic_file_write_iter);
2883
2884 /**
2885  * generic_file_write_iter - write data to a file
2886  * @iocb:       IO state structure
2887  * @from:       iov_iter with data to write
2888  *
2889  * This is a wrapper around __generic_file_write_iter() to be used by most
2890  * filesystems. It takes care of syncing the file in case of O_SYNC file
2891  * and acquires i_mutex as needed.
2892  */
2893 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2894 {
2895         struct file *file = iocb->ki_filp;
2896         struct inode *inode = file->f_mapping->host;
2897         ssize_t ret;
2898
2899         inode_lock(inode);
2900         ret = generic_write_checks(iocb, from);
2901         if (ret > 0)
2902                 ret = __generic_file_write_iter(iocb, from);
2903         inode_unlock(inode);
2904
2905         if (ret > 0)
2906                 ret = generic_write_sync(iocb, ret);
2907         return ret;
2908 }
2909 EXPORT_SYMBOL(generic_file_write_iter);
2910
2911 /**
2912  * try_to_release_page() - release old fs-specific metadata on a page
2913  *
2914  * @page: the page which the kernel is trying to free
2915  * @gfp_mask: memory allocation flags (and I/O mode)
2916  *
2917  * The address_space is to try to release any data against the page
2918  * (presumably at page->private).  If the release was successful, return `1'.
2919  * Otherwise return zero.
2920  *
2921  * This may also be called if PG_fscache is set on a page, indicating that the
2922  * page is known to the local caching routines.
2923  *
2924  * The @gfp_mask argument specifies whether I/O may be performed to release
2925  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2926  *
2927  */
2928 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2929 {
2930         struct address_space * const mapping = page->mapping;
2931
2932         BUG_ON(!PageLocked(page));
2933         if (PageWriteback(page))
2934                 return 0;
2935
2936         if (mapping && mapping->a_ops->releasepage)
2937                 return mapping->a_ops->releasepage(page, gfp_mask);
2938         return try_to_free_buffers(page);
2939 }
2940
2941 EXPORT_SYMBOL(try_to_release_page);