GNU Linux-libre 4.4.288-gnu1
[releases.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         union {
164                 struct anon_vma *anon_vma;      /* when stable */
165 #ifdef CONFIG_NUMA
166                 int nid;                /* when node of unstable tree */
167 #endif
168         };
169         struct mm_struct *mm;
170         unsigned long address;          /* + low bits used for flags below */
171         unsigned int oldchecksum;       /* when unstable */
172         union {
173                 struct rb_node node;    /* when node of unstable tree */
174                 struct {                /* when listed from stable tree */
175                         struct stable_node *head;
176                         struct hlist_node hlist;
177                 };
178         };
179 };
180
181 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
183 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201         .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes  1U
232 #define ksm_nr_node_ids         1
233 #endif
234
235 #define KSM_RUN_STOP    0
236 #define KSM_RUN_MERGE   1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247                 sizeof(struct __struct), __alignof__(struct __struct),\
248                 (__flags), NULL)
249
250 static int __init ksm_slab_init(void)
251 {
252         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253         if (!rmap_item_cache)
254                 goto out;
255
256         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257         if (!stable_node_cache)
258                 goto out_free1;
259
260         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261         if (!mm_slot_cache)
262                 goto out_free2;
263
264         return 0;
265
266 out_free2:
267         kmem_cache_destroy(stable_node_cache);
268 out_free1:
269         kmem_cache_destroy(rmap_item_cache);
270 out:
271         return -ENOMEM;
272 }
273
274 static void __init ksm_slab_free(void)
275 {
276         kmem_cache_destroy(mm_slot_cache);
277         kmem_cache_destroy(stable_node_cache);
278         kmem_cache_destroy(rmap_item_cache);
279         mm_slot_cache = NULL;
280 }
281
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284         struct rmap_item *rmap_item;
285
286         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
287                                                 __GFP_NORETRY | __GFP_NOWARN);
288         if (rmap_item)
289                 ksm_rmap_items++;
290         return rmap_item;
291 }
292
293 static inline void free_rmap_item(struct rmap_item *rmap_item)
294 {
295         ksm_rmap_items--;
296         rmap_item->mm = NULL;   /* debug safety */
297         kmem_cache_free(rmap_item_cache, rmap_item);
298 }
299
300 static inline struct stable_node *alloc_stable_node(void)
301 {
302         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
303 }
304
305 static inline void free_stable_node(struct stable_node *stable_node)
306 {
307         kmem_cache_free(stable_node_cache, stable_node);
308 }
309
310 static inline struct mm_slot *alloc_mm_slot(void)
311 {
312         if (!mm_slot_cache)     /* initialization failed */
313                 return NULL;
314         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
315 }
316
317 static inline void free_mm_slot(struct mm_slot *mm_slot)
318 {
319         kmem_cache_free(mm_slot_cache, mm_slot);
320 }
321
322 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
323 {
324         struct mm_slot *slot;
325
326         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
327                 if (slot->mm == mm)
328                         return slot;
329
330         return NULL;
331 }
332
333 static void insert_to_mm_slots_hash(struct mm_struct *mm,
334                                     struct mm_slot *mm_slot)
335 {
336         mm_slot->mm = mm;
337         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
338 }
339
340 /*
341  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
342  * page tables after it has passed through ksm_exit() - which, if necessary,
343  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
344  * a special flag: they can just back out as soon as mm_users goes to zero.
345  * ksm_test_exit() is used throughout to make this test for exit: in some
346  * places for correctness, in some places just to avoid unnecessary work.
347  */
348 static inline bool ksm_test_exit(struct mm_struct *mm)
349 {
350         return atomic_read(&mm->mm_users) == 0;
351 }
352
353 /*
354  * We use break_ksm to break COW on a ksm page: it's a stripped down
355  *
356  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
357  *              put_page(page);
358  *
359  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
360  * in case the application has unmapped and remapped mm,addr meanwhile.
361  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
362  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
363  */
364 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
365 {
366         struct page *page;
367         int ret = 0;
368
369         do {
370                 cond_resched();
371                 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
372                 if (IS_ERR_OR_NULL(page))
373                         break;
374                 if (PageKsm(page))
375                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
376                                                         FAULT_FLAG_WRITE);
377                 else
378                         ret = VM_FAULT_WRITE;
379                 put_page(page);
380         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
381         /*
382          * We must loop because handle_mm_fault() may back out if there's
383          * any difficulty e.g. if pte accessed bit gets updated concurrently.
384          *
385          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
386          * COW has been broken, even if the vma does not permit VM_WRITE;
387          * but note that a concurrent fault might break PageKsm for us.
388          *
389          * VM_FAULT_SIGBUS could occur if we race with truncation of the
390          * backing file, which also invalidates anonymous pages: that's
391          * okay, that truncation will have unmapped the PageKsm for us.
392          *
393          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
394          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
395          * current task has TIF_MEMDIE set, and will be OOM killed on return
396          * to user; and ksmd, having no mm, would never be chosen for that.
397          *
398          * But if the mm is in a limited mem_cgroup, then the fault may fail
399          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
400          * even ksmd can fail in this way - though it's usually breaking ksm
401          * just to undo a merge it made a moment before, so unlikely to oom.
402          *
403          * That's a pity: we might therefore have more kernel pages allocated
404          * than we're counting as nodes in the stable tree; but ksm_do_scan
405          * will retry to break_cow on each pass, so should recover the page
406          * in due course.  The important thing is to not let VM_MERGEABLE
407          * be cleared while any such pages might remain in the area.
408          */
409         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
410 }
411
412 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
413                 unsigned long addr)
414 {
415         struct vm_area_struct *vma;
416         if (ksm_test_exit(mm))
417                 return NULL;
418         vma = find_vma(mm, addr);
419         if (!vma || vma->vm_start > addr)
420                 return NULL;
421         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
422                 return NULL;
423         return vma;
424 }
425
426 static void break_cow(struct rmap_item *rmap_item)
427 {
428         struct mm_struct *mm = rmap_item->mm;
429         unsigned long addr = rmap_item->address;
430         struct vm_area_struct *vma;
431
432         /*
433          * It is not an accident that whenever we want to break COW
434          * to undo, we also need to drop a reference to the anon_vma.
435          */
436         put_anon_vma(rmap_item->anon_vma);
437
438         down_read(&mm->mmap_sem);
439         vma = find_mergeable_vma(mm, addr);
440         if (vma)
441                 break_ksm(vma, addr);
442         up_read(&mm->mmap_sem);
443 }
444
445 static struct page *page_trans_compound_anon(struct page *page)
446 {
447         if (PageTransCompound(page)) {
448                 struct page *head = compound_head(page);
449                 /*
450                  * head may actually be splitted and freed from under
451                  * us but it's ok here.
452                  */
453                 if (PageAnon(head))
454                         return head;
455         }
456         return NULL;
457 }
458
459 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
460 {
461         struct mm_struct *mm = rmap_item->mm;
462         unsigned long addr = rmap_item->address;
463         struct vm_area_struct *vma;
464         struct page *page;
465
466         down_read(&mm->mmap_sem);
467         vma = find_mergeable_vma(mm, addr);
468         if (!vma)
469                 goto out;
470
471         page = follow_page(vma, addr, FOLL_GET);
472         if (IS_ERR_OR_NULL(page))
473                 goto out;
474         if (PageAnon(page) || page_trans_compound_anon(page)) {
475                 flush_anon_page(vma, page, addr);
476                 flush_dcache_page(page);
477         } else {
478                 put_page(page);
479 out:
480                 page = NULL;
481         }
482         up_read(&mm->mmap_sem);
483         return page;
484 }
485
486 /*
487  * This helper is used for getting right index into array of tree roots.
488  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
489  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
490  * every node has its own stable and unstable tree.
491  */
492 static inline int get_kpfn_nid(unsigned long kpfn)
493 {
494         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
495 }
496
497 static void remove_node_from_stable_tree(struct stable_node *stable_node)
498 {
499         struct rmap_item *rmap_item;
500
501         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
502                 if (rmap_item->hlist.next)
503                         ksm_pages_sharing--;
504                 else
505                         ksm_pages_shared--;
506                 put_anon_vma(rmap_item->anon_vma);
507                 rmap_item->address &= PAGE_MASK;
508                 cond_resched();
509         }
510
511         if (stable_node->head == &migrate_nodes)
512                 list_del(&stable_node->list);
513         else
514                 rb_erase(&stable_node->node,
515                          root_stable_tree + NUMA(stable_node->nid));
516         free_stable_node(stable_node);
517 }
518
519 /*
520  * get_ksm_page: checks if the page indicated by the stable node
521  * is still its ksm page, despite having held no reference to it.
522  * In which case we can trust the content of the page, and it
523  * returns the gotten page; but if the page has now been zapped,
524  * remove the stale node from the stable tree and return NULL.
525  * But beware, the stable node's page might be being migrated.
526  *
527  * You would expect the stable_node to hold a reference to the ksm page.
528  * But if it increments the page's count, swapping out has to wait for
529  * ksmd to come around again before it can free the page, which may take
530  * seconds or even minutes: much too unresponsive.  So instead we use a
531  * "keyhole reference": access to the ksm page from the stable node peeps
532  * out through its keyhole to see if that page still holds the right key,
533  * pointing back to this stable node.  This relies on freeing a PageAnon
534  * page to reset its page->mapping to NULL, and relies on no other use of
535  * a page to put something that might look like our key in page->mapping.
536  * is on its way to being freed; but it is an anomaly to bear in mind.
537  */
538 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
539 {
540         struct page *page;
541         void *expected_mapping;
542         unsigned long kpfn;
543
544         expected_mapping = (void *)stable_node +
545                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
546 again:
547         kpfn = READ_ONCE(stable_node->kpfn);
548         page = pfn_to_page(kpfn);
549
550         /*
551          * page is computed from kpfn, so on most architectures reading
552          * page->mapping is naturally ordered after reading node->kpfn,
553          * but on Alpha we need to be more careful.
554          */
555         smp_read_barrier_depends();
556         if (READ_ONCE(page->mapping) != expected_mapping)
557                 goto stale;
558
559         /*
560          * We cannot do anything with the page while its refcount is 0.
561          * Usually 0 means free, or tail of a higher-order page: in which
562          * case this node is no longer referenced, and should be freed;
563          * however, it might mean that the page is under page_freeze_refs().
564          * The __remove_mapping() case is easy, again the node is now stale;
565          * but if page is swapcache in migrate_page_move_mapping(), it might
566          * still be our page, in which case it's essential to keep the node.
567          */
568         while (!get_page_unless_zero(page)) {
569                 /*
570                  * Another check for page->mapping != expected_mapping would
571                  * work here too.  We have chosen the !PageSwapCache test to
572                  * optimize the common case, when the page is or is about to
573                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
574                  * in the freeze_refs section of __remove_mapping(); but Anon
575                  * page->mapping reset to NULL later, in free_pages_prepare().
576                  */
577                 if (!PageSwapCache(page))
578                         goto stale;
579                 cpu_relax();
580         }
581
582         if (READ_ONCE(page->mapping) != expected_mapping) {
583                 put_page(page);
584                 goto stale;
585         }
586
587         if (lock_it) {
588                 lock_page(page);
589                 if (READ_ONCE(page->mapping) != expected_mapping) {
590                         unlock_page(page);
591                         put_page(page);
592                         goto stale;
593                 }
594         }
595         return page;
596
597 stale:
598         /*
599          * We come here from above when page->mapping or !PageSwapCache
600          * suggests that the node is stale; but it might be under migration.
601          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
602          * before checking whether node->kpfn has been changed.
603          */
604         smp_rmb();
605         if (READ_ONCE(stable_node->kpfn) != kpfn)
606                 goto again;
607         remove_node_from_stable_tree(stable_node);
608         return NULL;
609 }
610
611 /*
612  * Removing rmap_item from stable or unstable tree.
613  * This function will clean the information from the stable/unstable tree.
614  */
615 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
616 {
617         if (rmap_item->address & STABLE_FLAG) {
618                 struct stable_node *stable_node;
619                 struct page *page;
620
621                 stable_node = rmap_item->head;
622                 page = get_ksm_page(stable_node, true);
623                 if (!page)
624                         goto out;
625
626                 hlist_del(&rmap_item->hlist);
627                 unlock_page(page);
628                 put_page(page);
629
630                 if (!hlist_empty(&stable_node->hlist))
631                         ksm_pages_sharing--;
632                 else
633                         ksm_pages_shared--;
634
635                 put_anon_vma(rmap_item->anon_vma);
636                 rmap_item->head = NULL;
637                 rmap_item->address &= PAGE_MASK;
638
639         } else if (rmap_item->address & UNSTABLE_FLAG) {
640                 unsigned char age;
641                 /*
642                  * Usually ksmd can and must skip the rb_erase, because
643                  * root_unstable_tree was already reset to RB_ROOT.
644                  * But be careful when an mm is exiting: do the rb_erase
645                  * if this rmap_item was inserted by this scan, rather
646                  * than left over from before.
647                  */
648                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
649                 BUG_ON(age > 1);
650                 if (!age)
651                         rb_erase(&rmap_item->node,
652                                  root_unstable_tree + NUMA(rmap_item->nid));
653                 ksm_pages_unshared--;
654                 rmap_item->address &= PAGE_MASK;
655         }
656 out:
657         cond_resched();         /* we're called from many long loops */
658 }
659
660 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
661                                        struct rmap_item **rmap_list)
662 {
663         while (*rmap_list) {
664                 struct rmap_item *rmap_item = *rmap_list;
665                 *rmap_list = rmap_item->rmap_list;
666                 remove_rmap_item_from_tree(rmap_item);
667                 free_rmap_item(rmap_item);
668         }
669 }
670
671 /*
672  * Though it's very tempting to unmerge rmap_items from stable tree rather
673  * than check every pte of a given vma, the locking doesn't quite work for
674  * that - an rmap_item is assigned to the stable tree after inserting ksm
675  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
676  * rmap_items from parent to child at fork time (so as not to waste time
677  * if exit comes before the next scan reaches it).
678  *
679  * Similarly, although we'd like to remove rmap_items (so updating counts
680  * and freeing memory) when unmerging an area, it's easier to leave that
681  * to the next pass of ksmd - consider, for example, how ksmd might be
682  * in cmp_and_merge_page on one of the rmap_items we would be removing.
683  */
684 static int unmerge_ksm_pages(struct vm_area_struct *vma,
685                              unsigned long start, unsigned long end)
686 {
687         unsigned long addr;
688         int err = 0;
689
690         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
691                 if (ksm_test_exit(vma->vm_mm))
692                         break;
693                 if (signal_pending(current))
694                         err = -ERESTARTSYS;
695                 else
696                         err = break_ksm(vma, addr);
697         }
698         return err;
699 }
700
701 #ifdef CONFIG_SYSFS
702 /*
703  * Only called through the sysfs control interface:
704  */
705 static int remove_stable_node(struct stable_node *stable_node)
706 {
707         struct page *page;
708         int err;
709
710         page = get_ksm_page(stable_node, true);
711         if (!page) {
712                 /*
713                  * get_ksm_page did remove_node_from_stable_tree itself.
714                  */
715                 return 0;
716         }
717
718         /*
719          * Page could be still mapped if this races with __mmput() running in
720          * between ksm_exit() and exit_mmap(). Just refuse to let
721          * merge_across_nodes/max_page_sharing be switched.
722          */
723         err = -EBUSY;
724         if (!page_mapped(page)) {
725                 /*
726                  * The stable node did not yet appear stale to get_ksm_page(),
727                  * since that allows for an unmapped ksm page to be recognized
728                  * right up until it is freed; but the node is safe to remove.
729                  * This page might be in a pagevec waiting to be freed,
730                  * or it might be PageSwapCache (perhaps under writeback),
731                  * or it might have been removed from swapcache a moment ago.
732                  */
733                 set_page_stable_node(page, NULL);
734                 remove_node_from_stable_tree(stable_node);
735                 err = 0;
736         }
737
738         unlock_page(page);
739         put_page(page);
740         return err;
741 }
742
743 static int remove_all_stable_nodes(void)
744 {
745         struct stable_node *stable_node;
746         struct list_head *this, *next;
747         int nid;
748         int err = 0;
749
750         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
751                 while (root_stable_tree[nid].rb_node) {
752                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
753                                                 struct stable_node, node);
754                         if (remove_stable_node(stable_node)) {
755                                 err = -EBUSY;
756                                 break;  /* proceed to next nid */
757                         }
758                         cond_resched();
759                 }
760         }
761         list_for_each_safe(this, next, &migrate_nodes) {
762                 stable_node = list_entry(this, struct stable_node, list);
763                 if (remove_stable_node(stable_node))
764                         err = -EBUSY;
765                 cond_resched();
766         }
767         return err;
768 }
769
770 static int unmerge_and_remove_all_rmap_items(void)
771 {
772         struct mm_slot *mm_slot;
773         struct mm_struct *mm;
774         struct vm_area_struct *vma;
775         int err = 0;
776
777         spin_lock(&ksm_mmlist_lock);
778         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
779                                                 struct mm_slot, mm_list);
780         spin_unlock(&ksm_mmlist_lock);
781
782         for (mm_slot = ksm_scan.mm_slot;
783                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
784                 mm = mm_slot->mm;
785                 down_read(&mm->mmap_sem);
786                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
787                         if (ksm_test_exit(mm))
788                                 break;
789                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
790                                 continue;
791                         err = unmerge_ksm_pages(vma,
792                                                 vma->vm_start, vma->vm_end);
793                         if (err)
794                                 goto error;
795                 }
796
797                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
798
799                 spin_lock(&ksm_mmlist_lock);
800                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
801                                                 struct mm_slot, mm_list);
802                 if (ksm_test_exit(mm)) {
803                         hash_del(&mm_slot->link);
804                         list_del(&mm_slot->mm_list);
805                         spin_unlock(&ksm_mmlist_lock);
806
807                         free_mm_slot(mm_slot);
808                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
809                         up_read(&mm->mmap_sem);
810                         mmdrop(mm);
811                 } else {
812                         spin_unlock(&ksm_mmlist_lock);
813                         up_read(&mm->mmap_sem);
814                 }
815         }
816
817         /* Clean up stable nodes, but don't worry if some are still busy */
818         remove_all_stable_nodes();
819         ksm_scan.seqnr = 0;
820         return 0;
821
822 error:
823         up_read(&mm->mmap_sem);
824         spin_lock(&ksm_mmlist_lock);
825         ksm_scan.mm_slot = &ksm_mm_head;
826         spin_unlock(&ksm_mmlist_lock);
827         return err;
828 }
829 #endif /* CONFIG_SYSFS */
830
831 static u32 calc_checksum(struct page *page)
832 {
833         u32 checksum;
834         void *addr = kmap_atomic(page);
835         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
836         kunmap_atomic(addr);
837         return checksum;
838 }
839
840 static int memcmp_pages(struct page *page1, struct page *page2)
841 {
842         char *addr1, *addr2;
843         int ret;
844
845         addr1 = kmap_atomic(page1);
846         addr2 = kmap_atomic(page2);
847         ret = memcmp(addr1, addr2, PAGE_SIZE);
848         kunmap_atomic(addr2);
849         kunmap_atomic(addr1);
850         return ret;
851 }
852
853 static inline int pages_identical(struct page *page1, struct page *page2)
854 {
855         return !memcmp_pages(page1, page2);
856 }
857
858 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
859                               pte_t *orig_pte)
860 {
861         struct mm_struct *mm = vma->vm_mm;
862         unsigned long addr;
863         pte_t *ptep;
864         spinlock_t *ptl;
865         int swapped;
866         int err = -EFAULT;
867         unsigned long mmun_start;       /* For mmu_notifiers */
868         unsigned long mmun_end;         /* For mmu_notifiers */
869
870         addr = page_address_in_vma(page, vma);
871         if (addr == -EFAULT)
872                 goto out;
873
874         BUG_ON(PageTransCompound(page));
875
876         mmun_start = addr;
877         mmun_end   = addr + PAGE_SIZE;
878         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
879
880         ptep = page_check_address(page, mm, addr, &ptl, 0);
881         if (!ptep)
882                 goto out_mn;
883
884         if (pte_write(*ptep) || pte_dirty(*ptep)) {
885                 pte_t entry;
886
887                 swapped = PageSwapCache(page);
888                 flush_cache_page(vma, addr, page_to_pfn(page));
889                 /*
890                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
891                  * take any lock, therefore the check that we are going to make
892                  * with the pagecount against the mapcount is racey and
893                  * O_DIRECT can happen right after the check.
894                  * So we clear the pte and flush the tlb before the check
895                  * this assure us that no O_DIRECT can happen after the check
896                  * or in the middle of the check.
897                  */
898                 entry = ptep_clear_flush_notify(vma, addr, ptep);
899                 /*
900                  * Check that no O_DIRECT or similar I/O is in progress on the
901                  * page
902                  */
903                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
904                         set_pte_at(mm, addr, ptep, entry);
905                         goto out_unlock;
906                 }
907                 if (pte_dirty(entry))
908                         set_page_dirty(page);
909                 entry = pte_mkclean(pte_wrprotect(entry));
910                 set_pte_at_notify(mm, addr, ptep, entry);
911         }
912         *orig_pte = *ptep;
913         err = 0;
914
915 out_unlock:
916         pte_unmap_unlock(ptep, ptl);
917 out_mn:
918         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
919 out:
920         return err;
921 }
922
923 /**
924  * replace_page - replace page in vma by new ksm page
925  * @vma:      vma that holds the pte pointing to page
926  * @page:     the page we are replacing by kpage
927  * @kpage:    the ksm page we replace page by
928  * @orig_pte: the original value of the pte
929  *
930  * Returns 0 on success, -EFAULT on failure.
931  */
932 static int replace_page(struct vm_area_struct *vma, struct page *page,
933                         struct page *kpage, pte_t orig_pte)
934 {
935         struct mm_struct *mm = vma->vm_mm;
936         pmd_t *pmd;
937         pte_t *ptep;
938         spinlock_t *ptl;
939         unsigned long addr;
940         int err = -EFAULT;
941         unsigned long mmun_start;       /* For mmu_notifiers */
942         unsigned long mmun_end;         /* For mmu_notifiers */
943
944         addr = page_address_in_vma(page, vma);
945         if (addr == -EFAULT)
946                 goto out;
947
948         pmd = mm_find_pmd(mm, addr);
949         if (!pmd)
950                 goto out;
951
952         mmun_start = addr;
953         mmun_end   = addr + PAGE_SIZE;
954         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
955
956         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
957         if (!pte_same(*ptep, orig_pte)) {
958                 pte_unmap_unlock(ptep, ptl);
959                 goto out_mn;
960         }
961
962         get_page(kpage);
963         page_add_anon_rmap(kpage, vma, addr);
964
965         flush_cache_page(vma, addr, pte_pfn(*ptep));
966         ptep_clear_flush_notify(vma, addr, ptep);
967         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
968
969         page_remove_rmap(page);
970         if (!page_mapped(page))
971                 try_to_free_swap(page);
972         put_page(page);
973
974         pte_unmap_unlock(ptep, ptl);
975         err = 0;
976 out_mn:
977         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
978 out:
979         return err;
980 }
981
982 static int page_trans_compound_anon_split(struct page *page)
983 {
984         int ret = 0;
985         struct page *transhuge_head = page_trans_compound_anon(page);
986         if (transhuge_head) {
987                 /* Get the reference on the head to split it. */
988                 if (get_page_unless_zero(transhuge_head)) {
989                         /*
990                          * Recheck we got the reference while the head
991                          * was still anonymous.
992                          */
993                         if (PageAnon(transhuge_head))
994                                 ret = split_huge_page(transhuge_head);
995                         else
996                                 /*
997                                  * Retry later if split_huge_page run
998                                  * from under us.
999                                  */
1000                                 ret = 1;
1001                         put_page(transhuge_head);
1002                 } else
1003                         /* Retry later if split_huge_page run from under us. */
1004                         ret = 1;
1005         }
1006         return ret;
1007 }
1008
1009 /*
1010  * try_to_merge_one_page - take two pages and merge them into one
1011  * @vma: the vma that holds the pte pointing to page
1012  * @page: the PageAnon page that we want to replace with kpage
1013  * @kpage: the PageKsm page that we want to map instead of page,
1014  *         or NULL the first time when we want to use page as kpage.
1015  *
1016  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1017  */
1018 static int try_to_merge_one_page(struct vm_area_struct *vma,
1019                                  struct page *page, struct page *kpage)
1020 {
1021         pte_t orig_pte = __pte(0);
1022         int err = -EFAULT;
1023
1024         if (page == kpage)                      /* ksm page forked */
1025                 return 0;
1026
1027         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1028                 goto out;
1029         BUG_ON(PageTransCompound(page));
1030         if (!PageAnon(page))
1031                 goto out;
1032
1033         /*
1034          * We need the page lock to read a stable PageSwapCache in
1035          * write_protect_page().  We use trylock_page() instead of
1036          * lock_page() because we don't want to wait here - we
1037          * prefer to continue scanning and merging different pages,
1038          * then come back to this page when it is unlocked.
1039          */
1040         if (!trylock_page(page))
1041                 goto out;
1042         /*
1043          * If this anonymous page is mapped only here, its pte may need
1044          * to be write-protected.  If it's mapped elsewhere, all of its
1045          * ptes are necessarily already write-protected.  But in either
1046          * case, we need to lock and check page_count is not raised.
1047          */
1048         if (write_protect_page(vma, page, &orig_pte) == 0) {
1049                 if (!kpage) {
1050                         /*
1051                          * While we hold page lock, upgrade page from
1052                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1053                          * stable_tree_insert() will update stable_node.
1054                          */
1055                         set_page_stable_node(page, NULL);
1056                         mark_page_accessed(page);
1057                         err = 0;
1058                 } else if (pages_identical(page, kpage))
1059                         err = replace_page(vma, page, kpage, orig_pte);
1060         }
1061
1062         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1063                 munlock_vma_page(page);
1064                 if (!PageMlocked(kpage)) {
1065                         unlock_page(page);
1066                         lock_page(kpage);
1067                         mlock_vma_page(kpage);
1068                         page = kpage;           /* for final unlock */
1069                 }
1070         }
1071
1072         unlock_page(page);
1073 out:
1074         return err;
1075 }
1076
1077 /*
1078  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1079  * but no new kernel page is allocated: kpage must already be a ksm page.
1080  *
1081  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1082  */
1083 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1084                                       struct page *page, struct page *kpage)
1085 {
1086         struct mm_struct *mm = rmap_item->mm;
1087         struct vm_area_struct *vma;
1088         int err = -EFAULT;
1089
1090         down_read(&mm->mmap_sem);
1091         vma = find_mergeable_vma(mm, rmap_item->address);
1092         if (!vma)
1093                 goto out;
1094
1095         err = try_to_merge_one_page(vma, page, kpage);
1096         if (err)
1097                 goto out;
1098
1099         /* Unstable nid is in union with stable anon_vma: remove first */
1100         remove_rmap_item_from_tree(rmap_item);
1101
1102         /* Must get reference to anon_vma while still holding mmap_sem */
1103         rmap_item->anon_vma = vma->anon_vma;
1104         get_anon_vma(vma->anon_vma);
1105 out:
1106         up_read(&mm->mmap_sem);
1107         return err;
1108 }
1109
1110 /*
1111  * try_to_merge_two_pages - take two identical pages and prepare them
1112  * to be merged into one page.
1113  *
1114  * This function returns the kpage if we successfully merged two identical
1115  * pages into one ksm page, NULL otherwise.
1116  *
1117  * Note that this function upgrades page to ksm page: if one of the pages
1118  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1119  */
1120 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1121                                            struct page *page,
1122                                            struct rmap_item *tree_rmap_item,
1123                                            struct page *tree_page)
1124 {
1125         int err;
1126
1127         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1128         if (!err) {
1129                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1130                                                         tree_page, page);
1131                 /*
1132                  * If that fails, we have a ksm page with only one pte
1133                  * pointing to it: so break it.
1134                  */
1135                 if (err)
1136                         break_cow(rmap_item);
1137         }
1138         return err ? NULL : page;
1139 }
1140
1141 /*
1142  * stable_tree_search - search for page inside the stable tree
1143  *
1144  * This function checks if there is a page inside the stable tree
1145  * with identical content to the page that we are scanning right now.
1146  *
1147  * This function returns the stable tree node of identical content if found,
1148  * NULL otherwise.
1149  */
1150 static struct page *stable_tree_search(struct page *page)
1151 {
1152         int nid;
1153         struct rb_root *root;
1154         struct rb_node **new;
1155         struct rb_node *parent;
1156         struct stable_node *stable_node;
1157         struct stable_node *page_node;
1158
1159         page_node = page_stable_node(page);
1160         if (page_node && page_node->head != &migrate_nodes) {
1161                 /* ksm page forked */
1162                 get_page(page);
1163                 return page;
1164         }
1165
1166         nid = get_kpfn_nid(page_to_pfn(page));
1167         root = root_stable_tree + nid;
1168 again:
1169         new = &root->rb_node;
1170         parent = NULL;
1171
1172         while (*new) {
1173                 struct page *tree_page;
1174                 int ret;
1175
1176                 cond_resched();
1177                 stable_node = rb_entry(*new, struct stable_node, node);
1178                 tree_page = get_ksm_page(stable_node, false);
1179                 if (!tree_page) {
1180                         /*
1181                          * If we walked over a stale stable_node,
1182                          * get_ksm_page() will call rb_erase() and it
1183                          * may rebalance the tree from under us. So
1184                          * restart the search from scratch. Returning
1185                          * NULL would be safe too, but we'd generate
1186                          * false negative insertions just because some
1187                          * stable_node was stale.
1188                          */
1189                         goto again;
1190                 }
1191
1192                 ret = memcmp_pages(page, tree_page);
1193                 put_page(tree_page);
1194
1195                 parent = *new;
1196                 if (ret < 0)
1197                         new = &parent->rb_left;
1198                 else if (ret > 0)
1199                         new = &parent->rb_right;
1200                 else {
1201                         /*
1202                          * Lock and unlock the stable_node's page (which
1203                          * might already have been migrated) so that page
1204                          * migration is sure to notice its raised count.
1205                          * It would be more elegant to return stable_node
1206                          * than kpage, but that involves more changes.
1207                          */
1208                         tree_page = get_ksm_page(stable_node, true);
1209                         if (tree_page) {
1210                                 unlock_page(tree_page);
1211                                 if (get_kpfn_nid(stable_node->kpfn) !=
1212                                                 NUMA(stable_node->nid)) {
1213                                         put_page(tree_page);
1214                                         goto replace;
1215                                 }
1216                                 return tree_page;
1217                         }
1218                         /*
1219                          * There is now a place for page_node, but the tree may
1220                          * have been rebalanced, so re-evaluate parent and new.
1221                          */
1222                         if (page_node)
1223                                 goto again;
1224                         return NULL;
1225                 }
1226         }
1227
1228         if (!page_node)
1229                 return NULL;
1230
1231         list_del(&page_node->list);
1232         DO_NUMA(page_node->nid = nid);
1233         rb_link_node(&page_node->node, parent, new);
1234         rb_insert_color(&page_node->node, root);
1235         get_page(page);
1236         return page;
1237
1238 replace:
1239         if (page_node) {
1240                 list_del(&page_node->list);
1241                 DO_NUMA(page_node->nid = nid);
1242                 rb_replace_node(&stable_node->node, &page_node->node, root);
1243                 get_page(page);
1244         } else {
1245                 rb_erase(&stable_node->node, root);
1246                 page = NULL;
1247         }
1248         stable_node->head = &migrate_nodes;
1249         list_add(&stable_node->list, stable_node->head);
1250         return page;
1251 }
1252
1253 /*
1254  * stable_tree_insert - insert stable tree node pointing to new ksm page
1255  * into the stable tree.
1256  *
1257  * This function returns the stable tree node just allocated on success,
1258  * NULL otherwise.
1259  */
1260 static struct stable_node *stable_tree_insert(struct page *kpage)
1261 {
1262         int nid;
1263         unsigned long kpfn;
1264         struct rb_root *root;
1265         struct rb_node **new;
1266         struct rb_node *parent;
1267         struct stable_node *stable_node;
1268
1269         kpfn = page_to_pfn(kpage);
1270         nid = get_kpfn_nid(kpfn);
1271         root = root_stable_tree + nid;
1272 again:
1273         parent = NULL;
1274         new = &root->rb_node;
1275
1276         while (*new) {
1277                 struct page *tree_page;
1278                 int ret;
1279
1280                 cond_resched();
1281                 stable_node = rb_entry(*new, struct stable_node, node);
1282                 tree_page = get_ksm_page(stable_node, false);
1283                 if (!tree_page) {
1284                         /*
1285                          * If we walked over a stale stable_node,
1286                          * get_ksm_page() will call rb_erase() and it
1287                          * may rebalance the tree from under us. So
1288                          * restart the search from scratch. Returning
1289                          * NULL would be safe too, but we'd generate
1290                          * false negative insertions just because some
1291                          * stable_node was stale.
1292                          */
1293                         goto again;
1294                 }
1295
1296                 ret = memcmp_pages(kpage, tree_page);
1297                 put_page(tree_page);
1298
1299                 parent = *new;
1300                 if (ret < 0)
1301                         new = &parent->rb_left;
1302                 else if (ret > 0)
1303                         new = &parent->rb_right;
1304                 else {
1305                         /*
1306                          * It is not a bug that stable_tree_search() didn't
1307                          * find this node: because at that time our page was
1308                          * not yet write-protected, so may have changed since.
1309                          */
1310                         return NULL;
1311                 }
1312         }
1313
1314         stable_node = alloc_stable_node();
1315         if (!stable_node)
1316                 return NULL;
1317
1318         INIT_HLIST_HEAD(&stable_node->hlist);
1319         stable_node->kpfn = kpfn;
1320         set_page_stable_node(kpage, stable_node);
1321         DO_NUMA(stable_node->nid = nid);
1322         rb_link_node(&stable_node->node, parent, new);
1323         rb_insert_color(&stable_node->node, root);
1324
1325         return stable_node;
1326 }
1327
1328 /*
1329  * unstable_tree_search_insert - search for identical page,
1330  * else insert rmap_item into the unstable tree.
1331  *
1332  * This function searches for a page in the unstable tree identical to the
1333  * page currently being scanned; and if no identical page is found in the
1334  * tree, we insert rmap_item as a new object into the unstable tree.
1335  *
1336  * This function returns pointer to rmap_item found to be identical
1337  * to the currently scanned page, NULL otherwise.
1338  *
1339  * This function does both searching and inserting, because they share
1340  * the same walking algorithm in an rbtree.
1341  */
1342 static
1343 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1344                                               struct page *page,
1345                                               struct page **tree_pagep)
1346 {
1347         struct rb_node **new;
1348         struct rb_root *root;
1349         struct rb_node *parent = NULL;
1350         int nid;
1351
1352         nid = get_kpfn_nid(page_to_pfn(page));
1353         root = root_unstable_tree + nid;
1354         new = &root->rb_node;
1355
1356         while (*new) {
1357                 struct rmap_item *tree_rmap_item;
1358                 struct page *tree_page;
1359                 int ret;
1360
1361                 cond_resched();
1362                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1363                 tree_page = get_mergeable_page(tree_rmap_item);
1364                 if (!tree_page)
1365                         return NULL;
1366
1367                 /*
1368                  * Don't substitute a ksm page for a forked page.
1369                  */
1370                 if (page == tree_page) {
1371                         put_page(tree_page);
1372                         return NULL;
1373                 }
1374
1375                 ret = memcmp_pages(page, tree_page);
1376
1377                 parent = *new;
1378                 if (ret < 0) {
1379                         put_page(tree_page);
1380                         new = &parent->rb_left;
1381                 } else if (ret > 0) {
1382                         put_page(tree_page);
1383                         new = &parent->rb_right;
1384                 } else if (!ksm_merge_across_nodes &&
1385                            page_to_nid(tree_page) != nid) {
1386                         /*
1387                          * If tree_page has been migrated to another NUMA node,
1388                          * it will be flushed out and put in the right unstable
1389                          * tree next time: only merge with it when across_nodes.
1390                          */
1391                         put_page(tree_page);
1392                         return NULL;
1393                 } else {
1394                         *tree_pagep = tree_page;
1395                         return tree_rmap_item;
1396                 }
1397         }
1398
1399         rmap_item->address |= UNSTABLE_FLAG;
1400         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1401         DO_NUMA(rmap_item->nid = nid);
1402         rb_link_node(&rmap_item->node, parent, new);
1403         rb_insert_color(&rmap_item->node, root);
1404
1405         ksm_pages_unshared++;
1406         return NULL;
1407 }
1408
1409 /*
1410  * stable_tree_append - add another rmap_item to the linked list of
1411  * rmap_items hanging off a given node of the stable tree, all sharing
1412  * the same ksm page.
1413  */
1414 static void stable_tree_append(struct rmap_item *rmap_item,
1415                                struct stable_node *stable_node)
1416 {
1417         rmap_item->head = stable_node;
1418         rmap_item->address |= STABLE_FLAG;
1419         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1420
1421         if (rmap_item->hlist.next)
1422                 ksm_pages_sharing++;
1423         else
1424                 ksm_pages_shared++;
1425 }
1426
1427 /*
1428  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1429  * if not, compare checksum to previous and if it's the same, see if page can
1430  * be inserted into the unstable tree, or merged with a page already there and
1431  * both transferred to the stable tree.
1432  *
1433  * @page: the page that we are searching identical page to.
1434  * @rmap_item: the reverse mapping into the virtual address of this page
1435  */
1436 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1437 {
1438         struct rmap_item *tree_rmap_item;
1439         struct page *tree_page = NULL;
1440         struct stable_node *stable_node;
1441         struct page *kpage;
1442         unsigned int checksum;
1443         int err;
1444
1445         stable_node = page_stable_node(page);
1446         if (stable_node) {
1447                 if (stable_node->head != &migrate_nodes &&
1448                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1449                         rb_erase(&stable_node->node,
1450                                  root_stable_tree + NUMA(stable_node->nid));
1451                         stable_node->head = &migrate_nodes;
1452                         list_add(&stable_node->list, stable_node->head);
1453                 }
1454                 if (stable_node->head != &migrate_nodes &&
1455                     rmap_item->head == stable_node)
1456                         return;
1457         }
1458
1459         /* We first start with searching the page inside the stable tree */
1460         kpage = stable_tree_search(page);
1461         if (kpage == page && rmap_item->head == stable_node) {
1462                 put_page(kpage);
1463                 return;
1464         }
1465
1466         remove_rmap_item_from_tree(rmap_item);
1467
1468         if (kpage) {
1469                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1470                 if (!err) {
1471                         /*
1472                          * The page was successfully merged:
1473                          * add its rmap_item to the stable tree.
1474                          */
1475                         lock_page(kpage);
1476                         stable_tree_append(rmap_item, page_stable_node(kpage));
1477                         unlock_page(kpage);
1478                 }
1479                 put_page(kpage);
1480                 return;
1481         }
1482
1483         /*
1484          * If the hash value of the page has changed from the last time
1485          * we calculated it, this page is changing frequently: therefore we
1486          * don't want to insert it in the unstable tree, and we don't want
1487          * to waste our time searching for something identical to it there.
1488          */
1489         checksum = calc_checksum(page);
1490         if (rmap_item->oldchecksum != checksum) {
1491                 rmap_item->oldchecksum = checksum;
1492                 return;
1493         }
1494
1495         tree_rmap_item =
1496                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1497         if (tree_rmap_item) {
1498                 bool split;
1499
1500                 kpage = try_to_merge_two_pages(rmap_item, page,
1501                                                 tree_rmap_item, tree_page);
1502                 /*
1503                  * If both pages we tried to merge belong to the same compound
1504                  * page, then we actually ended up increasing the reference
1505                  * count of the same compound page twice, and split_huge_page
1506                  * failed.
1507                  * Here we set a flag if that happened, and we use it later to
1508                  * try split_huge_page again. Since we call put_page right
1509                  * afterwards, the reference count will be correct and
1510                  * split_huge_page should succeed.
1511                  */
1512                 split = PageTransCompound(page)
1513                         && compound_head(page) == compound_head(tree_page);
1514                 put_page(tree_page);
1515                 if (kpage) {
1516                         /*
1517                          * The pages were successfully merged: insert new
1518                          * node in the stable tree and add both rmap_items.
1519                          */
1520                         lock_page(kpage);
1521                         stable_node = stable_tree_insert(kpage);
1522                         if (stable_node) {
1523                                 stable_tree_append(tree_rmap_item, stable_node);
1524                                 stable_tree_append(rmap_item, stable_node);
1525                         }
1526                         unlock_page(kpage);
1527
1528                         /*
1529                          * If we fail to insert the page into the stable tree,
1530                          * we will have 2 virtual addresses that are pointing
1531                          * to a ksm page left outside the stable tree,
1532                          * in which case we need to break_cow on both.
1533                          */
1534                         if (!stable_node) {
1535                                 break_cow(tree_rmap_item);
1536                                 break_cow(rmap_item);
1537                         }
1538                 } else if (split) {
1539                         /*
1540                          * We are here if we tried to merge two pages and
1541                          * failed because they both belonged to the same
1542                          * compound page. We will split the page now, but no
1543                          * merging will take place.
1544                          * We do not want to add the cost of a full lock; if
1545                          * the page is locked, it is better to skip it and
1546                          * perhaps try again later.
1547                          */
1548                         if (!trylock_page(page))
1549                                 return;
1550                         split_huge_page(page);
1551                         unlock_page(page);
1552                 }
1553         }
1554 }
1555
1556 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1557                                             struct rmap_item **rmap_list,
1558                                             unsigned long addr)
1559 {
1560         struct rmap_item *rmap_item;
1561
1562         while (*rmap_list) {
1563                 rmap_item = *rmap_list;
1564                 if ((rmap_item->address & PAGE_MASK) == addr)
1565                         return rmap_item;
1566                 if (rmap_item->address > addr)
1567                         break;
1568                 *rmap_list = rmap_item->rmap_list;
1569                 remove_rmap_item_from_tree(rmap_item);
1570                 free_rmap_item(rmap_item);
1571         }
1572
1573         rmap_item = alloc_rmap_item();
1574         if (rmap_item) {
1575                 /* It has already been zeroed */
1576                 rmap_item->mm = mm_slot->mm;
1577                 rmap_item->address = addr;
1578                 rmap_item->rmap_list = *rmap_list;
1579                 *rmap_list = rmap_item;
1580         }
1581         return rmap_item;
1582 }
1583
1584 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1585 {
1586         struct mm_struct *mm;
1587         struct mm_slot *slot;
1588         struct vm_area_struct *vma;
1589         struct rmap_item *rmap_item;
1590         int nid;
1591
1592         if (list_empty(&ksm_mm_head.mm_list))
1593                 return NULL;
1594
1595         slot = ksm_scan.mm_slot;
1596         if (slot == &ksm_mm_head) {
1597                 /*
1598                  * A number of pages can hang around indefinitely on per-cpu
1599                  * pagevecs, raised page count preventing write_protect_page
1600                  * from merging them.  Though it doesn't really matter much,
1601                  * it is puzzling to see some stuck in pages_volatile until
1602                  * other activity jostles them out, and they also prevented
1603                  * LTP's KSM test from succeeding deterministically; so drain
1604                  * them here (here rather than on entry to ksm_do_scan(),
1605                  * so we don't IPI too often when pages_to_scan is set low).
1606                  */
1607                 lru_add_drain_all();
1608
1609                 /*
1610                  * Whereas stale stable_nodes on the stable_tree itself
1611                  * get pruned in the regular course of stable_tree_search(),
1612                  * those moved out to the migrate_nodes list can accumulate:
1613                  * so prune them once before each full scan.
1614                  */
1615                 if (!ksm_merge_across_nodes) {
1616                         struct stable_node *stable_node;
1617                         struct list_head *this, *next;
1618                         struct page *page;
1619
1620                         list_for_each_safe(this, next, &migrate_nodes) {
1621                                 stable_node = list_entry(this,
1622                                                 struct stable_node, list);
1623                                 page = get_ksm_page(stable_node, false);
1624                                 if (page)
1625                                         put_page(page);
1626                                 cond_resched();
1627                         }
1628                 }
1629
1630                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1631                         root_unstable_tree[nid] = RB_ROOT;
1632
1633                 spin_lock(&ksm_mmlist_lock);
1634                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1635                 ksm_scan.mm_slot = slot;
1636                 spin_unlock(&ksm_mmlist_lock);
1637                 /*
1638                  * Although we tested list_empty() above, a racing __ksm_exit
1639                  * of the last mm on the list may have removed it since then.
1640                  */
1641                 if (slot == &ksm_mm_head)
1642                         return NULL;
1643 next_mm:
1644                 ksm_scan.address = 0;
1645                 ksm_scan.rmap_list = &slot->rmap_list;
1646         }
1647
1648         mm = slot->mm;
1649         down_read(&mm->mmap_sem);
1650         if (ksm_test_exit(mm))
1651                 vma = NULL;
1652         else
1653                 vma = find_vma(mm, ksm_scan.address);
1654
1655         for (; vma; vma = vma->vm_next) {
1656                 if (!(vma->vm_flags & VM_MERGEABLE))
1657                         continue;
1658                 if (ksm_scan.address < vma->vm_start)
1659                         ksm_scan.address = vma->vm_start;
1660                 if (!vma->anon_vma)
1661                         ksm_scan.address = vma->vm_end;
1662
1663                 while (ksm_scan.address < vma->vm_end) {
1664                         if (ksm_test_exit(mm))
1665                                 break;
1666                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1667                         if (IS_ERR_OR_NULL(*page)) {
1668                                 ksm_scan.address += PAGE_SIZE;
1669                                 cond_resched();
1670                                 continue;
1671                         }
1672                         if (PageAnon(*page) ||
1673                             page_trans_compound_anon(*page)) {
1674                                 flush_anon_page(vma, *page, ksm_scan.address);
1675                                 flush_dcache_page(*page);
1676                                 rmap_item = get_next_rmap_item(slot,
1677                                         ksm_scan.rmap_list, ksm_scan.address);
1678                                 if (rmap_item) {
1679                                         ksm_scan.rmap_list =
1680                                                         &rmap_item->rmap_list;
1681                                         ksm_scan.address += PAGE_SIZE;
1682                                 } else
1683                                         put_page(*page);
1684                                 up_read(&mm->mmap_sem);
1685                                 return rmap_item;
1686                         }
1687                         put_page(*page);
1688                         ksm_scan.address += PAGE_SIZE;
1689                         cond_resched();
1690                 }
1691         }
1692
1693         if (ksm_test_exit(mm)) {
1694                 ksm_scan.address = 0;
1695                 ksm_scan.rmap_list = &slot->rmap_list;
1696         }
1697         /*
1698          * Nuke all the rmap_items that are above this current rmap:
1699          * because there were no VM_MERGEABLE vmas with such addresses.
1700          */
1701         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1702
1703         spin_lock(&ksm_mmlist_lock);
1704         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1705                                                 struct mm_slot, mm_list);
1706         if (ksm_scan.address == 0) {
1707                 /*
1708                  * We've completed a full scan of all vmas, holding mmap_sem
1709                  * throughout, and found no VM_MERGEABLE: so do the same as
1710                  * __ksm_exit does to remove this mm from all our lists now.
1711                  * This applies either when cleaning up after __ksm_exit
1712                  * (but beware: we can reach here even before __ksm_exit),
1713                  * or when all VM_MERGEABLE areas have been unmapped (and
1714                  * mmap_sem then protects against race with MADV_MERGEABLE).
1715                  */
1716                 hash_del(&slot->link);
1717                 list_del(&slot->mm_list);
1718                 spin_unlock(&ksm_mmlist_lock);
1719
1720                 free_mm_slot(slot);
1721                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1722                 up_read(&mm->mmap_sem);
1723                 mmdrop(mm);
1724         } else {
1725                 spin_unlock(&ksm_mmlist_lock);
1726                 up_read(&mm->mmap_sem);
1727         }
1728
1729         /* Repeat until we've completed scanning the whole list */
1730         slot = ksm_scan.mm_slot;
1731         if (slot != &ksm_mm_head)
1732                 goto next_mm;
1733
1734         ksm_scan.seqnr++;
1735         return NULL;
1736 }
1737
1738 /**
1739  * ksm_do_scan  - the ksm scanner main worker function.
1740  * @scan_npages - number of pages we want to scan before we return.
1741  */
1742 static void ksm_do_scan(unsigned int scan_npages)
1743 {
1744         struct rmap_item *rmap_item;
1745         struct page *uninitialized_var(page);
1746
1747         while (scan_npages-- && likely(!freezing(current))) {
1748                 cond_resched();
1749                 rmap_item = scan_get_next_rmap_item(&page);
1750                 if (!rmap_item)
1751                         return;
1752                 cmp_and_merge_page(page, rmap_item);
1753                 put_page(page);
1754         }
1755 }
1756
1757 static int ksmd_should_run(void)
1758 {
1759         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1760 }
1761
1762 static int ksm_scan_thread(void *nothing)
1763 {
1764         set_freezable();
1765         set_user_nice(current, 5);
1766
1767         while (!kthread_should_stop()) {
1768                 mutex_lock(&ksm_thread_mutex);
1769                 wait_while_offlining();
1770                 if (ksmd_should_run())
1771                         ksm_do_scan(ksm_thread_pages_to_scan);
1772                 mutex_unlock(&ksm_thread_mutex);
1773
1774                 try_to_freeze();
1775
1776                 if (ksmd_should_run()) {
1777                         schedule_timeout_interruptible(
1778                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1779                 } else {
1780                         wait_event_freezable(ksm_thread_wait,
1781                                 ksmd_should_run() || kthread_should_stop());
1782                 }
1783         }
1784         return 0;
1785 }
1786
1787 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1788                 unsigned long end, int advice, unsigned long *vm_flags)
1789 {
1790         struct mm_struct *mm = vma->vm_mm;
1791         int err;
1792
1793         switch (advice) {
1794         case MADV_MERGEABLE:
1795                 /*
1796                  * Be somewhat over-protective for now!
1797                  */
1798                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1799                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1800                                  VM_HUGETLB | VM_MIXEDMAP))
1801                         return 0;               /* just ignore the advice */
1802
1803 #ifdef VM_SAO
1804                 if (*vm_flags & VM_SAO)
1805                         return 0;
1806 #endif
1807
1808                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1809                         err = __ksm_enter(mm);
1810                         if (err)
1811                                 return err;
1812                 }
1813
1814                 *vm_flags |= VM_MERGEABLE;
1815                 break;
1816
1817         case MADV_UNMERGEABLE:
1818                 if (!(*vm_flags & VM_MERGEABLE))
1819                         return 0;               /* just ignore the advice */
1820
1821                 if (vma->anon_vma) {
1822                         err = unmerge_ksm_pages(vma, start, end);
1823                         if (err)
1824                                 return err;
1825                 }
1826
1827                 *vm_flags &= ~VM_MERGEABLE;
1828                 break;
1829         }
1830
1831         return 0;
1832 }
1833
1834 int __ksm_enter(struct mm_struct *mm)
1835 {
1836         struct mm_slot *mm_slot;
1837         int needs_wakeup;
1838
1839         mm_slot = alloc_mm_slot();
1840         if (!mm_slot)
1841                 return -ENOMEM;
1842
1843         /* Check ksm_run too?  Would need tighter locking */
1844         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1845
1846         spin_lock(&ksm_mmlist_lock);
1847         insert_to_mm_slots_hash(mm, mm_slot);
1848         /*
1849          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1850          * insert just behind the scanning cursor, to let the area settle
1851          * down a little; when fork is followed by immediate exec, we don't
1852          * want ksmd to waste time setting up and tearing down an rmap_list.
1853          *
1854          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1855          * scanning cursor, otherwise KSM pages in newly forked mms will be
1856          * missed: then we might as well insert at the end of the list.
1857          */
1858         if (ksm_run & KSM_RUN_UNMERGE)
1859                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1860         else
1861                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1862         spin_unlock(&ksm_mmlist_lock);
1863
1864         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1865         atomic_inc(&mm->mm_count);
1866
1867         if (needs_wakeup)
1868                 wake_up_interruptible(&ksm_thread_wait);
1869
1870         return 0;
1871 }
1872
1873 void __ksm_exit(struct mm_struct *mm)
1874 {
1875         struct mm_slot *mm_slot;
1876         int easy_to_free = 0;
1877
1878         /*
1879          * This process is exiting: if it's straightforward (as is the
1880          * case when ksmd was never running), free mm_slot immediately.
1881          * But if it's at the cursor or has rmap_items linked to it, use
1882          * mmap_sem to synchronize with any break_cows before pagetables
1883          * are freed, and leave the mm_slot on the list for ksmd to free.
1884          * Beware: ksm may already have noticed it exiting and freed the slot.
1885          */
1886
1887         spin_lock(&ksm_mmlist_lock);
1888         mm_slot = get_mm_slot(mm);
1889         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1890                 if (!mm_slot->rmap_list) {
1891                         hash_del(&mm_slot->link);
1892                         list_del(&mm_slot->mm_list);
1893                         easy_to_free = 1;
1894                 } else {
1895                         list_move(&mm_slot->mm_list,
1896                                   &ksm_scan.mm_slot->mm_list);
1897                 }
1898         }
1899         spin_unlock(&ksm_mmlist_lock);
1900
1901         if (easy_to_free) {
1902                 free_mm_slot(mm_slot);
1903                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1904                 mmdrop(mm);
1905         } else if (mm_slot) {
1906                 down_write(&mm->mmap_sem);
1907                 up_write(&mm->mmap_sem);
1908         }
1909 }
1910
1911 struct page *ksm_might_need_to_copy(struct page *page,
1912                         struct vm_area_struct *vma, unsigned long address)
1913 {
1914         struct anon_vma *anon_vma = page_anon_vma(page);
1915         struct page *new_page;
1916
1917         if (PageKsm(page)) {
1918                 if (page_stable_node(page) &&
1919                     !(ksm_run & KSM_RUN_UNMERGE))
1920                         return page;    /* no need to copy it */
1921         } else if (!anon_vma) {
1922                 return page;            /* no need to copy it */
1923         } else if (anon_vma->root == vma->anon_vma->root &&
1924                  page->index == linear_page_index(vma, address)) {
1925                 return page;            /* still no need to copy it */
1926         }
1927         if (!PageUptodate(page))
1928                 return page;            /* let do_swap_page report the error */
1929
1930         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1931         if (new_page) {
1932                 copy_user_highpage(new_page, page, address, vma);
1933
1934                 SetPageDirty(new_page);
1935                 __SetPageUptodate(new_page);
1936                 __set_page_locked(new_page);
1937         }
1938
1939         return new_page;
1940 }
1941
1942 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1943 {
1944         struct stable_node *stable_node;
1945         struct rmap_item *rmap_item;
1946         int ret = SWAP_AGAIN;
1947         int search_new_forks = 0;
1948
1949         VM_BUG_ON_PAGE(!PageKsm(page), page);
1950
1951         /*
1952          * Rely on the page lock to protect against concurrent modifications
1953          * to that page's node of the stable tree.
1954          */
1955         VM_BUG_ON_PAGE(!PageLocked(page), page);
1956
1957         stable_node = page_stable_node(page);
1958         if (!stable_node)
1959                 return ret;
1960 again:
1961         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1962                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1963                 struct anon_vma_chain *vmac;
1964                 struct vm_area_struct *vma;
1965
1966                 cond_resched();
1967                 anon_vma_lock_read(anon_vma);
1968                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1969                                                0, ULONG_MAX) {
1970                         cond_resched();
1971                         vma = vmac->vma;
1972                         if (rmap_item->address < vma->vm_start ||
1973                             rmap_item->address >= vma->vm_end)
1974                                 continue;
1975                         /*
1976                          * Initially we examine only the vma which covers this
1977                          * rmap_item; but later, if there is still work to do,
1978                          * we examine covering vmas in other mms: in case they
1979                          * were forked from the original since ksmd passed.
1980                          */
1981                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1982                                 continue;
1983
1984                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1985                                 continue;
1986
1987                         ret = rwc->rmap_one(page, vma,
1988                                         rmap_item->address, rwc->arg);
1989                         if (ret != SWAP_AGAIN) {
1990                                 anon_vma_unlock_read(anon_vma);
1991                                 goto out;
1992                         }
1993                         if (rwc->done && rwc->done(page)) {
1994                                 anon_vma_unlock_read(anon_vma);
1995                                 goto out;
1996                         }
1997                 }
1998                 anon_vma_unlock_read(anon_vma);
1999         }
2000         if (!search_new_forks++)
2001                 goto again;
2002 out:
2003         return ret;
2004 }
2005
2006 #ifdef CONFIG_MIGRATION
2007 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2008 {
2009         struct stable_node *stable_node;
2010
2011         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2012         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2013         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2014
2015         stable_node = page_stable_node(newpage);
2016         if (stable_node) {
2017                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2018                 stable_node->kpfn = page_to_pfn(newpage);
2019                 /*
2020                  * newpage->mapping was set in advance; now we need smp_wmb()
2021                  * to make sure that the new stable_node->kpfn is visible
2022                  * to get_ksm_page() before it can see that oldpage->mapping
2023                  * has gone stale (or that PageSwapCache has been cleared).
2024                  */
2025                 smp_wmb();
2026                 set_page_stable_node(oldpage, NULL);
2027         }
2028 }
2029 #endif /* CONFIG_MIGRATION */
2030
2031 #ifdef CONFIG_MEMORY_HOTREMOVE
2032 static void wait_while_offlining(void)
2033 {
2034         while (ksm_run & KSM_RUN_OFFLINE) {
2035                 mutex_unlock(&ksm_thread_mutex);
2036                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2037                             TASK_UNINTERRUPTIBLE);
2038                 mutex_lock(&ksm_thread_mutex);
2039         }
2040 }
2041
2042 static void ksm_check_stable_tree(unsigned long start_pfn,
2043                                   unsigned long end_pfn)
2044 {
2045         struct stable_node *stable_node;
2046         struct list_head *this, *next;
2047         struct rb_node *node;
2048         int nid;
2049
2050         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2051                 node = rb_first(root_stable_tree + nid);
2052                 while (node) {
2053                         stable_node = rb_entry(node, struct stable_node, node);
2054                         if (stable_node->kpfn >= start_pfn &&
2055                             stable_node->kpfn < end_pfn) {
2056                                 /*
2057                                  * Don't get_ksm_page, page has already gone:
2058                                  * which is why we keep kpfn instead of page*
2059                                  */
2060                                 remove_node_from_stable_tree(stable_node);
2061                                 node = rb_first(root_stable_tree + nid);
2062                         } else
2063                                 node = rb_next(node);
2064                         cond_resched();
2065                 }
2066         }
2067         list_for_each_safe(this, next, &migrate_nodes) {
2068                 stable_node = list_entry(this, struct stable_node, list);
2069                 if (stable_node->kpfn >= start_pfn &&
2070                     stable_node->kpfn < end_pfn)
2071                         remove_node_from_stable_tree(stable_node);
2072                 cond_resched();
2073         }
2074 }
2075
2076 static int ksm_memory_callback(struct notifier_block *self,
2077                                unsigned long action, void *arg)
2078 {
2079         struct memory_notify *mn = arg;
2080
2081         switch (action) {
2082         case MEM_GOING_OFFLINE:
2083                 /*
2084                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2085                  * and remove_all_stable_nodes() while memory is going offline:
2086                  * it is unsafe for them to touch the stable tree at this time.
2087                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2088                  * which do not need the ksm_thread_mutex are all safe.
2089                  */
2090                 mutex_lock(&ksm_thread_mutex);
2091                 ksm_run |= KSM_RUN_OFFLINE;
2092                 mutex_unlock(&ksm_thread_mutex);
2093                 break;
2094
2095         case MEM_OFFLINE:
2096                 /*
2097                  * Most of the work is done by page migration; but there might
2098                  * be a few stable_nodes left over, still pointing to struct
2099                  * pages which have been offlined: prune those from the tree,
2100                  * otherwise get_ksm_page() might later try to access a
2101                  * non-existent struct page.
2102                  */
2103                 ksm_check_stable_tree(mn->start_pfn,
2104                                       mn->start_pfn + mn->nr_pages);
2105                 /* fallthrough */
2106
2107         case MEM_CANCEL_OFFLINE:
2108                 mutex_lock(&ksm_thread_mutex);
2109                 ksm_run &= ~KSM_RUN_OFFLINE;
2110                 mutex_unlock(&ksm_thread_mutex);
2111
2112                 smp_mb();       /* wake_up_bit advises this */
2113                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2114                 break;
2115         }
2116         return NOTIFY_OK;
2117 }
2118 #else
2119 static void wait_while_offlining(void)
2120 {
2121 }
2122 #endif /* CONFIG_MEMORY_HOTREMOVE */
2123
2124 #ifdef CONFIG_SYSFS
2125 /*
2126  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2127  */
2128
2129 #define KSM_ATTR_RO(_name) \
2130         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2131 #define KSM_ATTR(_name) \
2132         static struct kobj_attribute _name##_attr = \
2133                 __ATTR(_name, 0644, _name##_show, _name##_store)
2134
2135 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2136                                     struct kobj_attribute *attr, char *buf)
2137 {
2138         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2139 }
2140
2141 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2142                                      struct kobj_attribute *attr,
2143                                      const char *buf, size_t count)
2144 {
2145         unsigned long msecs;
2146         int err;
2147
2148         err = kstrtoul(buf, 10, &msecs);
2149         if (err || msecs > UINT_MAX)
2150                 return -EINVAL;
2151
2152         ksm_thread_sleep_millisecs = msecs;
2153
2154         return count;
2155 }
2156 KSM_ATTR(sleep_millisecs);
2157
2158 static ssize_t pages_to_scan_show(struct kobject *kobj,
2159                                   struct kobj_attribute *attr, char *buf)
2160 {
2161         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2162 }
2163
2164 static ssize_t pages_to_scan_store(struct kobject *kobj,
2165                                    struct kobj_attribute *attr,
2166                                    const char *buf, size_t count)
2167 {
2168         int err;
2169         unsigned long nr_pages;
2170
2171         err = kstrtoul(buf, 10, &nr_pages);
2172         if (err || nr_pages > UINT_MAX)
2173                 return -EINVAL;
2174
2175         ksm_thread_pages_to_scan = nr_pages;
2176
2177         return count;
2178 }
2179 KSM_ATTR(pages_to_scan);
2180
2181 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2182                         char *buf)
2183 {
2184         return sprintf(buf, "%lu\n", ksm_run);
2185 }
2186
2187 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2188                          const char *buf, size_t count)
2189 {
2190         int err;
2191         unsigned long flags;
2192
2193         err = kstrtoul(buf, 10, &flags);
2194         if (err || flags > UINT_MAX)
2195                 return -EINVAL;
2196         if (flags > KSM_RUN_UNMERGE)
2197                 return -EINVAL;
2198
2199         /*
2200          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2201          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2202          * breaking COW to free the pages_shared (but leaves mm_slots
2203          * on the list for when ksmd may be set running again).
2204          */
2205
2206         mutex_lock(&ksm_thread_mutex);
2207         wait_while_offlining();
2208         if (ksm_run != flags) {
2209                 ksm_run = flags;
2210                 if (flags & KSM_RUN_UNMERGE) {
2211                         set_current_oom_origin();
2212                         err = unmerge_and_remove_all_rmap_items();
2213                         clear_current_oom_origin();
2214                         if (err) {
2215                                 ksm_run = KSM_RUN_STOP;
2216                                 count = err;
2217                         }
2218                 }
2219         }
2220         mutex_unlock(&ksm_thread_mutex);
2221
2222         if (flags & KSM_RUN_MERGE)
2223                 wake_up_interruptible(&ksm_thread_wait);
2224
2225         return count;
2226 }
2227 KSM_ATTR(run);
2228
2229 #ifdef CONFIG_NUMA
2230 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2231                                 struct kobj_attribute *attr, char *buf)
2232 {
2233         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2234 }
2235
2236 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2237                                    struct kobj_attribute *attr,
2238                                    const char *buf, size_t count)
2239 {
2240         int err;
2241         unsigned long knob;
2242
2243         err = kstrtoul(buf, 10, &knob);
2244         if (err)
2245                 return err;
2246         if (knob > 1)
2247                 return -EINVAL;
2248
2249         mutex_lock(&ksm_thread_mutex);
2250         wait_while_offlining();
2251         if (ksm_merge_across_nodes != knob) {
2252                 if (ksm_pages_shared || remove_all_stable_nodes())
2253                         err = -EBUSY;
2254                 else if (root_stable_tree == one_stable_tree) {
2255                         struct rb_root *buf;
2256                         /*
2257                          * This is the first time that we switch away from the
2258                          * default of merging across nodes: must now allocate
2259                          * a buffer to hold as many roots as may be needed.
2260                          * Allocate stable and unstable together:
2261                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2262                          */
2263                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2264                                       GFP_KERNEL);
2265                         /* Let us assume that RB_ROOT is NULL is zero */
2266                         if (!buf)
2267                                 err = -ENOMEM;
2268                         else {
2269                                 root_stable_tree = buf;
2270                                 root_unstable_tree = buf + nr_node_ids;
2271                                 /* Stable tree is empty but not the unstable */
2272                                 root_unstable_tree[0] = one_unstable_tree[0];
2273                         }
2274                 }
2275                 if (!err) {
2276                         ksm_merge_across_nodes = knob;
2277                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2278                 }
2279         }
2280         mutex_unlock(&ksm_thread_mutex);
2281
2282         return err ? err : count;
2283 }
2284 KSM_ATTR(merge_across_nodes);
2285 #endif
2286
2287 static ssize_t pages_shared_show(struct kobject *kobj,
2288                                  struct kobj_attribute *attr, char *buf)
2289 {
2290         return sprintf(buf, "%lu\n", ksm_pages_shared);
2291 }
2292 KSM_ATTR_RO(pages_shared);
2293
2294 static ssize_t pages_sharing_show(struct kobject *kobj,
2295                                   struct kobj_attribute *attr, char *buf)
2296 {
2297         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2298 }
2299 KSM_ATTR_RO(pages_sharing);
2300
2301 static ssize_t pages_unshared_show(struct kobject *kobj,
2302                                    struct kobj_attribute *attr, char *buf)
2303 {
2304         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2305 }
2306 KSM_ATTR_RO(pages_unshared);
2307
2308 static ssize_t pages_volatile_show(struct kobject *kobj,
2309                                    struct kobj_attribute *attr, char *buf)
2310 {
2311         long ksm_pages_volatile;
2312
2313         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2314                                 - ksm_pages_sharing - ksm_pages_unshared;
2315         /*
2316          * It was not worth any locking to calculate that statistic,
2317          * but it might therefore sometimes be negative: conceal that.
2318          */
2319         if (ksm_pages_volatile < 0)
2320                 ksm_pages_volatile = 0;
2321         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2322 }
2323 KSM_ATTR_RO(pages_volatile);
2324
2325 static ssize_t full_scans_show(struct kobject *kobj,
2326                                struct kobj_attribute *attr, char *buf)
2327 {
2328         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2329 }
2330 KSM_ATTR_RO(full_scans);
2331
2332 static struct attribute *ksm_attrs[] = {
2333         &sleep_millisecs_attr.attr,
2334         &pages_to_scan_attr.attr,
2335         &run_attr.attr,
2336         &pages_shared_attr.attr,
2337         &pages_sharing_attr.attr,
2338         &pages_unshared_attr.attr,
2339         &pages_volatile_attr.attr,
2340         &full_scans_attr.attr,
2341 #ifdef CONFIG_NUMA
2342         &merge_across_nodes_attr.attr,
2343 #endif
2344         NULL,
2345 };
2346
2347 static struct attribute_group ksm_attr_group = {
2348         .attrs = ksm_attrs,
2349         .name = "ksm",
2350 };
2351 #endif /* CONFIG_SYSFS */
2352
2353 static int __init ksm_init(void)
2354 {
2355         struct task_struct *ksm_thread;
2356         int err;
2357
2358         err = ksm_slab_init();
2359         if (err)
2360                 goto out;
2361
2362         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2363         if (IS_ERR(ksm_thread)) {
2364                 pr_err("ksm: creating kthread failed\n");
2365                 err = PTR_ERR(ksm_thread);
2366                 goto out_free;
2367         }
2368
2369 #ifdef CONFIG_SYSFS
2370         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2371         if (err) {
2372                 pr_err("ksm: register sysfs failed\n");
2373                 kthread_stop(ksm_thread);
2374                 goto out_free;
2375         }
2376 #else
2377         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2378
2379 #endif /* CONFIG_SYSFS */
2380
2381 #ifdef CONFIG_MEMORY_HOTREMOVE
2382         /* There is no significance to this priority 100 */
2383         hotplug_memory_notifier(ksm_memory_callback, 100);
2384 #endif
2385         return 0;
2386
2387 out_free:
2388         ksm_slab_free();
2389 out:
2390         return err;
2391 }
2392 subsys_initcall(ksm_init);