GNU Linux-libre 4.4.288-gnu1
[releases.git] / mm / kasan / kasan.c
1 /*
2  * This file contains shadow memory manipulation code.
3  *
4  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
6  *
7  * Some code borrowed from https://github.com/xairy/kasan-prototype by
8  *        Andrey Konovalov <adech.fo@gmail.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #define DISABLE_BRANCH_PROFILING
18
19 #include <linux/export.h>
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/kmemleak.h>
23 #include <linux/memblock.h>
24 #include <linux/memory.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/printk.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/stacktrace.h>
31 #include <linux/string.h>
32 #include <linux/types.h>
33 #include <linux/vmalloc.h>
34 #include <linux/kasan.h>
35
36 #include "kasan.h"
37 #include "../slab.h"
38
39 /*
40  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
41  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
42  */
43 static void kasan_poison_shadow(const void *address, size_t size, u8 value)
44 {
45         void *shadow_start, *shadow_end;
46
47         shadow_start = kasan_mem_to_shadow(address);
48         shadow_end = kasan_mem_to_shadow(address + size);
49
50         memset(shadow_start, value, shadow_end - shadow_start);
51 }
52
53 void kasan_unpoison_shadow(const void *address, size_t size)
54 {
55         kasan_poison_shadow(address, size, 0);
56
57         if (size & KASAN_SHADOW_MASK) {
58                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
59                 *shadow = size & KASAN_SHADOW_MASK;
60         }
61 }
62
63
64 /*
65  * All functions below always inlined so compiler could
66  * perform better optimizations in each of __asan_loadX/__assn_storeX
67  * depending on memory access size X.
68  */
69
70 static __always_inline bool memory_is_poisoned_1(unsigned long addr)
71 {
72         s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
73
74         if (unlikely(shadow_value)) {
75                 s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
76                 return unlikely(last_accessible_byte >= shadow_value);
77         }
78
79         return false;
80 }
81
82 static __always_inline bool memory_is_poisoned_2(unsigned long addr)
83 {
84         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
85
86         if (unlikely(*shadow_addr)) {
87                 if (memory_is_poisoned_1(addr + 1))
88                         return true;
89
90                 /*
91                  * If single shadow byte covers 2-byte access, we don't
92                  * need to do anything more. Otherwise, test the first
93                  * shadow byte.
94                  */
95                 if (likely(((addr + 1) & KASAN_SHADOW_MASK) != 0))
96                         return false;
97
98                 return unlikely(*(u8 *)shadow_addr);
99         }
100
101         return false;
102 }
103
104 static __always_inline bool memory_is_poisoned_4(unsigned long addr)
105 {
106         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
107
108         if (unlikely(*shadow_addr)) {
109                 if (memory_is_poisoned_1(addr + 3))
110                         return true;
111
112                 /*
113                  * If single shadow byte covers 4-byte access, we don't
114                  * need to do anything more. Otherwise, test the first
115                  * shadow byte.
116                  */
117                 if (likely(((addr + 3) & KASAN_SHADOW_MASK) >= 3))
118                         return false;
119
120                 return unlikely(*(u8 *)shadow_addr);
121         }
122
123         return false;
124 }
125
126 static __always_inline bool memory_is_poisoned_8(unsigned long addr)
127 {
128         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
129
130         if (unlikely(*shadow_addr)) {
131                 if (memory_is_poisoned_1(addr + 7))
132                         return true;
133
134                 /*
135                  * If single shadow byte covers 8-byte access, we don't
136                  * need to do anything more. Otherwise, test the first
137                  * shadow byte.
138                  */
139                 if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
140                         return false;
141
142                 return unlikely(*(u8 *)shadow_addr);
143         }
144
145         return false;
146 }
147
148 static __always_inline bool memory_is_poisoned_16(unsigned long addr)
149 {
150         u32 *shadow_addr = (u32 *)kasan_mem_to_shadow((void *)addr);
151
152         if (unlikely(*shadow_addr)) {
153                 u16 shadow_first_bytes = *(u16 *)shadow_addr;
154
155                 if (unlikely(shadow_first_bytes))
156                         return true;
157
158                 /*
159                  * If two shadow bytes covers 16-byte access, we don't
160                  * need to do anything more. Otherwise, test the last
161                  * shadow byte.
162                  */
163                 if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
164                         return false;
165
166                 return memory_is_poisoned_1(addr + 15);
167         }
168
169         return false;
170 }
171
172 static __always_inline unsigned long bytes_is_zero(const u8 *start,
173                                         size_t size)
174 {
175         while (size) {
176                 if (unlikely(*start))
177                         return (unsigned long)start;
178                 start++;
179                 size--;
180         }
181
182         return 0;
183 }
184
185 static __always_inline unsigned long memory_is_zero(const void *start,
186                                                 const void *end)
187 {
188         unsigned int words;
189         unsigned long ret;
190         unsigned int prefix = (unsigned long)start % 8;
191
192         if (end - start <= 16)
193                 return bytes_is_zero(start, end - start);
194
195         if (prefix) {
196                 prefix = 8 - prefix;
197                 ret = bytes_is_zero(start, prefix);
198                 if (unlikely(ret))
199                         return ret;
200                 start += prefix;
201         }
202
203         words = (end - start) / 8;
204         while (words) {
205                 if (unlikely(*(u64 *)start))
206                         return bytes_is_zero(start, 8);
207                 start += 8;
208                 words--;
209         }
210
211         return bytes_is_zero(start, (end - start) % 8);
212 }
213
214 static __always_inline bool memory_is_poisoned_n(unsigned long addr,
215                                                 size_t size)
216 {
217         unsigned long ret;
218
219         ret = memory_is_zero(kasan_mem_to_shadow((void *)addr),
220                         kasan_mem_to_shadow((void *)addr + size - 1) + 1);
221
222         if (unlikely(ret)) {
223                 unsigned long last_byte = addr + size - 1;
224                 s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
225
226                 if (unlikely(ret != (unsigned long)last_shadow ||
227                         ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
228                         return true;
229         }
230         return false;
231 }
232
233 static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
234 {
235         if (__builtin_constant_p(size)) {
236                 switch (size) {
237                 case 1:
238                         return memory_is_poisoned_1(addr);
239                 case 2:
240                         return memory_is_poisoned_2(addr);
241                 case 4:
242                         return memory_is_poisoned_4(addr);
243                 case 8:
244                         return memory_is_poisoned_8(addr);
245                 case 16:
246                         return memory_is_poisoned_16(addr);
247                 default:
248                         BUILD_BUG();
249                 }
250         }
251
252         return memory_is_poisoned_n(addr, size);
253 }
254
255 static __always_inline void check_memory_region_inline(unsigned long addr,
256                                                 size_t size, bool write,
257                                                 unsigned long ret_ip)
258 {
259         if (unlikely(size == 0))
260                 return;
261
262         if (unlikely((void *)addr <
263                 kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
264                 kasan_report(addr, size, write, ret_ip);
265                 return;
266         }
267
268         if (likely(!memory_is_poisoned(addr, size)))
269                 return;
270
271         kasan_report(addr, size, write, ret_ip);
272 }
273
274 static void check_memory_region(unsigned long addr,
275                                 size_t size, bool write,
276                                 unsigned long ret_ip)
277 {
278         check_memory_region_inline(addr, size, write, ret_ip);
279 }
280
281 void kasan_check_read(const void *p, unsigned int size)
282 {
283         check_memory_region((unsigned long)p, size, false, _RET_IP_);
284 }
285 EXPORT_SYMBOL(kasan_check_read);
286
287 void kasan_check_write(const void *p, unsigned int size)
288 {
289         check_memory_region((unsigned long)p, size, true, _RET_IP_);
290 }
291 EXPORT_SYMBOL(kasan_check_write);
292
293 #undef memset
294 void *memset(void *addr, int c, size_t len)
295 {
296         check_memory_region((unsigned long)addr, len, true, _RET_IP_);
297
298         return __memset(addr, c, len);
299 }
300
301 #undef memmove
302 void *memmove(void *dest, const void *src, size_t len)
303 {
304         check_memory_region((unsigned long)src, len, false, _RET_IP_);
305         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
306
307         return __memmove(dest, src, len);
308 }
309
310 #undef memcpy
311 void *memcpy(void *dest, const void *src, size_t len)
312 {
313         check_memory_region((unsigned long)src, len, false, _RET_IP_);
314         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
315
316         return __memcpy(dest, src, len);
317 }
318
319 void kasan_alloc_pages(struct page *page, unsigned int order)
320 {
321         if (likely(!PageHighMem(page)))
322                 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
323 }
324
325 void kasan_free_pages(struct page *page, unsigned int order)
326 {
327         if (likely(!PageHighMem(page)))
328                 kasan_poison_shadow(page_address(page),
329                                 PAGE_SIZE << order,
330                                 KASAN_FREE_PAGE);
331 }
332
333 void kasan_poison_slab(struct page *page)
334 {
335         kasan_poison_shadow(page_address(page),
336                         PAGE_SIZE << compound_order(page),
337                         KASAN_KMALLOC_REDZONE);
338 }
339
340 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
341 {
342         kasan_unpoison_shadow(object, cache->object_size);
343 }
344
345 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
346 {
347         kasan_poison_shadow(object,
348                         round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
349                         KASAN_KMALLOC_REDZONE);
350 }
351
352 void kasan_slab_alloc(struct kmem_cache *cache, void *object)
353 {
354         kasan_kmalloc(cache, object, cache->object_size);
355 }
356
357 void kasan_slab_free(struct kmem_cache *cache, void *object)
358 {
359         unsigned long size = cache->object_size;
360         unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
361
362         /* RCU slabs could be legally used after free within the RCU period */
363         if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
364                 return;
365
366         kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
367 }
368
369 void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size)
370 {
371         unsigned long redzone_start;
372         unsigned long redzone_end;
373
374         if (unlikely(object == NULL))
375                 return;
376
377         redzone_start = round_up((unsigned long)(object + size),
378                                 KASAN_SHADOW_SCALE_SIZE);
379         redzone_end = round_up((unsigned long)object + cache->object_size,
380                                 KASAN_SHADOW_SCALE_SIZE);
381
382         kasan_unpoison_shadow(object, size);
383         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
384                 KASAN_KMALLOC_REDZONE);
385 }
386 EXPORT_SYMBOL(kasan_kmalloc);
387
388 void kasan_kmalloc_large(const void *ptr, size_t size)
389 {
390         struct page *page;
391         unsigned long redzone_start;
392         unsigned long redzone_end;
393
394         if (unlikely(ptr == NULL))
395                 return;
396
397         page = virt_to_page(ptr);
398         redzone_start = round_up((unsigned long)(ptr + size),
399                                 KASAN_SHADOW_SCALE_SIZE);
400         redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
401
402         kasan_unpoison_shadow(ptr, size);
403         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
404                 KASAN_PAGE_REDZONE);
405 }
406
407 void kasan_krealloc(const void *object, size_t size)
408 {
409         struct page *page;
410
411         if (unlikely(object == ZERO_SIZE_PTR))
412                 return;
413
414         page = virt_to_head_page(object);
415
416         if (unlikely(!PageSlab(page)))
417                 kasan_kmalloc_large(object, size);
418         else
419                 kasan_kmalloc(page->slab_cache, object, size);
420 }
421
422 void kasan_kfree(void *ptr)
423 {
424         struct page *page;
425
426         page = virt_to_head_page(ptr);
427
428         if (unlikely(!PageSlab(page)))
429                 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
430                                 KASAN_FREE_PAGE);
431         else
432                 kasan_slab_free(page->slab_cache, ptr);
433 }
434
435 void kasan_kfree_large(const void *ptr)
436 {
437         struct page *page = virt_to_page(ptr);
438
439         kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
440                         KASAN_FREE_PAGE);
441 }
442
443 int kasan_module_alloc(void *addr, size_t size)
444 {
445         void *ret;
446         size_t scaled_size;
447         size_t shadow_size;
448         unsigned long shadow_start;
449
450         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
451         scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
452         shadow_size = round_up(scaled_size, PAGE_SIZE);
453
454         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
455                 return -EINVAL;
456
457         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
458                         shadow_start + shadow_size,
459                         GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
460                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
461                         __builtin_return_address(0));
462
463         if (ret) {
464                 find_vm_area(addr)->flags |= VM_KASAN;
465                 kmemleak_ignore(ret);
466                 return 0;
467         }
468
469         return -ENOMEM;
470 }
471
472 void kasan_free_shadow(const struct vm_struct *vm)
473 {
474         if (vm->flags & VM_KASAN)
475                 vfree(kasan_mem_to_shadow(vm->addr));
476 }
477
478 static void register_global(struct kasan_global *global)
479 {
480         size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
481
482         kasan_unpoison_shadow(global->beg, global->size);
483
484         kasan_poison_shadow(global->beg + aligned_size,
485                 global->size_with_redzone - aligned_size,
486                 KASAN_GLOBAL_REDZONE);
487 }
488
489 void __asan_register_globals(struct kasan_global *globals, size_t size)
490 {
491         int i;
492
493         for (i = 0; i < size; i++)
494                 register_global(&globals[i]);
495 }
496 EXPORT_SYMBOL(__asan_register_globals);
497
498 void __asan_unregister_globals(struct kasan_global *globals, size_t size)
499 {
500 }
501 EXPORT_SYMBOL(__asan_unregister_globals);
502
503 #define DEFINE_ASAN_LOAD_STORE(size)                                    \
504         void __asan_load##size(unsigned long addr)                      \
505         {                                                               \
506                 check_memory_region_inline(addr, size, false, _RET_IP_);\
507         }                                                               \
508         EXPORT_SYMBOL(__asan_load##size);                               \
509         __alias(__asan_load##size)                                      \
510         void __asan_load##size##_noabort(unsigned long);                \
511         EXPORT_SYMBOL(__asan_load##size##_noabort);                     \
512         void __asan_store##size(unsigned long addr)                     \
513         {                                                               \
514                 check_memory_region_inline(addr, size, true, _RET_IP_); \
515         }                                                               \
516         EXPORT_SYMBOL(__asan_store##size);                              \
517         __alias(__asan_store##size)                                     \
518         void __asan_store##size##_noabort(unsigned long);               \
519         EXPORT_SYMBOL(__asan_store##size##_noabort)
520
521 DEFINE_ASAN_LOAD_STORE(1);
522 DEFINE_ASAN_LOAD_STORE(2);
523 DEFINE_ASAN_LOAD_STORE(4);
524 DEFINE_ASAN_LOAD_STORE(8);
525 DEFINE_ASAN_LOAD_STORE(16);
526
527 void __asan_loadN(unsigned long addr, size_t size)
528 {
529         check_memory_region(addr, size, false, _RET_IP_);
530 }
531 EXPORT_SYMBOL(__asan_loadN);
532
533 __alias(__asan_loadN)
534 void __asan_loadN_noabort(unsigned long, size_t);
535 EXPORT_SYMBOL(__asan_loadN_noabort);
536
537 void __asan_storeN(unsigned long addr, size_t size)
538 {
539         check_memory_region(addr, size, true, _RET_IP_);
540 }
541 EXPORT_SYMBOL(__asan_storeN);
542
543 __alias(__asan_storeN)
544 void __asan_storeN_noabort(unsigned long, size_t);
545 EXPORT_SYMBOL(__asan_storeN_noabort);
546
547 /* to shut up compiler complaints */
548 void __asan_handle_no_return(void) {}
549 EXPORT_SYMBOL(__asan_handle_no_return);
550
551 #ifdef CONFIG_MEMORY_HOTPLUG
552 static int kasan_mem_notifier(struct notifier_block *nb,
553                         unsigned long action, void *data)
554 {
555         return (action == MEM_GOING_ONLINE) ? NOTIFY_BAD : NOTIFY_OK;
556 }
557
558 static int __init kasan_memhotplug_init(void)
559 {
560         pr_err("WARNING: KASAN doesn't support memory hot-add\n");
561         pr_err("Memory hot-add will be disabled\n");
562
563         hotplug_memory_notifier(kasan_mem_notifier, 0);
564
565         return 0;
566 }
567
568 core_initcall(kasan_memhotplug_init);
569 #endif