GNU Linux-libre 4.14.290-gnu1
[releases.git] / mm / hmm.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
39 /*
40  * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
41  */
42 DEFINE_STATIC_KEY_FALSE(device_private_key);
43 EXPORT_SYMBOL(device_private_key);
44 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
45
46
47 #if IS_ENABLED(CONFIG_HMM_MIRROR)
48 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
49
50 /*
51  * struct hmm - HMM per mm struct
52  *
53  * @mm: mm struct this HMM struct is bound to
54  * @lock: lock protecting ranges list
55  * @sequence: we track updates to the CPU page table with a sequence number
56  * @ranges: list of range being snapshotted
57  * @mirrors: list of mirrors for this mm
58  * @mmu_notifier: mmu notifier to track updates to CPU page table
59  * @mirrors_sem: read/write semaphore protecting the mirrors list
60  */
61 struct hmm {
62         struct mm_struct        *mm;
63         spinlock_t              lock;
64         atomic_t                sequence;
65         struct list_head        ranges;
66         struct list_head        mirrors;
67         struct mmu_notifier     mmu_notifier;
68         struct rw_semaphore     mirrors_sem;
69 };
70
71 /*
72  * hmm_register - register HMM against an mm (HMM internal)
73  *
74  * @mm: mm struct to attach to
75  *
76  * This is not intended to be used directly by device drivers. It allocates an
77  * HMM struct if mm does not have one, and initializes it.
78  */
79 static struct hmm *hmm_register(struct mm_struct *mm)
80 {
81         struct hmm *hmm = READ_ONCE(mm->hmm);
82         bool cleanup = false;
83
84         /*
85          * The hmm struct can only be freed once the mm_struct goes away,
86          * hence we should always have pre-allocated an new hmm struct
87          * above.
88          */
89         if (hmm)
90                 return hmm;
91
92         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
93         if (!hmm)
94                 return NULL;
95         INIT_LIST_HEAD(&hmm->mirrors);
96         init_rwsem(&hmm->mirrors_sem);
97         atomic_set(&hmm->sequence, 0);
98         hmm->mmu_notifier.ops = NULL;
99         INIT_LIST_HEAD(&hmm->ranges);
100         spin_lock_init(&hmm->lock);
101         hmm->mm = mm;
102
103         /*
104          * We should only get here if hold the mmap_sem in write mode ie on
105          * registration of first mirror through hmm_mirror_register()
106          */
107         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
108         if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
109                 kfree(hmm);
110                 return NULL;
111         }
112
113         spin_lock(&mm->page_table_lock);
114         if (!mm->hmm)
115                 mm->hmm = hmm;
116         else
117                 cleanup = true;
118         spin_unlock(&mm->page_table_lock);
119
120         if (cleanup) {
121                 mmu_notifier_unregister(&hmm->mmu_notifier, mm);
122                 kfree(hmm);
123         }
124
125         return mm->hmm;
126 }
127
128 void hmm_mm_destroy(struct mm_struct *mm)
129 {
130         kfree(mm->hmm);
131 }
132
133 static void hmm_invalidate_range(struct hmm *hmm,
134                                  enum hmm_update_type action,
135                                  unsigned long start,
136                                  unsigned long end)
137 {
138         struct hmm_mirror *mirror;
139         struct hmm_range *range;
140
141         spin_lock(&hmm->lock);
142         list_for_each_entry(range, &hmm->ranges, list) {
143                 unsigned long addr, idx, npages;
144
145                 if (end < range->start || start >= range->end)
146                         continue;
147
148                 range->valid = false;
149                 addr = max(start, range->start);
150                 idx = (addr - range->start) >> PAGE_SHIFT;
151                 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
152                 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
153         }
154         spin_unlock(&hmm->lock);
155
156         down_read(&hmm->mirrors_sem);
157         list_for_each_entry(mirror, &hmm->mirrors, list)
158                 mirror->ops->sync_cpu_device_pagetables(mirror, action,
159                                                         start, end);
160         up_read(&hmm->mirrors_sem);
161 }
162
163 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
164                                        struct mm_struct *mm,
165                                        unsigned long start,
166                                        unsigned long end)
167 {
168         struct hmm *hmm = mm->hmm;
169
170         VM_BUG_ON(!hmm);
171
172         atomic_inc(&hmm->sequence);
173 }
174
175 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
176                                      struct mm_struct *mm,
177                                      unsigned long start,
178                                      unsigned long end)
179 {
180         struct hmm *hmm = mm->hmm;
181
182         VM_BUG_ON(!hmm);
183
184         hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
185 }
186
187 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
188         .invalidate_range_start = hmm_invalidate_range_start,
189         .invalidate_range_end   = hmm_invalidate_range_end,
190 };
191
192 /*
193  * hmm_mirror_register() - register a mirror against an mm
194  *
195  * @mirror: new mirror struct to register
196  * @mm: mm to register against
197  *
198  * To start mirroring a process address space, the device driver must register
199  * an HMM mirror struct.
200  *
201  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
202  */
203 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
204 {
205         /* Sanity check */
206         if (!mm || !mirror || !mirror->ops)
207                 return -EINVAL;
208
209         mirror->hmm = hmm_register(mm);
210         if (!mirror->hmm)
211                 return -ENOMEM;
212
213         down_write(&mirror->hmm->mirrors_sem);
214         list_add(&mirror->list, &mirror->hmm->mirrors);
215         up_write(&mirror->hmm->mirrors_sem);
216
217         return 0;
218 }
219 EXPORT_SYMBOL(hmm_mirror_register);
220
221 /*
222  * hmm_mirror_unregister() - unregister a mirror
223  *
224  * @mirror: new mirror struct to register
225  *
226  * Stop mirroring a process address space, and cleanup.
227  */
228 void hmm_mirror_unregister(struct hmm_mirror *mirror)
229 {
230         struct hmm *hmm = mirror->hmm;
231
232         down_write(&hmm->mirrors_sem);
233         list_del(&mirror->list);
234         up_write(&hmm->mirrors_sem);
235 }
236 EXPORT_SYMBOL(hmm_mirror_unregister);
237
238 struct hmm_vma_walk {
239         struct hmm_range        *range;
240         unsigned long           last;
241         bool                    fault;
242         bool                    block;
243         bool                    write;
244 };
245
246 static int hmm_vma_do_fault(struct mm_walk *walk,
247                             unsigned long addr,
248                             hmm_pfn_t *pfn)
249 {
250         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
251         struct hmm_vma_walk *hmm_vma_walk = walk->private;
252         struct vm_area_struct *vma = walk->vma;
253         int r;
254
255         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
256         flags |= hmm_vma_walk->write ? FAULT_FLAG_WRITE : 0;
257         r = handle_mm_fault(vma, addr, flags);
258         if (r & VM_FAULT_RETRY)
259                 return -EBUSY;
260         if (r & VM_FAULT_ERROR) {
261                 *pfn = HMM_PFN_ERROR;
262                 return -EFAULT;
263         }
264
265         return -EAGAIN;
266 }
267
268 static void hmm_pfns_special(hmm_pfn_t *pfns,
269                              unsigned long addr,
270                              unsigned long end)
271 {
272         for (; addr < end; addr += PAGE_SIZE, pfns++)
273                 *pfns = HMM_PFN_SPECIAL;
274 }
275
276 static int hmm_pfns_bad(unsigned long addr,
277                         unsigned long end,
278                         struct mm_walk *walk)
279 {
280         struct hmm_vma_walk *hmm_vma_walk = walk->private;
281         struct hmm_range *range = hmm_vma_walk->range;
282         hmm_pfn_t *pfns = range->pfns;
283         unsigned long i;
284
285         i = (addr - range->start) >> PAGE_SHIFT;
286         for (; addr < end; addr += PAGE_SIZE, i++)
287                 pfns[i] = HMM_PFN_ERROR;
288
289         return 0;
290 }
291
292 static void hmm_pfns_clear(hmm_pfn_t *pfns,
293                            unsigned long addr,
294                            unsigned long end)
295 {
296         for (; addr < end; addr += PAGE_SIZE, pfns++)
297                 *pfns = 0;
298 }
299
300 static int hmm_vma_walk_hole(unsigned long addr,
301                              unsigned long end,
302                              struct mm_walk *walk)
303 {
304         struct hmm_vma_walk *hmm_vma_walk = walk->private;
305         struct hmm_range *range = hmm_vma_walk->range;
306         hmm_pfn_t *pfns = range->pfns;
307         unsigned long i;
308
309         hmm_vma_walk->last = addr;
310         i = (addr - range->start) >> PAGE_SHIFT;
311         for (; addr < end; addr += PAGE_SIZE, i++) {
312                 pfns[i] = HMM_PFN_EMPTY;
313                 if (hmm_vma_walk->fault) {
314                         int ret;
315
316                         ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
317                         if (ret != -EAGAIN)
318                                 return ret;
319                 }
320         }
321
322         return hmm_vma_walk->fault ? -EAGAIN : 0;
323 }
324
325 static int hmm_vma_walk_clear(unsigned long addr,
326                               unsigned long end,
327                               struct mm_walk *walk)
328 {
329         struct hmm_vma_walk *hmm_vma_walk = walk->private;
330         struct hmm_range *range = hmm_vma_walk->range;
331         hmm_pfn_t *pfns = range->pfns;
332         unsigned long i;
333
334         hmm_vma_walk->last = addr;
335         i = (addr - range->start) >> PAGE_SHIFT;
336         for (; addr < end; addr += PAGE_SIZE, i++) {
337                 pfns[i] = 0;
338                 if (hmm_vma_walk->fault) {
339                         int ret;
340
341                         ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
342                         if (ret != -EAGAIN)
343                                 return ret;
344                 }
345         }
346
347         return hmm_vma_walk->fault ? -EAGAIN : 0;
348 }
349
350 static int hmm_vma_walk_pmd(pmd_t *pmdp,
351                             unsigned long start,
352                             unsigned long end,
353                             struct mm_walk *walk)
354 {
355         struct hmm_vma_walk *hmm_vma_walk = walk->private;
356         struct hmm_range *range = hmm_vma_walk->range;
357         struct vm_area_struct *vma = walk->vma;
358         hmm_pfn_t *pfns = range->pfns;
359         unsigned long addr = start, i;
360         bool write_fault;
361         hmm_pfn_t flag;
362         pte_t *ptep;
363
364         i = (addr - range->start) >> PAGE_SHIFT;
365         flag = vma->vm_flags & VM_READ ? HMM_PFN_READ : 0;
366         write_fault = hmm_vma_walk->fault & hmm_vma_walk->write;
367
368 again:
369         if (pmd_none(*pmdp))
370                 return hmm_vma_walk_hole(start, end, walk);
371
372         if (pmd_huge(*pmdp) && vma->vm_flags & VM_HUGETLB)
373                 return hmm_pfns_bad(start, end, walk);
374
375         if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
376                 unsigned long pfn;
377                 pmd_t pmd;
378
379                 /*
380                  * No need to take pmd_lock here, even if some other threads
381                  * is splitting the huge pmd we will get that event through
382                  * mmu_notifier callback.
383                  *
384                  * So just read pmd value and check again its a transparent
385                  * huge or device mapping one and compute corresponding pfn
386                  * values.
387                  */
388                 pmd = pmd_read_atomic(pmdp);
389                 barrier();
390                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
391                         goto again;
392                 if (pmd_protnone(pmd))
393                         return hmm_vma_walk_clear(start, end, walk);
394
395                 if (write_fault && !pmd_write(pmd))
396                         return hmm_vma_walk_clear(start, end, walk);
397
398                 pfn = pmd_pfn(pmd) + pte_index(addr);
399                 flag |= pmd_write(pmd) ? HMM_PFN_WRITE : 0;
400                 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
401                         pfns[i] = hmm_pfn_t_from_pfn(pfn) | flag;
402                 return 0;
403         }
404
405         if (pmd_bad(*pmdp))
406                 return hmm_pfns_bad(start, end, walk);
407
408         ptep = pte_offset_map(pmdp, addr);
409         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
410                 pte_t pte = *ptep;
411
412                 pfns[i] = 0;
413
414                 if (pte_none(pte)) {
415                         pfns[i] = HMM_PFN_EMPTY;
416                         if (hmm_vma_walk->fault)
417                                 goto fault;
418                         continue;
419                 }
420
421                 if (!pte_present(pte)) {
422                         swp_entry_t entry;
423
424                         if (!non_swap_entry(entry)) {
425                                 if (hmm_vma_walk->fault)
426                                         goto fault;
427                                 continue;
428                         }
429
430                         entry = pte_to_swp_entry(pte);
431
432                         /*
433                          * This is a special swap entry, ignore migration, use
434                          * device and report anything else as error.
435                          */
436                         if (is_device_private_entry(entry)) {
437                                 pfns[i] = hmm_pfn_t_from_pfn(swp_offset(entry));
438                                 if (is_write_device_private_entry(entry)) {
439                                         pfns[i] |= HMM_PFN_WRITE;
440                                 } else if (write_fault)
441                                         goto fault;
442                                 pfns[i] |= HMM_PFN_DEVICE_UNADDRESSABLE;
443                                 pfns[i] |= flag;
444                         } else if (is_migration_entry(entry)) {
445                                 if (hmm_vma_walk->fault) {
446                                         pte_unmap(ptep);
447                                         hmm_vma_walk->last = addr;
448                                         migration_entry_wait(vma->vm_mm,
449                                                              pmdp, addr);
450                                         return -EAGAIN;
451                                 }
452                                 continue;
453                         } else {
454                                 /* Report error for everything else */
455                                 pfns[i] = HMM_PFN_ERROR;
456                         }
457                         continue;
458                 }
459
460                 if (write_fault && !pte_write(pte))
461                         goto fault;
462
463                 pfns[i] = hmm_pfn_t_from_pfn(pte_pfn(pte)) | flag;
464                 pfns[i] |= pte_write(pte) ? HMM_PFN_WRITE : 0;
465                 continue;
466
467 fault:
468                 pte_unmap(ptep);
469                 /* Fault all pages in range */
470                 return hmm_vma_walk_clear(start, end, walk);
471         }
472         pte_unmap(ptep - 1);
473
474         return 0;
475 }
476
477 /*
478  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
479  * @vma: virtual memory area containing the virtual address range
480  * @range: used to track snapshot validity
481  * @start: range virtual start address (inclusive)
482  * @end: range virtual end address (exclusive)
483  * @entries: array of hmm_pfn_t: provided by the caller, filled in by function
484  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, 0 success
485  *
486  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
487  * validity is tracked by range struct. See hmm_vma_range_done() for further
488  * information.
489  *
490  * The range struct is initialized here. It tracks the CPU page table, but only
491  * if the function returns success (0), in which case the caller must then call
492  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
493  *
494  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
495  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
496  */
497 int hmm_vma_get_pfns(struct vm_area_struct *vma,
498                      struct hmm_range *range,
499                      unsigned long start,
500                      unsigned long end,
501                      hmm_pfn_t *pfns)
502 {
503         struct hmm_vma_walk hmm_vma_walk;
504         struct mm_walk mm_walk;
505         struct hmm *hmm;
506
507         /* FIXME support hugetlb fs */
508         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
509                 hmm_pfns_special(pfns, start, end);
510                 return -EINVAL;
511         }
512
513         /* Sanity check, this really should not happen ! */
514         if (start < vma->vm_start || start >= vma->vm_end)
515                 return -EINVAL;
516         if (end < vma->vm_start || end > vma->vm_end)
517                 return -EINVAL;
518
519         hmm = hmm_register(vma->vm_mm);
520         if (!hmm)
521                 return -ENOMEM;
522         /* Caller must have registered a mirror, via hmm_mirror_register() ! */
523         if (!hmm->mmu_notifier.ops)
524                 return -EINVAL;
525
526         /* Initialize range to track CPU page table update */
527         range->start = start;
528         range->pfns = pfns;
529         range->end = end;
530         spin_lock(&hmm->lock);
531         range->valid = true;
532         list_add_rcu(&range->list, &hmm->ranges);
533         spin_unlock(&hmm->lock);
534
535         hmm_vma_walk.fault = false;
536         hmm_vma_walk.range = range;
537         mm_walk.private = &hmm_vma_walk;
538
539         mm_walk.vma = vma;
540         mm_walk.mm = vma->vm_mm;
541         mm_walk.pte_entry = NULL;
542         mm_walk.test_walk = NULL;
543         mm_walk.hugetlb_entry = NULL;
544         mm_walk.pmd_entry = hmm_vma_walk_pmd;
545         mm_walk.pte_hole = hmm_vma_walk_hole;
546
547         walk_page_range(start, end, &mm_walk);
548         return 0;
549 }
550 EXPORT_SYMBOL(hmm_vma_get_pfns);
551
552 /*
553  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
554  * @vma: virtual memory area containing the virtual address range
555  * @range: range being tracked
556  * Returns: false if range data has been invalidated, true otherwise
557  *
558  * Range struct is used to track updates to the CPU page table after a call to
559  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
560  * using the data,  or wants to lock updates to the data it got from those
561  * functions, it must call the hmm_vma_range_done() function, which will then
562  * stop tracking CPU page table updates.
563  *
564  * Note that device driver must still implement general CPU page table update
565  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
566  * the mmu_notifier API directly.
567  *
568  * CPU page table update tracking done through hmm_range is only temporary and
569  * to be used while trying to duplicate CPU page table contents for a range of
570  * virtual addresses.
571  *
572  * There are two ways to use this :
573  * again:
574  *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
575  *   trans = device_build_page_table_update_transaction(pfns);
576  *   device_page_table_lock();
577  *   if (!hmm_vma_range_done(vma, range)) {
578  *     device_page_table_unlock();
579  *     goto again;
580  *   }
581  *   device_commit_transaction(trans);
582  *   device_page_table_unlock();
583  *
584  * Or:
585  *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
586  *   device_page_table_lock();
587  *   hmm_vma_range_done(vma, range);
588  *   device_update_page_table(pfns);
589  *   device_page_table_unlock();
590  */
591 bool hmm_vma_range_done(struct vm_area_struct *vma, struct hmm_range *range)
592 {
593         unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
594         struct hmm *hmm;
595
596         if (range->end <= range->start) {
597                 BUG();
598                 return false;
599         }
600
601         hmm = hmm_register(vma->vm_mm);
602         if (!hmm) {
603                 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
604                 return false;
605         }
606
607         spin_lock(&hmm->lock);
608         list_del_rcu(&range->list);
609         spin_unlock(&hmm->lock);
610
611         return range->valid;
612 }
613 EXPORT_SYMBOL(hmm_vma_range_done);
614
615 /*
616  * hmm_vma_fault() - try to fault some address in a virtual address range
617  * @vma: virtual memory area containing the virtual address range
618  * @range: use to track pfns array content validity
619  * @start: fault range virtual start address (inclusive)
620  * @end: fault range virtual end address (exclusive)
621  * @pfns: array of hmm_pfn_t, only entry with fault flag set will be faulted
622  * @write: is it a write fault
623  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
624  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
625  *
626  * This is similar to a regular CPU page fault except that it will not trigger
627  * any memory migration if the memory being faulted is not accessible by CPUs.
628  *
629  * On error, for one virtual address in the range, the function will set the
630  * hmm_pfn_t error flag for the corresponding pfn entry.
631  *
632  * Expected use pattern:
633  * retry:
634  *   down_read(&mm->mmap_sem);
635  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
636  *   // array accordingly
637  *   ret = hmm_vma_fault(vma, start, end, pfns, allow_retry);
638  *   switch (ret) {
639  *   case -EAGAIN:
640  *     hmm_vma_range_done(vma, range);
641  *     // You might want to rate limit or yield to play nicely, you may
642  *     // also commit any valid pfn in the array assuming that you are
643  *     // getting true from hmm_vma_range_monitor_end()
644  *     goto retry;
645  *   case 0:
646  *     break;
647  *   default:
648  *     // Handle error !
649  *     up_read(&mm->mmap_sem)
650  *     return;
651  *   }
652  *   // Take device driver lock that serialize device page table update
653  *   driver_lock_device_page_table_update();
654  *   hmm_vma_range_done(vma, range);
655  *   // Commit pfns we got from hmm_vma_fault()
656  *   driver_unlock_device_page_table_update();
657  *   up_read(&mm->mmap_sem)
658  *
659  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
660  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
661  *
662  * YOU HAVE BEEN WARNED !
663  */
664 int hmm_vma_fault(struct vm_area_struct *vma,
665                   struct hmm_range *range,
666                   unsigned long start,
667                   unsigned long end,
668                   hmm_pfn_t *pfns,
669                   bool write,
670                   bool block)
671 {
672         struct hmm_vma_walk hmm_vma_walk;
673         struct mm_walk mm_walk;
674         struct hmm *hmm;
675         int ret;
676
677         /* Sanity check, this really should not happen ! */
678         if (start < vma->vm_start || start >= vma->vm_end)
679                 return -EINVAL;
680         if (end < vma->vm_start || end > vma->vm_end)
681                 return -EINVAL;
682
683         hmm = hmm_register(vma->vm_mm);
684         if (!hmm) {
685                 hmm_pfns_clear(pfns, start, end);
686                 return -ENOMEM;
687         }
688         /* Caller must have registered a mirror using hmm_mirror_register() */
689         if (!hmm->mmu_notifier.ops)
690                 return -EINVAL;
691
692         /* Initialize range to track CPU page table update */
693         range->start = start;
694         range->pfns = pfns;
695         range->end = end;
696         spin_lock(&hmm->lock);
697         range->valid = true;
698         list_add_rcu(&range->list, &hmm->ranges);
699         spin_unlock(&hmm->lock);
700
701         /* FIXME support hugetlb fs */
702         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
703                 hmm_pfns_special(pfns, start, end);
704                 return 0;
705         }
706
707         hmm_vma_walk.fault = true;
708         hmm_vma_walk.write = write;
709         hmm_vma_walk.block = block;
710         hmm_vma_walk.range = range;
711         mm_walk.private = &hmm_vma_walk;
712         hmm_vma_walk.last = range->start;
713
714         mm_walk.vma = vma;
715         mm_walk.mm = vma->vm_mm;
716         mm_walk.pte_entry = NULL;
717         mm_walk.test_walk = NULL;
718         mm_walk.hugetlb_entry = NULL;
719         mm_walk.pmd_entry = hmm_vma_walk_pmd;
720         mm_walk.pte_hole = hmm_vma_walk_hole;
721
722         do {
723                 ret = walk_page_range(start, end, &mm_walk);
724                 start = hmm_vma_walk.last;
725         } while (ret == -EAGAIN);
726
727         if (ret) {
728                 unsigned long i;
729
730                 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
731                 hmm_pfns_clear(&pfns[i], hmm_vma_walk.last, end);
732                 hmm_vma_range_done(vma, range);
733         }
734         return ret;
735 }
736 EXPORT_SYMBOL(hmm_vma_fault);
737 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
738
739
740 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
741 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
742                                        unsigned long addr)
743 {
744         struct page *page;
745
746         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
747         if (!page)
748                 return NULL;
749         lock_page(page);
750         return page;
751 }
752 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
753
754
755 static void hmm_devmem_ref_release(struct percpu_ref *ref)
756 {
757         struct hmm_devmem *devmem;
758
759         devmem = container_of(ref, struct hmm_devmem, ref);
760         complete(&devmem->completion);
761 }
762
763 static void hmm_devmem_ref_exit(void *data)
764 {
765         struct percpu_ref *ref = data;
766         struct hmm_devmem *devmem;
767
768         devmem = container_of(ref, struct hmm_devmem, ref);
769         percpu_ref_exit(ref);
770 }
771
772 static void hmm_devmem_ref_kill(void *data)
773 {
774         struct percpu_ref *ref = data;
775         struct hmm_devmem *devmem;
776
777         devmem = container_of(ref, struct hmm_devmem, ref);
778         percpu_ref_kill(ref);
779         wait_for_completion(&devmem->completion);
780 }
781
782 static int hmm_devmem_fault(struct vm_area_struct *vma,
783                             unsigned long addr,
784                             const struct page *page,
785                             unsigned int flags,
786                             pmd_t *pmdp)
787 {
788         struct hmm_devmem *devmem = page->pgmap->data;
789
790         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
791 }
792
793 static void hmm_devmem_free(struct page *page, void *data)
794 {
795         struct hmm_devmem *devmem = data;
796
797         devmem->ops->free(devmem, page);
798 }
799
800 static DEFINE_MUTEX(hmm_devmem_lock);
801 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
802
803 static void hmm_devmem_radix_release(struct resource *resource)
804 {
805         resource_size_t key, align_start, align_size, align_end;
806
807         align_start = resource->start & ~(PA_SECTION_SIZE - 1);
808         align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
809         align_end = align_start + align_size - 1;
810
811         mutex_lock(&hmm_devmem_lock);
812         for (key = resource->start;
813              key <= resource->end;
814              key += PA_SECTION_SIZE)
815                 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
816         mutex_unlock(&hmm_devmem_lock);
817 }
818
819 static void hmm_devmem_release(void *data)
820 {
821         struct hmm_devmem *devmem = data;
822         struct resource *resource = devmem->resource;
823         unsigned long start_pfn, npages;
824         struct zone *zone;
825         struct page *page;
826
827         /* pages are dead and unused, undo the arch mapping */
828         start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
829         npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
830
831         page = pfn_to_page(start_pfn);
832         zone = page_zone(page);
833
834         mem_hotplug_begin();
835         if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
836                 __remove_pages(zone, start_pfn, npages);
837         else
838                 arch_remove_memory(start_pfn << PAGE_SHIFT,
839                                    npages << PAGE_SHIFT);
840         mem_hotplug_done();
841
842         hmm_devmem_radix_release(resource);
843 }
844
845 static struct hmm_devmem *hmm_devmem_find(resource_size_t phys)
846 {
847         WARN_ON_ONCE(!rcu_read_lock_held());
848
849         return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT);
850 }
851
852 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
853 {
854         resource_size_t key, align_start, align_size, align_end;
855         struct device *device = devmem->device;
856         int ret, nid, is_ram;
857         unsigned long pfn;
858
859         align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
860         align_size = ALIGN(devmem->resource->start +
861                            resource_size(devmem->resource),
862                            PA_SECTION_SIZE) - align_start;
863
864         is_ram = region_intersects(align_start, align_size,
865                                    IORESOURCE_SYSTEM_RAM,
866                                    IORES_DESC_NONE);
867         if (is_ram == REGION_MIXED) {
868                 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
869                                 __func__, devmem->resource);
870                 return -ENXIO;
871         }
872         if (is_ram == REGION_INTERSECTS)
873                 return -ENXIO;
874
875         if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
876                 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
877         else
878                 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
879
880         devmem->pagemap.res = devmem->resource;
881         devmem->pagemap.page_fault = hmm_devmem_fault;
882         devmem->pagemap.page_free = hmm_devmem_free;
883         devmem->pagemap.dev = devmem->device;
884         devmem->pagemap.ref = &devmem->ref;
885         devmem->pagemap.data = devmem;
886
887         mutex_lock(&hmm_devmem_lock);
888         align_end = align_start + align_size - 1;
889         for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
890                 struct hmm_devmem *dup;
891
892                 rcu_read_lock();
893                 dup = hmm_devmem_find(key);
894                 rcu_read_unlock();
895                 if (dup) {
896                         dev_err(device, "%s: collides with mapping for %s\n",
897                                 __func__, dev_name(dup->device));
898                         mutex_unlock(&hmm_devmem_lock);
899                         ret = -EBUSY;
900                         goto error;
901                 }
902                 ret = radix_tree_insert(&hmm_devmem_radix,
903                                         key >> PA_SECTION_SHIFT,
904                                         devmem);
905                 if (ret) {
906                         dev_err(device, "%s: failed: %d\n", __func__, ret);
907                         mutex_unlock(&hmm_devmem_lock);
908                         goto error_radix;
909                 }
910         }
911         mutex_unlock(&hmm_devmem_lock);
912
913         nid = dev_to_node(device);
914         if (nid < 0)
915                 nid = numa_mem_id();
916
917         mem_hotplug_begin();
918         /*
919          * For device private memory we call add_pages() as we only need to
920          * allocate and initialize struct page for the device memory. More-
921          * over the device memory is un-accessible thus we do not want to
922          * create a linear mapping for the memory like arch_add_memory()
923          * would do.
924          *
925          * For device public memory, which is accesible by the CPU, we do
926          * want the linear mapping and thus use arch_add_memory().
927          */
928         if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
929                 ret = arch_add_memory(nid, align_start, align_size, false);
930         else
931                 ret = add_pages(nid, align_start >> PAGE_SHIFT,
932                                 align_size >> PAGE_SHIFT, false);
933         if (ret) {
934                 mem_hotplug_done();
935                 goto error_add_memory;
936         }
937         move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
938                                 align_start >> PAGE_SHIFT,
939                                 align_size >> PAGE_SHIFT);
940         mem_hotplug_done();
941
942         for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
943                 struct page *page = pfn_to_page(pfn);
944
945                 page->pgmap = &devmem->pagemap;
946         }
947         return 0;
948
949 error_add_memory:
950         untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
951 error_radix:
952         hmm_devmem_radix_release(devmem->resource);
953 error:
954         return ret;
955 }
956
957 /*
958  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
959  *
960  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
961  * @device: device struct to bind the resource too
962  * @size: size in bytes of the device memory to add
963  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
964  *
965  * This function first finds an empty range of physical address big enough to
966  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
967  * in turn allocates struct pages. It does not do anything beyond that; all
968  * events affecting the memory will go through the various callbacks provided
969  * by hmm_devmem_ops struct.
970  *
971  * Device driver should call this function during device initialization and
972  * is then responsible of memory management. HMM only provides helpers.
973  */
974 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
975                                   struct device *device,
976                                   unsigned long size)
977 {
978         struct hmm_devmem *devmem;
979         resource_size_t addr;
980         int ret;
981
982         static_branch_enable(&device_private_key);
983
984         devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
985         if (!devmem)
986                 return ERR_PTR(-ENOMEM);
987
988         init_completion(&devmem->completion);
989         devmem->pfn_first = -1UL;
990         devmem->pfn_last = -1UL;
991         devmem->resource = NULL;
992         devmem->device = device;
993         devmem->ops = ops;
994
995         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
996                               0, GFP_KERNEL);
997         if (ret)
998                 return ERR_PTR(ret);
999
1000         ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
1001         if (ret)
1002                 return ERR_PTR(ret);
1003
1004         size = ALIGN(size, PA_SECTION_SIZE);
1005         addr = min((unsigned long)iomem_resource.end,
1006                    (1UL << MAX_PHYSMEM_BITS) - 1);
1007         addr = addr - size + 1UL;
1008
1009         /*
1010          * FIXME add a new helper to quickly walk resource tree and find free
1011          * range
1012          *
1013          * FIXME what about ioport_resource resource ?
1014          */
1015         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1016                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1017                 if (ret != REGION_DISJOINT)
1018                         continue;
1019
1020                 devmem->resource = devm_request_mem_region(device, addr, size,
1021                                                            dev_name(device));
1022                 if (!devmem->resource)
1023                         return ERR_PTR(-ENOMEM);
1024                 break;
1025         }
1026         if (!devmem->resource)
1027                 return ERR_PTR(-ERANGE);
1028
1029         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1030         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1031         devmem->pfn_last = devmem->pfn_first +
1032                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1033
1034         ret = hmm_devmem_pages_create(devmem);
1035         if (ret)
1036                 return ERR_PTR(ret);
1037
1038         ret = devm_add_action_or_reset(device, hmm_devmem_release, devmem);
1039         if (ret)
1040                 return ERR_PTR(ret);
1041
1042         return devmem;
1043 }
1044 EXPORT_SYMBOL_GPL(hmm_devmem_add);
1045
1046 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1047                                            struct device *device,
1048                                            struct resource *res)
1049 {
1050         struct hmm_devmem *devmem;
1051         int ret;
1052
1053         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1054                 return ERR_PTR(-EINVAL);
1055
1056         static_branch_enable(&device_private_key);
1057
1058         devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1059         if (!devmem)
1060                 return ERR_PTR(-ENOMEM);
1061
1062         init_completion(&devmem->completion);
1063         devmem->pfn_first = -1UL;
1064         devmem->pfn_last = -1UL;
1065         devmem->resource = res;
1066         devmem->device = device;
1067         devmem->ops = ops;
1068
1069         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1070                               0, GFP_KERNEL);
1071         if (ret)
1072                 return ERR_PTR(ret);
1073
1074         ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1075                         &devmem->ref);
1076         if (ret)
1077                 return ERR_PTR(ret);
1078
1079         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1080         devmem->pfn_last = devmem->pfn_first +
1081                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1082
1083         ret = hmm_devmem_pages_create(devmem);
1084         if (ret)
1085                 return ERR_PTR(ret);
1086
1087         ret = devm_add_action_or_reset(device, hmm_devmem_release, devmem);
1088         if (ret)
1089                 return ERR_PTR(ret);
1090
1091         ret = devm_add_action_or_reset(device, hmm_devmem_ref_kill,
1092                         &devmem->ref);
1093         if (ret)
1094                 return ERR_PTR(ret);
1095
1096         return devmem;
1097 }
1098 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
1099
1100 /*
1101  * A device driver that wants to handle multiple devices memory through a
1102  * single fake device can use hmm_device to do so. This is purely a helper
1103  * and it is not needed to make use of any HMM functionality.
1104  */
1105 #define HMM_DEVICE_MAX 256
1106
1107 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1108 static DEFINE_SPINLOCK(hmm_device_lock);
1109 static struct class *hmm_device_class;
1110 static dev_t hmm_device_devt;
1111
1112 static void hmm_device_release(struct device *device)
1113 {
1114         struct hmm_device *hmm_device;
1115
1116         hmm_device = container_of(device, struct hmm_device, device);
1117         spin_lock(&hmm_device_lock);
1118         clear_bit(hmm_device->minor, hmm_device_mask);
1119         spin_unlock(&hmm_device_lock);
1120
1121         kfree(hmm_device);
1122 }
1123
1124 struct hmm_device *hmm_device_new(void *drvdata)
1125 {
1126         struct hmm_device *hmm_device;
1127
1128         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1129         if (!hmm_device)
1130                 return ERR_PTR(-ENOMEM);
1131
1132         spin_lock(&hmm_device_lock);
1133         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1134         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1135                 spin_unlock(&hmm_device_lock);
1136                 kfree(hmm_device);
1137                 return ERR_PTR(-EBUSY);
1138         }
1139         set_bit(hmm_device->minor, hmm_device_mask);
1140         spin_unlock(&hmm_device_lock);
1141
1142         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1143         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1144                                         hmm_device->minor);
1145         hmm_device->device.release = hmm_device_release;
1146         dev_set_drvdata(&hmm_device->device, drvdata);
1147         hmm_device->device.class = hmm_device_class;
1148         device_initialize(&hmm_device->device);
1149
1150         return hmm_device;
1151 }
1152 EXPORT_SYMBOL(hmm_device_new);
1153
1154 void hmm_device_put(struct hmm_device *hmm_device)
1155 {
1156         put_device(&hmm_device->device);
1157 }
1158 EXPORT_SYMBOL(hmm_device_put);
1159
1160 static int __init hmm_init(void)
1161 {
1162         int ret;
1163
1164         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1165                                   HMM_DEVICE_MAX,
1166                                   "hmm_device");
1167         if (ret)
1168                 return ret;
1169
1170         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1171         if (IS_ERR(hmm_device_class)) {
1172                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1173                 return PTR_ERR(hmm_device_class);
1174         }
1175         return 0;
1176 }
1177
1178 device_initcall(hmm_init);
1179 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */