GNU Linux-libre 4.9.309-gnu1
[releases.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
67
68 #include <asm/io.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/tlb.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
80 #endif
81
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr;
85 struct page *mem_map;
86
87 EXPORT_SYMBOL(max_mapnr);
88 EXPORT_SYMBOL(mem_map);
89 #endif
90
91 /*
92  * A number of key systems in x86 including ioremap() rely on the assumption
93  * that high_memory defines the upper bound on direct map memory, then end
94  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
95  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96  * and ZONE_HIGHMEM.
97  */
98 void * high_memory;
99
100 EXPORT_SYMBOL(high_memory);
101
102 /*
103  * Randomize the address space (stacks, mmaps, brk, etc.).
104  *
105  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106  *   as ancient (libc5 based) binaries can segfault. )
107  */
108 int randomize_va_space __read_mostly =
109 #ifdef CONFIG_COMPAT_BRK
110                                         1;
111 #else
112                                         2;
113 #endif
114
115 static int __init disable_randmaps(char *s)
116 {
117         randomize_va_space = 0;
118         return 1;
119 }
120 __setup("norandmaps", disable_randmaps);
121
122 unsigned long zero_pfn __read_mostly;
123 unsigned long highest_memmap_pfn __read_mostly;
124
125 EXPORT_SYMBOL(zero_pfn);
126
127 /*
128  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129  */
130 static int __init init_zero_pfn(void)
131 {
132         zero_pfn = page_to_pfn(ZERO_PAGE(0));
133         return 0;
134 }
135 early_initcall(init_zero_pfn);
136
137
138 #if defined(SPLIT_RSS_COUNTING)
139
140 void sync_mm_rss(struct mm_struct *mm)
141 {
142         int i;
143
144         for (i = 0; i < NR_MM_COUNTERS; i++) {
145                 if (current->rss_stat.count[i]) {
146                         add_mm_counter(mm, i, current->rss_stat.count[i]);
147                         current->rss_stat.count[i] = 0;
148                 }
149         }
150         current->rss_stat.events = 0;
151 }
152
153 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154 {
155         struct task_struct *task = current;
156
157         if (likely(task->mm == mm))
158                 task->rss_stat.count[member] += val;
159         else
160                 add_mm_counter(mm, member, val);
161 }
162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164
165 /* sync counter once per 64 page faults */
166 #define TASK_RSS_EVENTS_THRESH  (64)
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169         if (unlikely(task != current))
170                 return;
171         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
172                 sync_mm_rss(task->mm);
173 }
174 #else /* SPLIT_RSS_COUNTING */
175
176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178
179 static void check_sync_rss_stat(struct task_struct *task)
180 {
181 }
182
183 #endif /* SPLIT_RSS_COUNTING */
184
185 #ifdef HAVE_GENERIC_MMU_GATHER
186
187 static bool tlb_next_batch(struct mmu_gather *tlb)
188 {
189         struct mmu_gather_batch *batch;
190
191         batch = tlb->active;
192         if (batch->next) {
193                 tlb->active = batch->next;
194                 return true;
195         }
196
197         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
198                 return false;
199
200         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201         if (!batch)
202                 return false;
203
204         tlb->batch_count++;
205         batch->next = NULL;
206         batch->nr   = 0;
207         batch->max  = MAX_GATHER_BATCH;
208
209         tlb->active->next = batch;
210         tlb->active = batch;
211
212         return true;
213 }
214
215 /* tlb_gather_mmu
216  *      Called to initialize an (on-stack) mmu_gather structure for page-table
217  *      tear-down from @mm. The @fullmm argument is used when @mm is without
218  *      users and we're going to destroy the full address space (exit/execve).
219  */
220 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243         if (!tlb->end)
244                 return;
245
246         tlb_flush(tlb);
247         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249         tlb_table_flush(tlb);
250 #endif
251         __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256         struct mmu_gather_batch *batch;
257
258         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259                 free_pages_and_swap_cache(batch->pages, batch->nr);
260                 batch->nr = 0;
261         }
262         tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267         tlb_flush_mmu_tlbonly(tlb);
268         tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
276 {
277         struct mmu_gather_batch *batch, *next;
278
279         tlb_flush_mmu(tlb);
280
281         /* keep the page table cache within bounds */
282         check_pgt_cache();
283
284         for (batch = tlb->local.next; batch; batch = next) {
285                 next = batch->next;
286                 free_pages((unsigned long)batch, 0);
287         }
288         tlb->local.next = NULL;
289 }
290
291 /* __tlb_remove_page
292  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293  *      handling the additional races in SMP caused by other CPUs caching valid
294  *      mappings in their TLBs. Returns the number of free page slots left.
295  *      When out of page slots we must call tlb_flush_mmu().
296  *returns true if the caller should flush.
297  */
298 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
299 {
300         struct mmu_gather_batch *batch;
301
302         VM_BUG_ON(!tlb->end);
303
304         if (!tlb->page_size)
305                 tlb->page_size = page_size;
306         else {
307                 if (page_size != tlb->page_size)
308                         return true;
309         }
310
311         batch = tlb->active;
312         if (batch->nr == batch->max) {
313                 if (!tlb_next_batch(tlb))
314                         return true;
315                 batch = tlb->active;
316         }
317         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
318
319         batch->pages[batch->nr++] = page;
320         return false;
321 }
322
323 void tlb_flush_pmd_range(struct mmu_gather *tlb, unsigned long address,
324                          unsigned long size)
325 {
326         if (tlb->page_size != 0 && tlb->page_size != PMD_SIZE)
327                 tlb_flush_mmu(tlb);
328
329         tlb->page_size = PMD_SIZE;
330         tlb->start = min(tlb->start, address);
331         tlb->end = max(tlb->end, address + size);
332         /*
333          * Track the last address with which we adjusted the range. This
334          * will be used later to adjust again after a mmu_flush due to
335          * failed __tlb_remove_page
336          */
337         tlb->addr = address + size - PMD_SIZE;
338 }
339 #endif /* HAVE_GENERIC_MMU_GATHER */
340
341 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
342
343 /*
344  * See the comment near struct mmu_table_batch.
345  */
346
347 static void tlb_remove_table_smp_sync(void *arg)
348 {
349         /* Simply deliver the interrupt */
350 }
351
352 static void tlb_remove_table_one(void *table)
353 {
354         /*
355          * This isn't an RCU grace period and hence the page-tables cannot be
356          * assumed to be actually RCU-freed.
357          *
358          * It is however sufficient for software page-table walkers that rely on
359          * IRQ disabling. See the comment near struct mmu_table_batch.
360          */
361         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
362         __tlb_remove_table(table);
363 }
364
365 static void tlb_remove_table_rcu(struct rcu_head *head)
366 {
367         struct mmu_table_batch *batch;
368         int i;
369
370         batch = container_of(head, struct mmu_table_batch, rcu);
371
372         for (i = 0; i < batch->nr; i++)
373                 __tlb_remove_table(batch->tables[i]);
374
375         free_page((unsigned long)batch);
376 }
377
378 void tlb_table_flush(struct mmu_gather *tlb)
379 {
380         struct mmu_table_batch **batch = &tlb->batch;
381
382         if (*batch) {
383                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
384                 *batch = NULL;
385         }
386 }
387
388 void tlb_remove_table(struct mmu_gather *tlb, void *table)
389 {
390         struct mmu_table_batch **batch = &tlb->batch;
391
392         if (*batch == NULL) {
393                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
394                 if (*batch == NULL) {
395                         tlb_remove_table_one(table);
396                         return;
397                 }
398                 (*batch)->nr = 0;
399         }
400         (*batch)->tables[(*batch)->nr++] = table;
401         if ((*batch)->nr == MAX_TABLE_BATCH)
402                 tlb_table_flush(tlb);
403 }
404
405 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
406
407 /*
408  * Note: this doesn't free the actual pages themselves. That
409  * has been handled earlier when unmapping all the memory regions.
410  */
411 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
412                            unsigned long addr)
413 {
414         pgtable_t token = pmd_pgtable(*pmd);
415         pmd_clear(pmd);
416         pte_free_tlb(tlb, token, addr);
417         atomic_long_dec(&tlb->mm->nr_ptes);
418 }
419
420 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
421                                 unsigned long addr, unsigned long end,
422                                 unsigned long floor, unsigned long ceiling)
423 {
424         pmd_t *pmd;
425         unsigned long next;
426         unsigned long start;
427
428         start = addr;
429         pmd = pmd_offset(pud, addr);
430         do {
431                 next = pmd_addr_end(addr, end);
432                 if (pmd_none_or_clear_bad(pmd))
433                         continue;
434                 free_pte_range(tlb, pmd, addr);
435         } while (pmd++, addr = next, addr != end);
436
437         start &= PUD_MASK;
438         if (start < floor)
439                 return;
440         if (ceiling) {
441                 ceiling &= PUD_MASK;
442                 if (!ceiling)
443                         return;
444         }
445         if (end - 1 > ceiling - 1)
446                 return;
447
448         pmd = pmd_offset(pud, start);
449         pud_clear(pud);
450         pmd_free_tlb(tlb, pmd, start);
451         mm_dec_nr_pmds(tlb->mm);
452 }
453
454 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
455                                 unsigned long addr, unsigned long end,
456                                 unsigned long floor, unsigned long ceiling)
457 {
458         pud_t *pud;
459         unsigned long next;
460         unsigned long start;
461
462         start = addr;
463         pud = pud_offset(pgd, addr);
464         do {
465                 next = pud_addr_end(addr, end);
466                 if (pud_none_or_clear_bad(pud))
467                         continue;
468                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
469         } while (pud++, addr = next, addr != end);
470
471         start &= PGDIR_MASK;
472         if (start < floor)
473                 return;
474         if (ceiling) {
475                 ceiling &= PGDIR_MASK;
476                 if (!ceiling)
477                         return;
478         }
479         if (end - 1 > ceiling - 1)
480                 return;
481
482         pud = pud_offset(pgd, start);
483         pgd_clear(pgd);
484         pud_free_tlb(tlb, pud, start);
485 }
486
487 /*
488  * This function frees user-level page tables of a process.
489  */
490 void free_pgd_range(struct mmu_gather *tlb,
491                         unsigned long addr, unsigned long end,
492                         unsigned long floor, unsigned long ceiling)
493 {
494         pgd_t *pgd;
495         unsigned long next;
496
497         /*
498          * The next few lines have given us lots of grief...
499          *
500          * Why are we testing PMD* at this top level?  Because often
501          * there will be no work to do at all, and we'd prefer not to
502          * go all the way down to the bottom just to discover that.
503          *
504          * Why all these "- 1"s?  Because 0 represents both the bottom
505          * of the address space and the top of it (using -1 for the
506          * top wouldn't help much: the masks would do the wrong thing).
507          * The rule is that addr 0 and floor 0 refer to the bottom of
508          * the address space, but end 0 and ceiling 0 refer to the top
509          * Comparisons need to use "end - 1" and "ceiling - 1" (though
510          * that end 0 case should be mythical).
511          *
512          * Wherever addr is brought up or ceiling brought down, we must
513          * be careful to reject "the opposite 0" before it confuses the
514          * subsequent tests.  But what about where end is brought down
515          * by PMD_SIZE below? no, end can't go down to 0 there.
516          *
517          * Whereas we round start (addr) and ceiling down, by different
518          * masks at different levels, in order to test whether a table
519          * now has no other vmas using it, so can be freed, we don't
520          * bother to round floor or end up - the tests don't need that.
521          */
522
523         addr &= PMD_MASK;
524         if (addr < floor) {
525                 addr += PMD_SIZE;
526                 if (!addr)
527                         return;
528         }
529         if (ceiling) {
530                 ceiling &= PMD_MASK;
531                 if (!ceiling)
532                         return;
533         }
534         if (end - 1 > ceiling - 1)
535                 end -= PMD_SIZE;
536         if (addr > end - 1)
537                 return;
538
539         pgd = pgd_offset(tlb->mm, addr);
540         do {
541                 next = pgd_addr_end(addr, end);
542                 if (pgd_none_or_clear_bad(pgd))
543                         continue;
544                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
545         } while (pgd++, addr = next, addr != end);
546 }
547
548 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
549                 unsigned long floor, unsigned long ceiling)
550 {
551         while (vma) {
552                 struct vm_area_struct *next = vma->vm_next;
553                 unsigned long addr = vma->vm_start;
554
555                 /*
556                  * Hide vma from rmap and truncate_pagecache before freeing
557                  * pgtables
558                  */
559                 unlink_anon_vmas(vma);
560                 unlink_file_vma(vma);
561
562                 if (is_vm_hugetlb_page(vma)) {
563                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
564                                 floor, next? next->vm_start: ceiling);
565                 } else {
566                         /*
567                          * Optimization: gather nearby vmas into one call down
568                          */
569                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
570                                && !is_vm_hugetlb_page(next)) {
571                                 vma = next;
572                                 next = vma->vm_next;
573                                 unlink_anon_vmas(vma);
574                                 unlink_file_vma(vma);
575                         }
576                         free_pgd_range(tlb, addr, vma->vm_end,
577                                 floor, next? next->vm_start: ceiling);
578                 }
579                 vma = next;
580         }
581 }
582
583 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
584 {
585         spinlock_t *ptl;
586         pgtable_t new = pte_alloc_one(mm, address);
587         if (!new)
588                 return -ENOMEM;
589
590         /*
591          * Ensure all pte setup (eg. pte page lock and page clearing) are
592          * visible before the pte is made visible to other CPUs by being
593          * put into page tables.
594          *
595          * The other side of the story is the pointer chasing in the page
596          * table walking code (when walking the page table without locking;
597          * ie. most of the time). Fortunately, these data accesses consist
598          * of a chain of data-dependent loads, meaning most CPUs (alpha
599          * being the notable exception) will already guarantee loads are
600          * seen in-order. See the alpha page table accessors for the
601          * smp_read_barrier_depends() barriers in page table walking code.
602          */
603         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
604
605         ptl = pmd_lock(mm, pmd);
606         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
607                 atomic_long_inc(&mm->nr_ptes);
608                 pmd_populate(mm, pmd, new);
609                 new = NULL;
610         }
611         spin_unlock(ptl);
612         if (new)
613                 pte_free(mm, new);
614         return 0;
615 }
616
617 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
618 {
619         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
620         if (!new)
621                 return -ENOMEM;
622
623         smp_wmb(); /* See comment in __pte_alloc */
624
625         spin_lock(&init_mm.page_table_lock);
626         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
627                 pmd_populate_kernel(&init_mm, pmd, new);
628                 new = NULL;
629         }
630         spin_unlock(&init_mm.page_table_lock);
631         if (new)
632                 pte_free_kernel(&init_mm, new);
633         return 0;
634 }
635
636 static inline void init_rss_vec(int *rss)
637 {
638         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
639 }
640
641 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
642 {
643         int i;
644
645         if (current->mm == mm)
646                 sync_mm_rss(mm);
647         for (i = 0; i < NR_MM_COUNTERS; i++)
648                 if (rss[i])
649                         add_mm_counter(mm, i, rss[i]);
650 }
651
652 /*
653  * This function is called to print an error when a bad pte
654  * is found. For example, we might have a PFN-mapped pte in
655  * a region that doesn't allow it.
656  *
657  * The calling function must still handle the error.
658  */
659 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
660                           pte_t pte, struct page *page)
661 {
662         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
663         pud_t *pud = pud_offset(pgd, addr);
664         pmd_t *pmd = pmd_offset(pud, addr);
665         struct address_space *mapping;
666         pgoff_t index;
667         static unsigned long resume;
668         static unsigned long nr_shown;
669         static unsigned long nr_unshown;
670
671         /*
672          * Allow a burst of 60 reports, then keep quiet for that minute;
673          * or allow a steady drip of one report per second.
674          */
675         if (nr_shown == 60) {
676                 if (time_before(jiffies, resume)) {
677                         nr_unshown++;
678                         return;
679                 }
680                 if (nr_unshown) {
681                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
682                                  nr_unshown);
683                         nr_unshown = 0;
684                 }
685                 nr_shown = 0;
686         }
687         if (nr_shown++ == 0)
688                 resume = jiffies + 60 * HZ;
689
690         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691         index = linear_page_index(vma, addr);
692
693         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
694                  current->comm,
695                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
696         if (page)
697                 dump_page(page, "bad pte");
698         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
699                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
700         /*
701          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
702          */
703         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
704                  vma->vm_file,
705                  vma->vm_ops ? vma->vm_ops->fault : NULL,
706                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
707                  mapping ? mapping->a_ops->readpage : NULL);
708         dump_stack();
709         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
710 }
711
712 /*
713  * vm_normal_page -- This function gets the "struct page" associated with a pte.
714  *
715  * "Special" mappings do not wish to be associated with a "struct page" (either
716  * it doesn't exist, or it exists but they don't want to touch it). In this
717  * case, NULL is returned here. "Normal" mappings do have a struct page.
718  *
719  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
720  * pte bit, in which case this function is trivial. Secondly, an architecture
721  * may not have a spare pte bit, which requires a more complicated scheme,
722  * described below.
723  *
724  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
725  * special mapping (even if there are underlying and valid "struct pages").
726  * COWed pages of a VM_PFNMAP are always normal.
727  *
728  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
729  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
730  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
731  * mapping will always honor the rule
732  *
733  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
734  *
735  * And for normal mappings this is false.
736  *
737  * This restricts such mappings to be a linear translation from virtual address
738  * to pfn. To get around this restriction, we allow arbitrary mappings so long
739  * as the vma is not a COW mapping; in that case, we know that all ptes are
740  * special (because none can have been COWed).
741  *
742  *
743  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
744  *
745  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
746  * page" backing, however the difference is that _all_ pages with a struct
747  * page (that is, those where pfn_valid is true) are refcounted and considered
748  * normal pages by the VM. The disadvantage is that pages are refcounted
749  * (which can be slower and simply not an option for some PFNMAP users). The
750  * advantage is that we don't have to follow the strict linearity rule of
751  * PFNMAP mappings in order to support COWable mappings.
752  *
753  */
754 #ifdef __HAVE_ARCH_PTE_SPECIAL
755 # define HAVE_PTE_SPECIAL 1
756 #else
757 # define HAVE_PTE_SPECIAL 0
758 #endif
759 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
760                                 pte_t pte)
761 {
762         unsigned long pfn = pte_pfn(pte);
763
764         if (HAVE_PTE_SPECIAL) {
765                 if (likely(!pte_special(pte)))
766                         goto check_pfn;
767                 if (vma->vm_ops && vma->vm_ops->find_special_page)
768                         return vma->vm_ops->find_special_page(vma, addr);
769                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
770                         return NULL;
771                 if (!is_zero_pfn(pfn))
772                         print_bad_pte(vma, addr, pte, NULL);
773                 return NULL;
774         }
775
776         /* !HAVE_PTE_SPECIAL case follows: */
777
778         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
779                 if (vma->vm_flags & VM_MIXEDMAP) {
780                         if (!pfn_valid(pfn))
781                                 return NULL;
782                         goto out;
783                 } else {
784                         unsigned long off;
785                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
786                         if (pfn == vma->vm_pgoff + off)
787                                 return NULL;
788                         if (!is_cow_mapping(vma->vm_flags))
789                                 return NULL;
790                 }
791         }
792
793         if (is_zero_pfn(pfn))
794                 return NULL;
795 check_pfn:
796         if (unlikely(pfn > highest_memmap_pfn)) {
797                 print_bad_pte(vma, addr, pte, NULL);
798                 return NULL;
799         }
800
801         /*
802          * NOTE! We still have PageReserved() pages in the page tables.
803          * eg. VDSO mappings can cause them to exist.
804          */
805 out:
806         return pfn_to_page(pfn);
807 }
808
809 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
810 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
811                                 pmd_t pmd)
812 {
813         unsigned long pfn = pmd_pfn(pmd);
814
815         /*
816          * There is no pmd_special() but there may be special pmds, e.g.
817          * in a direct-access (dax) mapping, so let's just replicate the
818          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
819          */
820         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
821                 if (vma->vm_flags & VM_MIXEDMAP) {
822                         if (!pfn_valid(pfn))
823                                 return NULL;
824                         goto out;
825                 } else {
826                         unsigned long off;
827                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
828                         if (pfn == vma->vm_pgoff + off)
829                                 return NULL;
830                         if (!is_cow_mapping(vma->vm_flags))
831                                 return NULL;
832                 }
833         }
834
835         if (is_zero_pfn(pfn))
836                 return NULL;
837         if (unlikely(pfn > highest_memmap_pfn))
838                 return NULL;
839
840         /*
841          * NOTE! We still have PageReserved() pages in the page tables.
842          * eg. VDSO mappings can cause them to exist.
843          */
844 out:
845         return pfn_to_page(pfn);
846 }
847 #endif
848
849 /*
850  * copy one vm_area from one task to the other. Assumes the page tables
851  * already present in the new task to be cleared in the whole range
852  * covered by this vma.
853  */
854
855 static inline unsigned long
856 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
857                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
858                 unsigned long addr, int *rss)
859 {
860         unsigned long vm_flags = vma->vm_flags;
861         pte_t pte = *src_pte;
862         struct page *page;
863
864         /* pte contains position in swap or file, so copy. */
865         if (unlikely(!pte_present(pte))) {
866                 swp_entry_t entry = pte_to_swp_entry(pte);
867
868                 if (likely(!non_swap_entry(entry))) {
869                         if (swap_duplicate(entry) < 0)
870                                 return entry.val;
871
872                         /* make sure dst_mm is on swapoff's mmlist. */
873                         if (unlikely(list_empty(&dst_mm->mmlist))) {
874                                 spin_lock(&mmlist_lock);
875                                 if (list_empty(&dst_mm->mmlist))
876                                         list_add(&dst_mm->mmlist,
877                                                         &src_mm->mmlist);
878                                 spin_unlock(&mmlist_lock);
879                         }
880                         rss[MM_SWAPENTS]++;
881                 } else if (is_migration_entry(entry)) {
882                         page = migration_entry_to_page(entry);
883
884                         rss[mm_counter(page)]++;
885
886                         if (is_write_migration_entry(entry) &&
887                                         is_cow_mapping(vm_flags)) {
888                                 /*
889                                  * COW mappings require pages in both
890                                  * parent and child to be set to read.
891                                  */
892                                 make_migration_entry_read(&entry);
893                                 pte = swp_entry_to_pte(entry);
894                                 if (pte_swp_soft_dirty(*src_pte))
895                                         pte = pte_swp_mksoft_dirty(pte);
896                                 set_pte_at(src_mm, addr, src_pte, pte);
897                         }
898                 }
899                 goto out_set_pte;
900         }
901
902         /*
903          * If it's a COW mapping, write protect it both
904          * in the parent and the child
905          */
906         if (is_cow_mapping(vm_flags)) {
907                 ptep_set_wrprotect(src_mm, addr, src_pte);
908                 pte = pte_wrprotect(pte);
909         }
910
911         /*
912          * If it's a shared mapping, mark it clean in
913          * the child
914          */
915         if (vm_flags & VM_SHARED)
916                 pte = pte_mkclean(pte);
917         pte = pte_mkold(pte);
918
919         page = vm_normal_page(vma, addr, pte);
920         if (page) {
921                 get_page(page);
922                 page_dup_rmap(page, false);
923                 rss[mm_counter(page)]++;
924         }
925
926 out_set_pte:
927         set_pte_at(dst_mm, addr, dst_pte, pte);
928         return 0;
929 }
930
931 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
932                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
933                    unsigned long addr, unsigned long end)
934 {
935         pte_t *orig_src_pte, *orig_dst_pte;
936         pte_t *src_pte, *dst_pte;
937         spinlock_t *src_ptl, *dst_ptl;
938         int progress = 0;
939         int rss[NR_MM_COUNTERS];
940         swp_entry_t entry = (swp_entry_t){0};
941
942 again:
943         init_rss_vec(rss);
944
945         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
946         if (!dst_pte)
947                 return -ENOMEM;
948         src_pte = pte_offset_map(src_pmd, addr);
949         src_ptl = pte_lockptr(src_mm, src_pmd);
950         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
951         orig_src_pte = src_pte;
952         orig_dst_pte = dst_pte;
953         arch_enter_lazy_mmu_mode();
954
955         do {
956                 /*
957                  * We are holding two locks at this point - either of them
958                  * could generate latencies in another task on another CPU.
959                  */
960                 if (progress >= 32) {
961                         progress = 0;
962                         if (need_resched() ||
963                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
964                                 break;
965                 }
966                 if (pte_none(*src_pte)) {
967                         progress++;
968                         continue;
969                 }
970                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
971                                                         vma, addr, rss);
972                 if (entry.val)
973                         break;
974                 progress += 8;
975         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
976
977         arch_leave_lazy_mmu_mode();
978         spin_unlock(src_ptl);
979         pte_unmap(orig_src_pte);
980         add_mm_rss_vec(dst_mm, rss);
981         pte_unmap_unlock(orig_dst_pte, dst_ptl);
982         cond_resched();
983
984         if (entry.val) {
985                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
986                         return -ENOMEM;
987                 progress = 0;
988         }
989         if (addr != end)
990                 goto again;
991         return 0;
992 }
993
994 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
995                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
996                 unsigned long addr, unsigned long end)
997 {
998         pmd_t *src_pmd, *dst_pmd;
999         unsigned long next;
1000
1001         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1002         if (!dst_pmd)
1003                 return -ENOMEM;
1004         src_pmd = pmd_offset(src_pud, addr);
1005         do {
1006                 next = pmd_addr_end(addr, end);
1007                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1008                         int err;
1009                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1010                         err = copy_huge_pmd(dst_mm, src_mm,
1011                                             dst_pmd, src_pmd, addr, vma);
1012                         if (err == -ENOMEM)
1013                                 return -ENOMEM;
1014                         if (!err)
1015                                 continue;
1016                         /* fall through */
1017                 }
1018                 if (pmd_none_or_clear_bad(src_pmd))
1019                         continue;
1020                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1021                                                 vma, addr, next))
1022                         return -ENOMEM;
1023         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1024         return 0;
1025 }
1026
1027 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1029                 unsigned long addr, unsigned long end)
1030 {
1031         pud_t *src_pud, *dst_pud;
1032         unsigned long next;
1033
1034         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1035         if (!dst_pud)
1036                 return -ENOMEM;
1037         src_pud = pud_offset(src_pgd, addr);
1038         do {
1039                 next = pud_addr_end(addr, end);
1040                 if (pud_none_or_clear_bad(src_pud))
1041                         continue;
1042                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1043                                                 vma, addr, next))
1044                         return -ENOMEM;
1045         } while (dst_pud++, src_pud++, addr = next, addr != end);
1046         return 0;
1047 }
1048
1049 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1050                 struct vm_area_struct *vma)
1051 {
1052         pgd_t *src_pgd, *dst_pgd;
1053         unsigned long next;
1054         unsigned long addr = vma->vm_start;
1055         unsigned long end = vma->vm_end;
1056         unsigned long mmun_start;       /* For mmu_notifiers */
1057         unsigned long mmun_end;         /* For mmu_notifiers */
1058         bool is_cow;
1059         int ret;
1060
1061         /*
1062          * Don't copy ptes where a page fault will fill them correctly.
1063          * Fork becomes much lighter when there are big shared or private
1064          * readonly mappings. The tradeoff is that copy_page_range is more
1065          * efficient than faulting.
1066          */
1067         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1068                         !vma->anon_vma)
1069                 return 0;
1070
1071         if (is_vm_hugetlb_page(vma))
1072                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1073
1074         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1075                 /*
1076                  * We do not free on error cases below as remove_vma
1077                  * gets called on error from higher level routine
1078                  */
1079                 ret = track_pfn_copy(vma);
1080                 if (ret)
1081                         return ret;
1082         }
1083
1084         /*
1085          * We need to invalidate the secondary MMU mappings only when
1086          * there could be a permission downgrade on the ptes of the
1087          * parent mm. And a permission downgrade will only happen if
1088          * is_cow_mapping() returns true.
1089          */
1090         is_cow = is_cow_mapping(vma->vm_flags);
1091         mmun_start = addr;
1092         mmun_end   = end;
1093         if (is_cow)
1094                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1095                                                     mmun_end);
1096
1097         ret = 0;
1098         dst_pgd = pgd_offset(dst_mm, addr);
1099         src_pgd = pgd_offset(src_mm, addr);
1100         do {
1101                 next = pgd_addr_end(addr, end);
1102                 if (pgd_none_or_clear_bad(src_pgd))
1103                         continue;
1104                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1105                                             vma, addr, next))) {
1106                         ret = -ENOMEM;
1107                         break;
1108                 }
1109         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1110
1111         if (is_cow)
1112                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1113         return ret;
1114 }
1115
1116 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1117                                 struct vm_area_struct *vma, pmd_t *pmd,
1118                                 unsigned long addr, unsigned long end,
1119                                 struct zap_details *details)
1120 {
1121         struct mm_struct *mm = tlb->mm;
1122         int force_flush = 0;
1123         int rss[NR_MM_COUNTERS];
1124         spinlock_t *ptl;
1125         pte_t *start_pte;
1126         pte_t *pte;
1127         swp_entry_t entry;
1128         struct page *pending_page = NULL;
1129
1130 again:
1131         init_rss_vec(rss);
1132         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1133         pte = start_pte;
1134         flush_tlb_batched_pending(mm);
1135         arch_enter_lazy_mmu_mode();
1136         do {
1137                 pte_t ptent = *pte;
1138                 if (pte_none(ptent)) {
1139                         continue;
1140                 }
1141
1142                 if (pte_present(ptent)) {
1143                         struct page *page;
1144
1145                         page = vm_normal_page(vma, addr, ptent);
1146                         if (unlikely(details) && page) {
1147                                 /*
1148                                  * unmap_shared_mapping_pages() wants to
1149                                  * invalidate cache without truncating:
1150                                  * unmap shared but keep private pages.
1151                                  */
1152                                 if (details->check_mapping &&
1153                                     details->check_mapping != page_rmapping(page))
1154                                         continue;
1155                         }
1156                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1157                                                         tlb->fullmm);
1158                         tlb_remove_tlb_entry(tlb, pte, addr);
1159                         if (unlikely(!page))
1160                                 continue;
1161
1162                         if (!PageAnon(page)) {
1163                                 if (pte_dirty(ptent)) {
1164                                         /*
1165                                          * oom_reaper cannot tear down dirty
1166                                          * pages
1167                                          */
1168                                         if (unlikely(details && details->ignore_dirty))
1169                                                 continue;
1170                                         force_flush = 1;
1171                                         set_page_dirty(page);
1172                                 }
1173                                 if (pte_young(ptent) &&
1174                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1175                                         mark_page_accessed(page);
1176                         }
1177                         rss[mm_counter(page)]--;
1178                         page_remove_rmap(page, false);
1179                         if (unlikely(page_mapcount(page) < 0))
1180                                 print_bad_pte(vma, addr, ptent, page);
1181                         if (unlikely(__tlb_remove_page(tlb, page))) {
1182                                 force_flush = 1;
1183                                 pending_page = page;
1184                                 addr += PAGE_SIZE;
1185                                 break;
1186                         }
1187                         continue;
1188                 }
1189                 /* only check swap_entries if explicitly asked for in details */
1190                 if (unlikely(details && !details->check_swap_entries))
1191                         continue;
1192
1193                 entry = pte_to_swp_entry(ptent);
1194                 if (!non_swap_entry(entry))
1195                         rss[MM_SWAPENTS]--;
1196                 else if (is_migration_entry(entry)) {
1197                         struct page *page;
1198
1199                         page = migration_entry_to_page(entry);
1200                         rss[mm_counter(page)]--;
1201                 }
1202                 if (unlikely(!free_swap_and_cache(entry)))
1203                         print_bad_pte(vma, addr, ptent, NULL);
1204                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1205         } while (pte++, addr += PAGE_SIZE, addr != end);
1206
1207         add_mm_rss_vec(mm, rss);
1208         arch_leave_lazy_mmu_mode();
1209
1210         /* Do the actual TLB flush before dropping ptl */
1211         if (force_flush)
1212                 tlb_flush_mmu_tlbonly(tlb);
1213         pte_unmap_unlock(start_pte, ptl);
1214
1215         /*
1216          * If we forced a TLB flush (either due to running out of
1217          * batch buffers or because we needed to flush dirty TLB
1218          * entries before releasing the ptl), free the batched
1219          * memory too. Restart if we didn't do everything.
1220          */
1221         if (force_flush) {
1222                 force_flush = 0;
1223                 tlb_flush_mmu_free(tlb);
1224                 if (pending_page) {
1225                         /* remove the page with new size */
1226                         __tlb_remove_pte_page(tlb, pending_page);
1227                         pending_page = NULL;
1228                 }
1229                 if (addr != end)
1230                         goto again;
1231         }
1232
1233         return addr;
1234 }
1235
1236 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1237                                 struct vm_area_struct *vma, pud_t *pud,
1238                                 unsigned long addr, unsigned long end,
1239                                 struct zap_details *details)
1240 {
1241         pmd_t *pmd;
1242         unsigned long next;
1243
1244         pmd = pmd_offset(pud, addr);
1245         do {
1246                 next = pmd_addr_end(addr, end);
1247                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1248                         if (next - addr != HPAGE_PMD_SIZE) {
1249                                 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1250                                     !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1251                                 split_huge_pmd(vma, pmd, addr);
1252                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1253                                 goto next;
1254                         /* fall through */
1255                 }
1256                 /*
1257                  * Here there can be other concurrent MADV_DONTNEED or
1258                  * trans huge page faults running, and if the pmd is
1259                  * none or trans huge it can change under us. This is
1260                  * because MADV_DONTNEED holds the mmap_sem in read
1261                  * mode.
1262                  */
1263                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1264                         goto next;
1265                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1266 next:
1267                 cond_resched();
1268         } while (pmd++, addr = next, addr != end);
1269
1270         return addr;
1271 }
1272
1273 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1274                                 struct vm_area_struct *vma, pgd_t *pgd,
1275                                 unsigned long addr, unsigned long end,
1276                                 struct zap_details *details)
1277 {
1278         pud_t *pud;
1279         unsigned long next;
1280
1281         pud = pud_offset(pgd, addr);
1282         do {
1283                 next = pud_addr_end(addr, end);
1284                 if (pud_none_or_clear_bad(pud))
1285                         continue;
1286                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1287         } while (pud++, addr = next, addr != end);
1288
1289         return addr;
1290 }
1291
1292 void unmap_page_range(struct mmu_gather *tlb,
1293                              struct vm_area_struct *vma,
1294                              unsigned long addr, unsigned long end,
1295                              struct zap_details *details)
1296 {
1297         pgd_t *pgd;
1298         unsigned long next;
1299
1300         BUG_ON(addr >= end);
1301         tlb_start_vma(tlb, vma);
1302         pgd = pgd_offset(vma->vm_mm, addr);
1303         do {
1304                 next = pgd_addr_end(addr, end);
1305                 if (pgd_none_or_clear_bad(pgd))
1306                         continue;
1307                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1308         } while (pgd++, addr = next, addr != end);
1309         tlb_end_vma(tlb, vma);
1310 }
1311
1312
1313 static void unmap_single_vma(struct mmu_gather *tlb,
1314                 struct vm_area_struct *vma, unsigned long start_addr,
1315                 unsigned long end_addr,
1316                 struct zap_details *details)
1317 {
1318         unsigned long start = max(vma->vm_start, start_addr);
1319         unsigned long end;
1320
1321         if (start >= vma->vm_end)
1322                 return;
1323         end = min(vma->vm_end, end_addr);
1324         if (end <= vma->vm_start)
1325                 return;
1326
1327         if (vma->vm_file)
1328                 uprobe_munmap(vma, start, end);
1329
1330         if (unlikely(vma->vm_flags & VM_PFNMAP))
1331                 untrack_pfn(vma, 0, 0);
1332
1333         if (start != end) {
1334                 if (unlikely(is_vm_hugetlb_page(vma))) {
1335                         /*
1336                          * It is undesirable to test vma->vm_file as it
1337                          * should be non-null for valid hugetlb area.
1338                          * However, vm_file will be NULL in the error
1339                          * cleanup path of mmap_region. When
1340                          * hugetlbfs ->mmap method fails,
1341                          * mmap_region() nullifies vma->vm_file
1342                          * before calling this function to clean up.
1343                          * Since no pte has actually been setup, it is
1344                          * safe to do nothing in this case.
1345                          */
1346                         if (vma->vm_file) {
1347                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1348                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1350                         }
1351                 } else
1352                         unmap_page_range(tlb, vma, start, end, details);
1353         }
1354 }
1355
1356 /**
1357  * unmap_vmas - unmap a range of memory covered by a list of vma's
1358  * @tlb: address of the caller's struct mmu_gather
1359  * @vma: the starting vma
1360  * @start_addr: virtual address at which to start unmapping
1361  * @end_addr: virtual address at which to end unmapping
1362  *
1363  * Unmap all pages in the vma list.
1364  *
1365  * Only addresses between `start' and `end' will be unmapped.
1366  *
1367  * The VMA list must be sorted in ascending virtual address order.
1368  *
1369  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370  * range after unmap_vmas() returns.  So the only responsibility here is to
1371  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372  * drops the lock and schedules.
1373  */
1374 void unmap_vmas(struct mmu_gather *tlb,
1375                 struct vm_area_struct *vma, unsigned long start_addr,
1376                 unsigned long end_addr)
1377 {
1378         struct mm_struct *mm = vma->vm_mm;
1379
1380         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1384 }
1385
1386 /**
1387  * zap_page_range - remove user pages in a given range
1388  * @vma: vm_area_struct holding the applicable pages
1389  * @start: starting address of pages to zap
1390  * @size: number of bytes to zap
1391  * @details: details of shared cache invalidation
1392  *
1393  * Caller must protect the VMA list
1394  */
1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396                 unsigned long size, struct zap_details *details)
1397 {
1398         struct mm_struct *mm = vma->vm_mm;
1399         struct mmu_gather tlb;
1400         unsigned long end = start + size;
1401
1402         lru_add_drain();
1403         tlb_gather_mmu(&tlb, mm, start, end);
1404         update_hiwater_rss(mm);
1405         mmu_notifier_invalidate_range_start(mm, start, end);
1406         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407                 unmap_single_vma(&tlb, vma, start, end, details);
1408         mmu_notifier_invalidate_range_end(mm, start, end);
1409         tlb_finish_mmu(&tlb, start, end);
1410 }
1411
1412 /**
1413  * zap_page_range_single - remove user pages in a given range
1414  * @vma: vm_area_struct holding the applicable pages
1415  * @address: starting address of pages to zap
1416  * @size: number of bytes to zap
1417  * @details: details of shared cache invalidation
1418  *
1419  * The range must fit into one VMA.
1420  */
1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422                 unsigned long size, struct zap_details *details)
1423 {
1424         struct mm_struct *mm = vma->vm_mm;
1425         struct mmu_gather tlb;
1426         unsigned long end = address + size;
1427
1428         lru_add_drain();
1429         tlb_gather_mmu(&tlb, mm, address, end);
1430         update_hiwater_rss(mm);
1431         mmu_notifier_invalidate_range_start(mm, address, end);
1432         unmap_single_vma(&tlb, vma, address, end, details);
1433         mmu_notifier_invalidate_range_end(mm, address, end);
1434         tlb_finish_mmu(&tlb, address, end);
1435 }
1436
1437 /**
1438  * zap_vma_ptes - remove ptes mapping the vma
1439  * @vma: vm_area_struct holding ptes to be zapped
1440  * @address: starting address of pages to zap
1441  * @size: number of bytes to zap
1442  *
1443  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444  *
1445  * The entire address range must be fully contained within the vma.
1446  *
1447  * Returns 0 if successful.
1448  */
1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450                 unsigned long size)
1451 {
1452         if (address < vma->vm_start || address + size > vma->vm_end ||
1453                         !(vma->vm_flags & VM_PFNMAP))
1454                 return -1;
1455         zap_page_range_single(vma, address, size, NULL);
1456         return 0;
1457 }
1458 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459
1460 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1461                         spinlock_t **ptl)
1462 {
1463         pgd_t * pgd = pgd_offset(mm, addr);
1464         pud_t * pud = pud_alloc(mm, pgd, addr);
1465         if (pud) {
1466                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1467                 if (pmd) {
1468                         VM_BUG_ON(pmd_trans_huge(*pmd));
1469                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1470                 }
1471         }
1472         return NULL;
1473 }
1474
1475 /*
1476  * This is the old fallback for page remapping.
1477  *
1478  * For historical reasons, it only allows reserved pages. Only
1479  * old drivers should use this, and they needed to mark their
1480  * pages reserved for the old functions anyway.
1481  */
1482 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1483                         struct page *page, pgprot_t prot)
1484 {
1485         struct mm_struct *mm = vma->vm_mm;
1486         int retval;
1487         pte_t *pte;
1488         spinlock_t *ptl;
1489
1490         retval = -EINVAL;
1491         if (PageAnon(page))
1492                 goto out;
1493         retval = -ENOMEM;
1494         flush_dcache_page(page);
1495         pte = get_locked_pte(mm, addr, &ptl);
1496         if (!pte)
1497                 goto out;
1498         retval = -EBUSY;
1499         if (!pte_none(*pte))
1500                 goto out_unlock;
1501
1502         /* Ok, finally just insert the thing.. */
1503         get_page(page);
1504         inc_mm_counter_fast(mm, mm_counter_file(page));
1505         page_add_file_rmap(page, false);
1506         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1507
1508         retval = 0;
1509         pte_unmap_unlock(pte, ptl);
1510         return retval;
1511 out_unlock:
1512         pte_unmap_unlock(pte, ptl);
1513 out:
1514         return retval;
1515 }
1516
1517 /**
1518  * vm_insert_page - insert single page into user vma
1519  * @vma: user vma to map to
1520  * @addr: target user address of this page
1521  * @page: source kernel page
1522  *
1523  * This allows drivers to insert individual pages they've allocated
1524  * into a user vma.
1525  *
1526  * The page has to be a nice clean _individual_ kernel allocation.
1527  * If you allocate a compound page, you need to have marked it as
1528  * such (__GFP_COMP), or manually just split the page up yourself
1529  * (see split_page()).
1530  *
1531  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1532  * took an arbitrary page protection parameter. This doesn't allow
1533  * that. Your vma protection will have to be set up correctly, which
1534  * means that if you want a shared writable mapping, you'd better
1535  * ask for a shared writable mapping!
1536  *
1537  * The page does not need to be reserved.
1538  *
1539  * Usually this function is called from f_op->mmap() handler
1540  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1541  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1542  * function from other places, for example from page-fault handler.
1543  */
1544 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1545                         struct page *page)
1546 {
1547         if (addr < vma->vm_start || addr >= vma->vm_end)
1548                 return -EFAULT;
1549         if (!page_count(page))
1550                 return -EINVAL;
1551         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1552                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1553                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1554                 vma->vm_flags |= VM_MIXEDMAP;
1555         }
1556         return insert_page(vma, addr, page, vma->vm_page_prot);
1557 }
1558 EXPORT_SYMBOL(vm_insert_page);
1559
1560 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1561                         pfn_t pfn, pgprot_t prot)
1562 {
1563         struct mm_struct *mm = vma->vm_mm;
1564         int retval;
1565         pte_t *pte, entry;
1566         spinlock_t *ptl;
1567
1568         retval = -ENOMEM;
1569         pte = get_locked_pte(mm, addr, &ptl);
1570         if (!pte)
1571                 goto out;
1572         retval = -EBUSY;
1573         if (!pte_none(*pte))
1574                 goto out_unlock;
1575
1576         /* Ok, finally just insert the thing.. */
1577         if (pfn_t_devmap(pfn))
1578                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1579         else
1580                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1581         set_pte_at(mm, addr, pte, entry);
1582         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1583
1584         retval = 0;
1585 out_unlock:
1586         pte_unmap_unlock(pte, ptl);
1587 out:
1588         return retval;
1589 }
1590
1591 /**
1592  * vm_insert_pfn - insert single pfn into user vma
1593  * @vma: user vma to map to
1594  * @addr: target user address of this page
1595  * @pfn: source kernel pfn
1596  *
1597  * Similar to vm_insert_page, this allows drivers to insert individual pages
1598  * they've allocated into a user vma. Same comments apply.
1599  *
1600  * This function should only be called from a vm_ops->fault handler, and
1601  * in that case the handler should return NULL.
1602  *
1603  * vma cannot be a COW mapping.
1604  *
1605  * As this is called only for pages that do not currently exist, we
1606  * do not need to flush old virtual caches or the TLB.
1607  */
1608 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1609                         unsigned long pfn)
1610 {
1611         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1612 }
1613 EXPORT_SYMBOL(vm_insert_pfn);
1614
1615 /**
1616  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1617  * @vma: user vma to map to
1618  * @addr: target user address of this page
1619  * @pfn: source kernel pfn
1620  * @pgprot: pgprot flags for the inserted page
1621  *
1622  * This is exactly like vm_insert_pfn, except that it allows drivers to
1623  * to override pgprot on a per-page basis.
1624  *
1625  * This only makes sense for IO mappings, and it makes no sense for
1626  * cow mappings.  In general, using multiple vmas is preferable;
1627  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1628  * impractical.
1629  */
1630 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1631                         unsigned long pfn, pgprot_t pgprot)
1632 {
1633         int ret;
1634         /*
1635          * Technically, architectures with pte_special can avoid all these
1636          * restrictions (same for remap_pfn_range).  However we would like
1637          * consistency in testing and feature parity among all, so we should
1638          * try to keep these invariants in place for everybody.
1639          */
1640         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1641         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1642                                                 (VM_PFNMAP|VM_MIXEDMAP));
1643         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1644         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1645
1646         if (addr < vma->vm_start || addr >= vma->vm_end)
1647                 return -EFAULT;
1648         if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1649                 return -EINVAL;
1650
1651         if (!pfn_modify_allowed(pfn, pgprot))
1652                 return -EACCES;
1653
1654         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1655
1656         return ret;
1657 }
1658 EXPORT_SYMBOL(vm_insert_pfn_prot);
1659
1660 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1661                         pfn_t pfn)
1662 {
1663         pgprot_t pgprot = vma->vm_page_prot;
1664
1665         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1666
1667         if (addr < vma->vm_start || addr >= vma->vm_end)
1668                 return -EFAULT;
1669         if (track_pfn_insert(vma, &pgprot, pfn))
1670                 return -EINVAL;
1671
1672         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1673                 return -EACCES;
1674
1675         /*
1676          * If we don't have pte special, then we have to use the pfn_valid()
1677          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1678          * refcount the page if pfn_valid is true (hence insert_page rather
1679          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1680          * without pte special, it would there be refcounted as a normal page.
1681          */
1682         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1683                 struct page *page;
1684
1685                 /*
1686                  * At this point we are committed to insert_page()
1687                  * regardless of whether the caller specified flags that
1688                  * result in pfn_t_has_page() == false.
1689                  */
1690                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1691                 return insert_page(vma, addr, page, pgprot);
1692         }
1693         return insert_pfn(vma, addr, pfn, pgprot);
1694 }
1695 EXPORT_SYMBOL(vm_insert_mixed);
1696
1697 /*
1698  * maps a range of physical memory into the requested pages. the old
1699  * mappings are removed. any references to nonexistent pages results
1700  * in null mappings (currently treated as "copy-on-access")
1701  */
1702 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1703                         unsigned long addr, unsigned long end,
1704                         unsigned long pfn, pgprot_t prot)
1705 {
1706         pte_t *pte, *mapped_pte;
1707         spinlock_t *ptl;
1708         int err = 0;
1709
1710         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1711         if (!pte)
1712                 return -ENOMEM;
1713         arch_enter_lazy_mmu_mode();
1714         do {
1715                 BUG_ON(!pte_none(*pte));
1716                 if (!pfn_modify_allowed(pfn, prot)) {
1717                         err = -EACCES;
1718                         break;
1719                 }
1720                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1721                 pfn++;
1722         } while (pte++, addr += PAGE_SIZE, addr != end);
1723         arch_leave_lazy_mmu_mode();
1724         pte_unmap_unlock(mapped_pte, ptl);
1725         return err;
1726 }
1727
1728 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1729                         unsigned long addr, unsigned long end,
1730                         unsigned long pfn, pgprot_t prot)
1731 {
1732         pmd_t *pmd;
1733         unsigned long next;
1734         int err;
1735
1736         pfn -= addr >> PAGE_SHIFT;
1737         pmd = pmd_alloc(mm, pud, addr);
1738         if (!pmd)
1739                 return -ENOMEM;
1740         VM_BUG_ON(pmd_trans_huge(*pmd));
1741         do {
1742                 next = pmd_addr_end(addr, end);
1743                 err = remap_pte_range(mm, pmd, addr, next,
1744                                 pfn + (addr >> PAGE_SHIFT), prot);
1745                 if (err)
1746                         return err;
1747         } while (pmd++, addr = next, addr != end);
1748         return 0;
1749 }
1750
1751 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1752                         unsigned long addr, unsigned long end,
1753                         unsigned long pfn, pgprot_t prot)
1754 {
1755         pud_t *pud;
1756         unsigned long next;
1757         int err;
1758
1759         pfn -= addr >> PAGE_SHIFT;
1760         pud = pud_alloc(mm, pgd, addr);
1761         if (!pud)
1762                 return -ENOMEM;
1763         do {
1764                 next = pud_addr_end(addr, end);
1765                 err = remap_pmd_range(mm, pud, addr, next,
1766                                 pfn + (addr >> PAGE_SHIFT), prot);
1767                 if (err)
1768                         return err;
1769         } while (pud++, addr = next, addr != end);
1770         return 0;
1771 }
1772
1773 /**
1774  * remap_pfn_range - remap kernel memory to userspace
1775  * @vma: user vma to map to
1776  * @addr: target user address to start at
1777  * @pfn: physical address of kernel memory
1778  * @size: size of map area
1779  * @prot: page protection flags for this mapping
1780  *
1781  *  Note: this is only safe if the mm semaphore is held when called.
1782  */
1783 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1784                     unsigned long pfn, unsigned long size, pgprot_t prot)
1785 {
1786         pgd_t *pgd;
1787         unsigned long next;
1788         unsigned long end = addr + PAGE_ALIGN(size);
1789         struct mm_struct *mm = vma->vm_mm;
1790         unsigned long remap_pfn = pfn;
1791         int err;
1792
1793         /*
1794          * Physically remapped pages are special. Tell the
1795          * rest of the world about it:
1796          *   VM_IO tells people not to look at these pages
1797          *      (accesses can have side effects).
1798          *   VM_PFNMAP tells the core MM that the base pages are just
1799          *      raw PFN mappings, and do not have a "struct page" associated
1800          *      with them.
1801          *   VM_DONTEXPAND
1802          *      Disable vma merging and expanding with mremap().
1803          *   VM_DONTDUMP
1804          *      Omit vma from core dump, even when VM_IO turned off.
1805          *
1806          * There's a horrible special case to handle copy-on-write
1807          * behaviour that some programs depend on. We mark the "original"
1808          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1809          * See vm_normal_page() for details.
1810          */
1811         if (is_cow_mapping(vma->vm_flags)) {
1812                 if (addr != vma->vm_start || end != vma->vm_end)
1813                         return -EINVAL;
1814                 vma->vm_pgoff = pfn;
1815         }
1816
1817         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1818         if (err)
1819                 return -EINVAL;
1820
1821         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1822
1823         BUG_ON(addr >= end);
1824         pfn -= addr >> PAGE_SHIFT;
1825         pgd = pgd_offset(mm, addr);
1826         flush_cache_range(vma, addr, end);
1827         do {
1828                 next = pgd_addr_end(addr, end);
1829                 err = remap_pud_range(mm, pgd, addr, next,
1830                                 pfn + (addr >> PAGE_SHIFT), prot);
1831                 if (err)
1832                         break;
1833         } while (pgd++, addr = next, addr != end);
1834
1835         if (err)
1836                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1837
1838         return err;
1839 }
1840 EXPORT_SYMBOL(remap_pfn_range);
1841
1842 /**
1843  * vm_iomap_memory - remap memory to userspace
1844  * @vma: user vma to map to
1845  * @start: start of area
1846  * @len: size of area
1847  *
1848  * This is a simplified io_remap_pfn_range() for common driver use. The
1849  * driver just needs to give us the physical memory range to be mapped,
1850  * we'll figure out the rest from the vma information.
1851  *
1852  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1853  * whatever write-combining details or similar.
1854  */
1855 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1856 {
1857         unsigned long vm_len, pfn, pages;
1858
1859         /* Check that the physical memory area passed in looks valid */
1860         if (start + len < start)
1861                 return -EINVAL;
1862         /*
1863          * You *really* shouldn't map things that aren't page-aligned,
1864          * but we've historically allowed it because IO memory might
1865          * just have smaller alignment.
1866          */
1867         len += start & ~PAGE_MASK;
1868         pfn = start >> PAGE_SHIFT;
1869         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1870         if (pfn + pages < pfn)
1871                 return -EINVAL;
1872
1873         /* We start the mapping 'vm_pgoff' pages into the area */
1874         if (vma->vm_pgoff > pages)
1875                 return -EINVAL;
1876         pfn += vma->vm_pgoff;
1877         pages -= vma->vm_pgoff;
1878
1879         /* Can we fit all of the mapping? */
1880         vm_len = vma->vm_end - vma->vm_start;
1881         if (vm_len >> PAGE_SHIFT > pages)
1882                 return -EINVAL;
1883
1884         /* Ok, let it rip */
1885         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1886 }
1887 EXPORT_SYMBOL(vm_iomap_memory);
1888
1889 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1890                                      unsigned long addr, unsigned long end,
1891                                      pte_fn_t fn, void *data)
1892 {
1893         pte_t *pte;
1894         int err;
1895         pgtable_t token;
1896         spinlock_t *uninitialized_var(ptl);
1897
1898         pte = (mm == &init_mm) ?
1899                 pte_alloc_kernel(pmd, addr) :
1900                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1901         if (!pte)
1902                 return -ENOMEM;
1903
1904         BUG_ON(pmd_huge(*pmd));
1905
1906         arch_enter_lazy_mmu_mode();
1907
1908         token = pmd_pgtable(*pmd);
1909
1910         do {
1911                 err = fn(pte++, token, addr, data);
1912                 if (err)
1913                         break;
1914         } while (addr += PAGE_SIZE, addr != end);
1915
1916         arch_leave_lazy_mmu_mode();
1917
1918         if (mm != &init_mm)
1919                 pte_unmap_unlock(pte-1, ptl);
1920         return err;
1921 }
1922
1923 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1924                                      unsigned long addr, unsigned long end,
1925                                      pte_fn_t fn, void *data)
1926 {
1927         pmd_t *pmd;
1928         unsigned long next;
1929         int err;
1930
1931         BUG_ON(pud_huge(*pud));
1932
1933         pmd = pmd_alloc(mm, pud, addr);
1934         if (!pmd)
1935                 return -ENOMEM;
1936         do {
1937                 next = pmd_addr_end(addr, end);
1938                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1939                 if (err)
1940                         break;
1941         } while (pmd++, addr = next, addr != end);
1942         return err;
1943 }
1944
1945 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1946                                      unsigned long addr, unsigned long end,
1947                                      pte_fn_t fn, void *data)
1948 {
1949         pud_t *pud;
1950         unsigned long next;
1951         int err;
1952
1953         pud = pud_alloc(mm, pgd, addr);
1954         if (!pud)
1955                 return -ENOMEM;
1956         do {
1957                 next = pud_addr_end(addr, end);
1958                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1959                 if (err)
1960                         break;
1961         } while (pud++, addr = next, addr != end);
1962         return err;
1963 }
1964
1965 /*
1966  * Scan a region of virtual memory, filling in page tables as necessary
1967  * and calling a provided function on each leaf page table.
1968  */
1969 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1970                         unsigned long size, pte_fn_t fn, void *data)
1971 {
1972         pgd_t *pgd;
1973         unsigned long next;
1974         unsigned long end = addr + size;
1975         int err;
1976
1977         if (WARN_ON(addr >= end))
1978                 return -EINVAL;
1979
1980         pgd = pgd_offset(mm, addr);
1981         do {
1982                 next = pgd_addr_end(addr, end);
1983                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1984                 if (err)
1985                         break;
1986         } while (pgd++, addr = next, addr != end);
1987
1988         return err;
1989 }
1990 EXPORT_SYMBOL_GPL(apply_to_page_range);
1991
1992 /*
1993  * handle_pte_fault chooses page fault handler according to an entry which was
1994  * read non-atomically.  Before making any commitment, on those architectures
1995  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1996  * parts, do_swap_page must check under lock before unmapping the pte and
1997  * proceeding (but do_wp_page is only called after already making such a check;
1998  * and do_anonymous_page can safely check later on).
1999  */
2000 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2001                                 pte_t *page_table, pte_t orig_pte)
2002 {
2003         int same = 1;
2004 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2005         if (sizeof(pte_t) > sizeof(unsigned long)) {
2006                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2007                 spin_lock(ptl);
2008                 same = pte_same(*page_table, orig_pte);
2009                 spin_unlock(ptl);
2010         }
2011 #endif
2012         pte_unmap(page_table);
2013         return same;
2014 }
2015
2016 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2017 {
2018         debug_dma_assert_idle(src);
2019
2020         /*
2021          * If the source page was a PFN mapping, we don't have
2022          * a "struct page" for it. We do a best-effort copy by
2023          * just copying from the original user address. If that
2024          * fails, we just zero-fill it. Live with it.
2025          */
2026         if (unlikely(!src)) {
2027                 void *kaddr = kmap_atomic(dst);
2028                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2029
2030                 /*
2031                  * This really shouldn't fail, because the page is there
2032                  * in the page tables. But it might just be unreadable,
2033                  * in which case we just give up and fill the result with
2034                  * zeroes.
2035                  */
2036                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2037                         clear_page(kaddr);
2038                 kunmap_atomic(kaddr);
2039                 flush_dcache_page(dst);
2040         } else
2041                 copy_user_highpage(dst, src, va, vma);
2042 }
2043
2044 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2045 {
2046         struct file *vm_file = vma->vm_file;
2047
2048         if (vm_file)
2049                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2050
2051         /*
2052          * Special mappings (e.g. VDSO) do not have any file so fake
2053          * a default GFP_KERNEL for them.
2054          */
2055         return GFP_KERNEL;
2056 }
2057
2058 /*
2059  * Notify the address space that the page is about to become writable so that
2060  * it can prohibit this or wait for the page to get into an appropriate state.
2061  *
2062  * We do this without the lock held, so that it can sleep if it needs to.
2063  */
2064 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2065                unsigned long address)
2066 {
2067         struct vm_fault vmf;
2068         int ret;
2069
2070         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2071         vmf.pgoff = page->index;
2072         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2073         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2074         vmf.page = page;
2075         vmf.cow_page = NULL;
2076
2077         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2078         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2079                 return ret;
2080         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2081                 lock_page(page);
2082                 if (!page->mapping) {
2083                         unlock_page(page);
2084                         return 0; /* retry */
2085                 }
2086                 ret |= VM_FAULT_LOCKED;
2087         } else
2088                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2089         return ret;
2090 }
2091
2092 /*
2093  * Handle write page faults for pages that can be reused in the current vma
2094  *
2095  * This can happen either due to the mapping being with the VM_SHARED flag,
2096  * or due to us being the last reference standing to the page. In either
2097  * case, all we need to do here is to mark the page as writable and update
2098  * any related book-keeping.
2099  */
2100 static inline int wp_page_reuse(struct fault_env *fe, pte_t orig_pte,
2101                         struct page *page, int page_mkwrite, int dirty_shared)
2102         __releases(fe->ptl)
2103 {
2104         struct vm_area_struct *vma = fe->vma;
2105         pte_t entry;
2106         /*
2107          * Clear the pages cpupid information as the existing
2108          * information potentially belongs to a now completely
2109          * unrelated process.
2110          */
2111         if (page)
2112                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2113
2114         flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
2115         entry = pte_mkyoung(orig_pte);
2116         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2117         if (ptep_set_access_flags(vma, fe->address, fe->pte, entry, 1))
2118                 update_mmu_cache(vma, fe->address, fe->pte);
2119         pte_unmap_unlock(fe->pte, fe->ptl);
2120
2121         if (dirty_shared) {
2122                 struct address_space *mapping;
2123                 int dirtied;
2124
2125                 if (!page_mkwrite)
2126                         lock_page(page);
2127
2128                 dirtied = set_page_dirty(page);
2129                 VM_BUG_ON_PAGE(PageAnon(page), page);
2130                 mapping = page->mapping;
2131                 unlock_page(page);
2132                 put_page(page);
2133
2134                 if ((dirtied || page_mkwrite) && mapping) {
2135                         /*
2136                          * Some device drivers do not set page.mapping
2137                          * but still dirty their pages
2138                          */
2139                         balance_dirty_pages_ratelimited(mapping);
2140                 }
2141
2142                 if (!page_mkwrite)
2143                         file_update_time(vma->vm_file);
2144         }
2145
2146         return VM_FAULT_WRITE;
2147 }
2148
2149 /*
2150  * Handle the case of a page which we actually need to copy to a new page.
2151  *
2152  * Called with mmap_sem locked and the old page referenced, but
2153  * without the ptl held.
2154  *
2155  * High level logic flow:
2156  *
2157  * - Allocate a page, copy the content of the old page to the new one.
2158  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2159  * - Take the PTL. If the pte changed, bail out and release the allocated page
2160  * - If the pte is still the way we remember it, update the page table and all
2161  *   relevant references. This includes dropping the reference the page-table
2162  *   held to the old page, as well as updating the rmap.
2163  * - In any case, unlock the PTL and drop the reference we took to the old page.
2164  */
2165 static int wp_page_copy(struct fault_env *fe, pte_t orig_pte,
2166                 struct page *old_page)
2167 {
2168         struct vm_area_struct *vma = fe->vma;
2169         struct mm_struct *mm = vma->vm_mm;
2170         struct page *new_page = NULL;
2171         pte_t entry;
2172         int page_copied = 0;
2173         const unsigned long mmun_start = fe->address & PAGE_MASK;
2174         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2175         struct mem_cgroup *memcg;
2176
2177         if (unlikely(anon_vma_prepare(vma)))
2178                 goto oom;
2179
2180         if (is_zero_pfn(pte_pfn(orig_pte))) {
2181                 new_page = alloc_zeroed_user_highpage_movable(vma, fe->address);
2182                 if (!new_page)
2183                         goto oom;
2184         } else {
2185                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2186                                 fe->address);
2187                 if (!new_page)
2188                         goto oom;
2189                 cow_user_page(new_page, old_page, fe->address, vma);
2190         }
2191
2192         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2193                 goto oom_free_new;
2194
2195         __SetPageUptodate(new_page);
2196
2197         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2198
2199         /*
2200          * Re-check the pte - we dropped the lock
2201          */
2202         fe->pte = pte_offset_map_lock(mm, fe->pmd, fe->address, &fe->ptl);
2203         if (likely(pte_same(*fe->pte, orig_pte))) {
2204                 if (old_page) {
2205                         if (!PageAnon(old_page)) {
2206                                 dec_mm_counter_fast(mm,
2207                                                 mm_counter_file(old_page));
2208                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2209                         }
2210                 } else {
2211                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2212                 }
2213                 flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
2214                 entry = mk_pte(new_page, vma->vm_page_prot);
2215                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2216                 /*
2217                  * Clear the pte entry and flush it first, before updating the
2218                  * pte with the new entry. This will avoid a race condition
2219                  * seen in the presence of one thread doing SMC and another
2220                  * thread doing COW.
2221                  */
2222                 ptep_clear_flush_notify(vma, fe->address, fe->pte);
2223                 page_add_new_anon_rmap(new_page, vma, fe->address, false);
2224                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2225                 lru_cache_add_active_or_unevictable(new_page, vma);
2226                 /*
2227                  * We call the notify macro here because, when using secondary
2228                  * mmu page tables (such as kvm shadow page tables), we want the
2229                  * new page to be mapped directly into the secondary page table.
2230                  */
2231                 set_pte_at_notify(mm, fe->address, fe->pte, entry);
2232                 update_mmu_cache(vma, fe->address, fe->pte);
2233                 if (old_page) {
2234                         /*
2235                          * Only after switching the pte to the new page may
2236                          * we remove the mapcount here. Otherwise another
2237                          * process may come and find the rmap count decremented
2238                          * before the pte is switched to the new page, and
2239                          * "reuse" the old page writing into it while our pte
2240                          * here still points into it and can be read by other
2241                          * threads.
2242                          *
2243                          * The critical issue is to order this
2244                          * page_remove_rmap with the ptp_clear_flush above.
2245                          * Those stores are ordered by (if nothing else,)
2246                          * the barrier present in the atomic_add_negative
2247                          * in page_remove_rmap.
2248                          *
2249                          * Then the TLB flush in ptep_clear_flush ensures that
2250                          * no process can access the old page before the
2251                          * decremented mapcount is visible. And the old page
2252                          * cannot be reused until after the decremented
2253                          * mapcount is visible. So transitively, TLBs to
2254                          * old page will be flushed before it can be reused.
2255                          */
2256                         page_remove_rmap(old_page, false);
2257                 }
2258
2259                 /* Free the old page.. */
2260                 new_page = old_page;
2261                 page_copied = 1;
2262         } else {
2263                 mem_cgroup_cancel_charge(new_page, memcg, false);
2264         }
2265
2266         if (new_page)
2267                 put_page(new_page);
2268
2269         pte_unmap_unlock(fe->pte, fe->ptl);
2270         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2271         if (old_page) {
2272                 /*
2273                  * Don't let another task, with possibly unlocked vma,
2274                  * keep the mlocked page.
2275                  */
2276                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2277                         lock_page(old_page);    /* LRU manipulation */
2278                         if (PageMlocked(old_page))
2279                                 munlock_vma_page(old_page);
2280                         unlock_page(old_page);
2281                 }
2282                 put_page(old_page);
2283         }
2284         return page_copied ? VM_FAULT_WRITE : 0;
2285 oom_free_new:
2286         put_page(new_page);
2287 oom:
2288         if (old_page)
2289                 put_page(old_page);
2290         return VM_FAULT_OOM;
2291 }
2292
2293 /*
2294  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2295  * mapping
2296  */
2297 static int wp_pfn_shared(struct fault_env *fe,  pte_t orig_pte)
2298 {
2299         struct vm_area_struct *vma = fe->vma;
2300
2301         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2302                 struct vm_fault vmf = {
2303                         .page = NULL,
2304                         .pgoff = linear_page_index(vma, fe->address),
2305                         .virtual_address =
2306                                 (void __user *)(fe->address & PAGE_MASK),
2307                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2308                 };
2309                 int ret;
2310
2311                 pte_unmap_unlock(fe->pte, fe->ptl);
2312                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2313                 if (ret & VM_FAULT_ERROR)
2314                         return ret;
2315                 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2316                                 &fe->ptl);
2317                 /*
2318                  * We might have raced with another page fault while we
2319                  * released the pte_offset_map_lock.
2320                  */
2321                 if (!pte_same(*fe->pte, orig_pte)) {
2322                         pte_unmap_unlock(fe->pte, fe->ptl);
2323                         return 0;
2324                 }
2325         }
2326         return wp_page_reuse(fe, orig_pte, NULL, 0, 0);
2327 }
2328
2329 static int wp_page_shared(struct fault_env *fe, pte_t orig_pte,
2330                 struct page *old_page)
2331         __releases(fe->ptl)
2332 {
2333         struct vm_area_struct *vma = fe->vma;
2334         int page_mkwrite = 0;
2335
2336         get_page(old_page);
2337
2338         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2339                 int tmp;
2340
2341                 pte_unmap_unlock(fe->pte, fe->ptl);
2342                 tmp = do_page_mkwrite(vma, old_page, fe->address);
2343                 if (unlikely(!tmp || (tmp &
2344                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2345                         put_page(old_page);
2346                         return tmp;
2347                 }
2348                 /*
2349                  * Since we dropped the lock we need to revalidate
2350                  * the PTE as someone else may have changed it.  If
2351                  * they did, we just return, as we can count on the
2352                  * MMU to tell us if they didn't also make it writable.
2353                  */
2354                 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2355                                                  &fe->ptl);
2356                 if (!pte_same(*fe->pte, orig_pte)) {
2357                         unlock_page(old_page);
2358                         pte_unmap_unlock(fe->pte, fe->ptl);
2359                         put_page(old_page);
2360                         return 0;
2361                 }
2362                 page_mkwrite = 1;
2363         }
2364
2365         return wp_page_reuse(fe, orig_pte, old_page, page_mkwrite, 1);
2366 }
2367
2368 /*
2369  * This routine handles present pages, when users try to write
2370  * to a shared page. It is done by copying the page to a new address
2371  * and decrementing the shared-page counter for the old page.
2372  *
2373  * Note that this routine assumes that the protection checks have been
2374  * done by the caller (the low-level page fault routine in most cases).
2375  * Thus we can safely just mark it writable once we've done any necessary
2376  * COW.
2377  *
2378  * We also mark the page dirty at this point even though the page will
2379  * change only once the write actually happens. This avoids a few races,
2380  * and potentially makes it more efficient.
2381  *
2382  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2383  * but allow concurrent faults), with pte both mapped and locked.
2384  * We return with mmap_sem still held, but pte unmapped and unlocked.
2385  */
2386 static int do_wp_page(struct fault_env *fe, pte_t orig_pte)
2387         __releases(fe->ptl)
2388 {
2389         struct vm_area_struct *vma = fe->vma;
2390         struct page *old_page;
2391
2392         old_page = vm_normal_page(vma, fe->address, orig_pte);
2393         if (!old_page) {
2394                 /*
2395                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2396                  * VM_PFNMAP VMA.
2397                  *
2398                  * We should not cow pages in a shared writeable mapping.
2399                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2400                  */
2401                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2402                                      (VM_WRITE|VM_SHARED))
2403                         return wp_pfn_shared(fe, orig_pte);
2404
2405                 pte_unmap_unlock(fe->pte, fe->ptl);
2406                 return wp_page_copy(fe, orig_pte, old_page);
2407         }
2408
2409         /*
2410          * Take out anonymous pages first, anonymous shared vmas are
2411          * not dirty accountable.
2412          */
2413         if (PageAnon(old_page) && !PageKsm(old_page)) {
2414                 int total_mapcount;
2415                 if (!trylock_page(old_page)) {
2416                         get_page(old_page);
2417                         pte_unmap_unlock(fe->pte, fe->ptl);
2418                         lock_page(old_page);
2419                         fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
2420                                         fe->address, &fe->ptl);
2421                         if (!pte_same(*fe->pte, orig_pte)) {
2422                                 unlock_page(old_page);
2423                                 pte_unmap_unlock(fe->pte, fe->ptl);
2424                                 put_page(old_page);
2425                                 return 0;
2426                         }
2427                         put_page(old_page);
2428                 }
2429                 if (reuse_swap_page(old_page, &total_mapcount)) {
2430                         if (total_mapcount == 1) {
2431                                 /*
2432                                  * The page is all ours. Move it to
2433                                  * our anon_vma so the rmap code will
2434                                  * not search our parent or siblings.
2435                                  * Protected against the rmap code by
2436                                  * the page lock.
2437                                  */
2438                                 page_move_anon_rmap(old_page, vma);
2439                         }
2440                         unlock_page(old_page);
2441                         return wp_page_reuse(fe, orig_pte, old_page, 0, 0);
2442                 }
2443                 unlock_page(old_page);
2444         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2445                                         (VM_WRITE|VM_SHARED))) {
2446                 return wp_page_shared(fe, orig_pte, old_page);
2447         }
2448
2449         /*
2450          * Ok, we need to copy. Oh, well..
2451          */
2452         get_page(old_page);
2453
2454         pte_unmap_unlock(fe->pte, fe->ptl);
2455         return wp_page_copy(fe, orig_pte, old_page);
2456 }
2457
2458 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2459                 unsigned long start_addr, unsigned long end_addr,
2460                 struct zap_details *details)
2461 {
2462         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2463 }
2464
2465 static inline void unmap_mapping_range_tree(struct rb_root *root,
2466                                             struct zap_details *details)
2467 {
2468         struct vm_area_struct *vma;
2469         pgoff_t vba, vea, zba, zea;
2470
2471         vma_interval_tree_foreach(vma, root,
2472                         details->first_index, details->last_index) {
2473
2474                 vba = vma->vm_pgoff;
2475                 vea = vba + vma_pages(vma) - 1;
2476                 zba = details->first_index;
2477                 if (zba < vba)
2478                         zba = vba;
2479                 zea = details->last_index;
2480                 if (zea > vea)
2481                         zea = vea;
2482
2483                 unmap_mapping_range_vma(vma,
2484                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2485                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2486                                 details);
2487         }
2488 }
2489
2490 /**
2491  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2492  * address_space corresponding to the specified page range in the underlying
2493  * file.
2494  *
2495  * @mapping: the address space containing mmaps to be unmapped.
2496  * @holebegin: byte in first page to unmap, relative to the start of
2497  * the underlying file.  This will be rounded down to a PAGE_SIZE
2498  * boundary.  Note that this is different from truncate_pagecache(), which
2499  * must keep the partial page.  In contrast, we must get rid of
2500  * partial pages.
2501  * @holelen: size of prospective hole in bytes.  This will be rounded
2502  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2503  * end of the file.
2504  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2505  * but 0 when invalidating pagecache, don't throw away private data.
2506  */
2507 void unmap_mapping_range(struct address_space *mapping,
2508                 loff_t const holebegin, loff_t const holelen, int even_cows)
2509 {
2510         struct zap_details details = { };
2511         pgoff_t hba = holebegin >> PAGE_SHIFT;
2512         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2513
2514         /* Check for overflow. */
2515         if (sizeof(holelen) > sizeof(hlen)) {
2516                 long long holeend =
2517                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2518                 if (holeend & ~(long long)ULONG_MAX)
2519                         hlen = ULONG_MAX - hba + 1;
2520         }
2521
2522         details.check_mapping = even_cows? NULL: mapping;
2523         details.first_index = hba;
2524         details.last_index = hba + hlen - 1;
2525         if (details.last_index < details.first_index)
2526                 details.last_index = ULONG_MAX;
2527
2528         i_mmap_lock_write(mapping);
2529         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2530                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2531         i_mmap_unlock_write(mapping);
2532 }
2533 EXPORT_SYMBOL(unmap_mapping_range);
2534
2535 /*
2536  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2537  * but allow concurrent faults), and pte mapped but not yet locked.
2538  * We return with pte unmapped and unlocked.
2539  *
2540  * We return with the mmap_sem locked or unlocked in the same cases
2541  * as does filemap_fault().
2542  */
2543 int do_swap_page(struct fault_env *fe, pte_t orig_pte)
2544 {
2545         struct vm_area_struct *vma = fe->vma;
2546         struct page *page, *swapcache;
2547         struct mem_cgroup *memcg;
2548         swp_entry_t entry;
2549         pte_t pte;
2550         int locked;
2551         int exclusive = 0;
2552         int ret = 0;
2553
2554         if (!pte_unmap_same(vma->vm_mm, fe->pmd, fe->pte, orig_pte))
2555                 goto out;
2556
2557         entry = pte_to_swp_entry(orig_pte);
2558         if (unlikely(non_swap_entry(entry))) {
2559                 if (is_migration_entry(entry)) {
2560                         migration_entry_wait(vma->vm_mm, fe->pmd, fe->address);
2561                 } else if (is_hwpoison_entry(entry)) {
2562                         ret = VM_FAULT_HWPOISON;
2563                 } else {
2564                         print_bad_pte(vma, fe->address, orig_pte, NULL);
2565                         ret = VM_FAULT_SIGBUS;
2566                 }
2567                 goto out;
2568         }
2569         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2570         page = lookup_swap_cache(entry);
2571         if (!page) {
2572                 page = swapin_readahead(entry,
2573                                         GFP_HIGHUSER_MOVABLE, vma, fe->address);
2574                 if (!page) {
2575                         /*
2576                          * Back out if somebody else faulted in this pte
2577                          * while we released the pte lock.
2578                          */
2579                         fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
2580                                         fe->address, &fe->ptl);
2581                         if (likely(pte_same(*fe->pte, orig_pte)))
2582                                 ret = VM_FAULT_OOM;
2583                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2584                         goto unlock;
2585                 }
2586
2587                 /* Had to read the page from swap area: Major fault */
2588                 ret = VM_FAULT_MAJOR;
2589                 count_vm_event(PGMAJFAULT);
2590                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2591         } else if (PageHWPoison(page)) {
2592                 /*
2593                  * hwpoisoned dirty swapcache pages are kept for killing
2594                  * owner processes (which may be unknown at hwpoison time)
2595                  */
2596                 ret = VM_FAULT_HWPOISON;
2597                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2598                 swapcache = page;
2599                 goto out_release;
2600         }
2601
2602         swapcache = page;
2603         locked = lock_page_or_retry(page, vma->vm_mm, fe->flags);
2604
2605         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2606         if (!locked) {
2607                 ret |= VM_FAULT_RETRY;
2608                 goto out_release;
2609         }
2610
2611         /*
2612          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2613          * release the swapcache from under us.  The page pin, and pte_same
2614          * test below, are not enough to exclude that.  Even if it is still
2615          * swapcache, we need to check that the page's swap has not changed.
2616          */
2617         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2618                 goto out_page;
2619
2620         page = ksm_might_need_to_copy(page, vma, fe->address);
2621         if (unlikely(!page)) {
2622                 ret = VM_FAULT_OOM;
2623                 page = swapcache;
2624                 goto out_page;
2625         }
2626
2627         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2628                                 &memcg, false)) {
2629                 ret = VM_FAULT_OOM;
2630                 goto out_page;
2631         }
2632
2633         /*
2634          * Back out if somebody else already faulted in this pte.
2635          */
2636         fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2637                         &fe->ptl);
2638         if (unlikely(!pte_same(*fe->pte, orig_pte)))
2639                 goto out_nomap;
2640
2641         if (unlikely(!PageUptodate(page))) {
2642                 ret = VM_FAULT_SIGBUS;
2643                 goto out_nomap;
2644         }
2645
2646         /*
2647          * The page isn't present yet, go ahead with the fault.
2648          *
2649          * Be careful about the sequence of operations here.
2650          * To get its accounting right, reuse_swap_page() must be called
2651          * while the page is counted on swap but not yet in mapcount i.e.
2652          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2653          * must be called after the swap_free(), or it will never succeed.
2654          */
2655
2656         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2657         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2658         pte = mk_pte(page, vma->vm_page_prot);
2659         if ((fe->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2660                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2661                 fe->flags &= ~FAULT_FLAG_WRITE;
2662                 ret |= VM_FAULT_WRITE;
2663                 exclusive = RMAP_EXCLUSIVE;
2664         }
2665         flush_icache_page(vma, page);
2666         if (pte_swp_soft_dirty(orig_pte))
2667                 pte = pte_mksoft_dirty(pte);
2668         set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
2669         if (page == swapcache) {
2670                 do_page_add_anon_rmap(page, vma, fe->address, exclusive);
2671                 mem_cgroup_commit_charge(page, memcg, true, false);
2672                 activate_page(page);
2673         } else { /* ksm created a completely new copy */
2674                 page_add_new_anon_rmap(page, vma, fe->address, false);
2675                 mem_cgroup_commit_charge(page, memcg, false, false);
2676                 lru_cache_add_active_or_unevictable(page, vma);
2677         }
2678
2679         swap_free(entry);
2680         if (mem_cgroup_swap_full(page) ||
2681             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2682                 try_to_free_swap(page);
2683         unlock_page(page);
2684         if (page != swapcache) {
2685                 /*
2686                  * Hold the lock to avoid the swap entry to be reused
2687                  * until we take the PT lock for the pte_same() check
2688                  * (to avoid false positives from pte_same). For
2689                  * further safety release the lock after the swap_free
2690                  * so that the swap count won't change under a
2691                  * parallel locked swapcache.
2692                  */
2693                 unlock_page(swapcache);
2694                 put_page(swapcache);
2695         }
2696
2697         if (fe->flags & FAULT_FLAG_WRITE) {
2698                 ret |= do_wp_page(fe, pte);
2699                 if (ret & VM_FAULT_ERROR)
2700                         ret &= VM_FAULT_ERROR;
2701                 goto out;
2702         }
2703
2704         /* No need to invalidate - it was non-present before */
2705         update_mmu_cache(vma, fe->address, fe->pte);
2706 unlock:
2707         pte_unmap_unlock(fe->pte, fe->ptl);
2708 out:
2709         return ret;
2710 out_nomap:
2711         mem_cgroup_cancel_charge(page, memcg, false);
2712         pte_unmap_unlock(fe->pte, fe->ptl);
2713 out_page:
2714         unlock_page(page);
2715 out_release:
2716         put_page(page);
2717         if (page != swapcache) {
2718                 unlock_page(swapcache);
2719                 put_page(swapcache);
2720         }
2721         return ret;
2722 }
2723
2724 /*
2725  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2726  * but allow concurrent faults), and pte mapped but not yet locked.
2727  * We return with mmap_sem still held, but pte unmapped and unlocked.
2728  */
2729 static int do_anonymous_page(struct fault_env *fe)
2730 {
2731         struct vm_area_struct *vma = fe->vma;
2732         struct mem_cgroup *memcg;
2733         struct page *page;
2734         pte_t entry;
2735
2736         /* File mapping without ->vm_ops ? */
2737         if (vma->vm_flags & VM_SHARED)
2738                 return VM_FAULT_SIGBUS;
2739
2740         /*
2741          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2742          * pte_offset_map() on pmds where a huge pmd might be created
2743          * from a different thread.
2744          *
2745          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2746          * parallel threads are excluded by other means.
2747          *
2748          * Here we only have down_read(mmap_sem).
2749          */
2750         if (pte_alloc(vma->vm_mm, fe->pmd, fe->address))
2751                 return VM_FAULT_OOM;
2752
2753         /* See the comment in pte_alloc_one_map() */
2754         if (unlikely(pmd_trans_unstable(fe->pmd)))
2755                 return 0;
2756
2757         /* Use the zero-page for reads */
2758         if (!(fe->flags & FAULT_FLAG_WRITE) &&
2759                         !mm_forbids_zeropage(vma->vm_mm)) {
2760                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(fe->address),
2761                                                 vma->vm_page_prot));
2762                 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2763                                 &fe->ptl);
2764                 if (!pte_none(*fe->pte))
2765                         goto unlock;
2766                 /* Deliver the page fault to userland, check inside PT lock */
2767                 if (userfaultfd_missing(vma)) {
2768                         pte_unmap_unlock(fe->pte, fe->ptl);
2769                         return handle_userfault(fe, VM_UFFD_MISSING);
2770                 }
2771                 goto setpte;
2772         }
2773
2774         /* Allocate our own private page. */
2775         if (unlikely(anon_vma_prepare(vma)))
2776                 goto oom;
2777         page = alloc_zeroed_user_highpage_movable(vma, fe->address);
2778         if (!page)
2779                 goto oom;
2780
2781         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2782                 goto oom_free_page;
2783
2784         /*
2785          * The memory barrier inside __SetPageUptodate makes sure that
2786          * preceeding stores to the page contents become visible before
2787          * the set_pte_at() write.
2788          */
2789         __SetPageUptodate(page);
2790
2791         entry = mk_pte(page, vma->vm_page_prot);
2792         if (vma->vm_flags & VM_WRITE)
2793                 entry = pte_mkwrite(pte_mkdirty(entry));
2794
2795         fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2796                         &fe->ptl);
2797         if (!pte_none(*fe->pte))
2798                 goto release;
2799
2800         /* Deliver the page fault to userland, check inside PT lock */
2801         if (userfaultfd_missing(vma)) {
2802                 pte_unmap_unlock(fe->pte, fe->ptl);
2803                 mem_cgroup_cancel_charge(page, memcg, false);
2804                 put_page(page);
2805                 return handle_userfault(fe, VM_UFFD_MISSING);
2806         }
2807
2808         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2809         page_add_new_anon_rmap(page, vma, fe->address, false);
2810         mem_cgroup_commit_charge(page, memcg, false, false);
2811         lru_cache_add_active_or_unevictable(page, vma);
2812 setpte:
2813         set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
2814
2815         /* No need to invalidate - it was non-present before */
2816         update_mmu_cache(vma, fe->address, fe->pte);
2817 unlock:
2818         pte_unmap_unlock(fe->pte, fe->ptl);
2819         return 0;
2820 release:
2821         mem_cgroup_cancel_charge(page, memcg, false);
2822         put_page(page);
2823         goto unlock;
2824 oom_free_page:
2825         put_page(page);
2826 oom:
2827         return VM_FAULT_OOM;
2828 }
2829
2830 /*
2831  * The mmap_sem must have been held on entry, and may have been
2832  * released depending on flags and vma->vm_ops->fault() return value.
2833  * See filemap_fault() and __lock_page_retry().
2834  */
2835 static int __do_fault(struct fault_env *fe, pgoff_t pgoff,
2836                 struct page *cow_page, struct page **page, void **entry)
2837 {
2838         struct vm_area_struct *vma = fe->vma;
2839         struct vm_fault vmf;
2840         int ret;
2841
2842         /*
2843          * Preallocate pte before we take page_lock because this might lead to
2844          * deadlocks for memcg reclaim which waits for pages under writeback:
2845          *                              lock_page(A)
2846          *                              SetPageWriteback(A)
2847          *                              unlock_page(A)
2848          * lock_page(B)
2849          *                              lock_page(B)
2850          * pte_alloc_pne
2851          *   shrink_page_list
2852          *     wait_on_page_writeback(A)
2853          *                              SetPageWriteback(B)
2854          *                              unlock_page(B)
2855          *                              # flush A, B to clear the writeback
2856          */
2857         if (pmd_none(*fe->pmd) && !fe->prealloc_pte) {
2858                 fe->prealloc_pte = pte_alloc_one(vma->vm_mm, fe->address);
2859                 if (!fe->prealloc_pte)
2860                         return VM_FAULT_OOM;
2861                 smp_wmb(); /* See comment in __pte_alloc() */
2862         }
2863
2864         vmf.virtual_address = (void __user *)(fe->address & PAGE_MASK);
2865         vmf.pgoff = pgoff;
2866         vmf.flags = fe->flags;
2867         vmf.page = NULL;
2868         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2869         vmf.cow_page = cow_page;
2870
2871         ret = vma->vm_ops->fault(vma, &vmf);
2872         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2873                 return ret;
2874         if (ret & VM_FAULT_DAX_LOCKED) {
2875                 *entry = vmf.entry;
2876                 return ret;
2877         }
2878
2879         if (unlikely(PageHWPoison(vmf.page))) {
2880                 if (ret & VM_FAULT_LOCKED)
2881                         unlock_page(vmf.page);
2882                 put_page(vmf.page);
2883                 return VM_FAULT_HWPOISON;
2884         }
2885
2886         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2887                 lock_page(vmf.page);
2888         else
2889                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2890
2891         *page = vmf.page;
2892         return ret;
2893 }
2894
2895 /*
2896  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
2897  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
2898  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
2899  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
2900  */
2901 static int pmd_devmap_trans_unstable(pmd_t *pmd)
2902 {
2903         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
2904 }
2905
2906 static int pte_alloc_one_map(struct fault_env *fe)
2907 {
2908         struct vm_area_struct *vma = fe->vma;
2909
2910         if (!pmd_none(*fe->pmd))
2911                 goto map_pte;
2912         if (fe->prealloc_pte) {
2913                 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
2914                 if (unlikely(!pmd_none(*fe->pmd))) {
2915                         spin_unlock(fe->ptl);
2916                         goto map_pte;
2917                 }
2918
2919                 atomic_long_inc(&vma->vm_mm->nr_ptes);
2920                 pmd_populate(vma->vm_mm, fe->pmd, fe->prealloc_pte);
2921                 spin_unlock(fe->ptl);
2922                 fe->prealloc_pte = 0;
2923         } else if (unlikely(pte_alloc(vma->vm_mm, fe->pmd, fe->address))) {
2924                 return VM_FAULT_OOM;
2925         }
2926 map_pte:
2927         /*
2928          * If a huge pmd materialized under us just retry later.  Use
2929          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
2930          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
2931          * under us and then back to pmd_none, as a result of MADV_DONTNEED
2932          * running immediately after a huge pmd fault in a different thread of
2933          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
2934          * All we have to ensure is that it is a regular pmd that we can walk
2935          * with pte_offset_map() and we can do that through an atomic read in
2936          * C, which is what pmd_trans_unstable() provides.
2937          */
2938         if (pmd_devmap_trans_unstable(fe->pmd))
2939                 return VM_FAULT_NOPAGE;
2940
2941         /*
2942          * At this point we know that our vmf->pmd points to a page of ptes
2943          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
2944          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
2945          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
2946          * be valid and we will re-check to make sure the vmf->pte isn't
2947          * pte_none() under vmf->ptl protection when we return to
2948          * alloc_set_pte().
2949          */
2950         fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2951                         &fe->ptl);
2952         return 0;
2953 }
2954
2955 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2956
2957 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2958 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2959                 unsigned long haddr)
2960 {
2961         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2962                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2963                 return false;
2964         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2965                 return false;
2966         return true;
2967 }
2968
2969 static int do_set_pmd(struct fault_env *fe, struct page *page)
2970 {
2971         struct vm_area_struct *vma = fe->vma;
2972         bool write = fe->flags & FAULT_FLAG_WRITE;
2973         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
2974         pmd_t entry;
2975         int i, ret;
2976
2977         if (!transhuge_vma_suitable(vma, haddr))
2978                 return VM_FAULT_FALLBACK;
2979
2980         ret = VM_FAULT_FALLBACK;
2981         page = compound_head(page);
2982
2983         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
2984         if (unlikely(!pmd_none(*fe->pmd)))
2985                 goto out;
2986
2987         for (i = 0; i < HPAGE_PMD_NR; i++)
2988                 flush_icache_page(vma, page + i);
2989
2990         entry = mk_huge_pmd(page, vma->vm_page_prot);
2991         if (write)
2992                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2993
2994         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
2995         page_add_file_rmap(page, true);
2996
2997         set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
2998
2999         update_mmu_cache_pmd(vma, haddr, fe->pmd);
3000
3001         /* fault is handled */
3002         ret = 0;
3003         count_vm_event(THP_FILE_MAPPED);
3004 out:
3005         spin_unlock(fe->ptl);
3006         return ret;
3007 }
3008 #else
3009 static int do_set_pmd(struct fault_env *fe, struct page *page)
3010 {
3011         BUILD_BUG();
3012         return 0;
3013 }
3014 #endif
3015
3016 /**
3017  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3018  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3019  *
3020  * @fe: fault environment
3021  * @memcg: memcg to charge page (only for private mappings)
3022  * @page: page to map
3023  *
3024  * Caller must take care of unlocking fe->ptl, if fe->pte is non-NULL on return.
3025  *
3026  * Target users are page handler itself and implementations of
3027  * vm_ops->map_pages.
3028  */
3029 int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg,
3030                 struct page *page)
3031 {
3032         struct vm_area_struct *vma = fe->vma;
3033         bool write = fe->flags & FAULT_FLAG_WRITE;
3034         pte_t entry;
3035         int ret;
3036
3037         if (pmd_none(*fe->pmd) && PageTransCompound(page) &&
3038                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3039                 /* THP on COW? */
3040                 VM_BUG_ON_PAGE(memcg, page);
3041
3042                 ret = do_set_pmd(fe, page);
3043                 if (ret != VM_FAULT_FALLBACK)
3044                         return ret;
3045         }
3046
3047         if (!fe->pte) {
3048                 ret = pte_alloc_one_map(fe);
3049                 if (ret)
3050                         return ret;
3051         }
3052
3053         /* Re-check under ptl */
3054         if (unlikely(!pte_none(*fe->pte)))
3055                 return VM_FAULT_NOPAGE;
3056
3057         flush_icache_page(vma, page);
3058         entry = mk_pte(page, vma->vm_page_prot);
3059         if (write)
3060                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3061         /* copy-on-write page */
3062         if (write && !(vma->vm_flags & VM_SHARED)) {
3063                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3064                 page_add_new_anon_rmap(page, vma, fe->address, false);
3065                 mem_cgroup_commit_charge(page, memcg, false, false);
3066                 lru_cache_add_active_or_unevictable(page, vma);
3067         } else {
3068                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3069                 page_add_file_rmap(page, false);
3070         }
3071         set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
3072
3073         /* no need to invalidate: a not-present page won't be cached */
3074         update_mmu_cache(vma, fe->address, fe->pte);
3075
3076         return 0;
3077 }
3078
3079 static unsigned long fault_around_bytes __read_mostly =
3080         rounddown_pow_of_two(65536);
3081
3082 #ifdef CONFIG_DEBUG_FS
3083 static int fault_around_bytes_get(void *data, u64 *val)
3084 {
3085         *val = fault_around_bytes;
3086         return 0;
3087 }
3088
3089 /*
3090  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3091  * rounded down to nearest page order. It's what do_fault_around() expects to
3092  * see.
3093  */
3094 static int fault_around_bytes_set(void *data, u64 val)
3095 {
3096         if (val / PAGE_SIZE > PTRS_PER_PTE)
3097                 return -EINVAL;
3098         if (val > PAGE_SIZE)
3099                 fault_around_bytes = rounddown_pow_of_two(val);
3100         else
3101                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3102         return 0;
3103 }
3104 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3105                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3106
3107 static int __init fault_around_debugfs(void)
3108 {
3109         void *ret;
3110
3111         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3112                         &fault_around_bytes_fops);
3113         if (!ret)
3114                 pr_warn("Failed to create fault_around_bytes in debugfs");
3115         return 0;
3116 }
3117 late_initcall(fault_around_debugfs);
3118 #endif
3119
3120 /*
3121  * do_fault_around() tries to map few pages around the fault address. The hope
3122  * is that the pages will be needed soon and this will lower the number of
3123  * faults to handle.
3124  *
3125  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3126  * not ready to be mapped: not up-to-date, locked, etc.
3127  *
3128  * This function is called with the page table lock taken. In the split ptlock
3129  * case the page table lock only protects only those entries which belong to
3130  * the page table corresponding to the fault address.
3131  *
3132  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3133  * only once.
3134  *
3135  * fault_around_pages() defines how many pages we'll try to map.
3136  * do_fault_around() expects it to return a power of two less than or equal to
3137  * PTRS_PER_PTE.
3138  *
3139  * The virtual address of the area that we map is naturally aligned to the
3140  * fault_around_pages() value (and therefore to page order).  This way it's
3141  * easier to guarantee that we don't cross page table boundaries.
3142  */
3143 static int do_fault_around(struct fault_env *fe, pgoff_t start_pgoff)
3144 {
3145         unsigned long address = fe->address, nr_pages, mask;
3146         pgoff_t end_pgoff;
3147         int off, ret = 0;
3148
3149         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3150         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3151
3152         fe->address = max(address & mask, fe->vma->vm_start);
3153         off = ((address - fe->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3154         start_pgoff -= off;
3155
3156         /*
3157          *  end_pgoff is either end of page table or end of vma
3158          *  or fault_around_pages() from start_pgoff, depending what is nearest.
3159          */
3160         end_pgoff = start_pgoff -
3161                 ((fe->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3162                 PTRS_PER_PTE - 1;
3163         end_pgoff = min3(end_pgoff, vma_pages(fe->vma) + fe->vma->vm_pgoff - 1,
3164                         start_pgoff + nr_pages - 1);
3165
3166         if (pmd_none(*fe->pmd)) {
3167                 fe->prealloc_pte = pte_alloc_one(fe->vma->vm_mm, fe->address);
3168                 if (!fe->prealloc_pte)
3169                         goto out;
3170                 smp_wmb(); /* See comment in __pte_alloc() */
3171         }
3172
3173         fe->vma->vm_ops->map_pages(fe, start_pgoff, end_pgoff);
3174
3175         /* preallocated pagetable is unused: free it */
3176         if (fe->prealloc_pte) {
3177                 pte_free(fe->vma->vm_mm, fe->prealloc_pte);
3178                 fe->prealloc_pte = 0;
3179         }
3180         /* Huge page is mapped? Page fault is solved */
3181         if (pmd_trans_huge(*fe->pmd)) {
3182                 ret = VM_FAULT_NOPAGE;
3183                 goto out;
3184         }
3185
3186         /* ->map_pages() haven't done anything useful. Cold page cache? */
3187         if (!fe->pte)
3188                 goto out;
3189
3190         /* check if the page fault is solved */
3191         fe->pte -= (fe->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3192         if (!pte_none(*fe->pte))
3193                 ret = VM_FAULT_NOPAGE;
3194         pte_unmap_unlock(fe->pte, fe->ptl);
3195 out:
3196         fe->address = address;
3197         fe->pte = NULL;
3198         return ret;
3199 }
3200
3201 static int do_read_fault(struct fault_env *fe, pgoff_t pgoff)
3202 {
3203         struct vm_area_struct *vma = fe->vma;
3204         struct page *fault_page;
3205         int ret = 0;
3206
3207         /*
3208          * Let's call ->map_pages() first and use ->fault() as fallback
3209          * if page by the offset is not ready to be mapped (cold cache or
3210          * something).
3211          */
3212         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3213                 ret = do_fault_around(fe, pgoff);
3214                 if (ret)
3215                         return ret;
3216         }
3217
3218         ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
3219         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3220                 return ret;
3221
3222         ret |= alloc_set_pte(fe, NULL, fault_page);
3223         if (fe->pte)
3224                 pte_unmap_unlock(fe->pte, fe->ptl);
3225         unlock_page(fault_page);
3226         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3227                 put_page(fault_page);
3228         return ret;
3229 }
3230
3231 static int do_cow_fault(struct fault_env *fe, pgoff_t pgoff)
3232 {
3233         struct vm_area_struct *vma = fe->vma;
3234         struct page *fault_page, *new_page;
3235         void *fault_entry;
3236         struct mem_cgroup *memcg;
3237         int ret;
3238
3239         if (unlikely(anon_vma_prepare(vma)))
3240                 return VM_FAULT_OOM;
3241
3242         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, fe->address);
3243         if (!new_page)
3244                 return VM_FAULT_OOM;
3245
3246         if (mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
3247                                 &memcg, false)) {
3248                 put_page(new_page);
3249                 return VM_FAULT_OOM;
3250         }
3251
3252         ret = __do_fault(fe, pgoff, new_page, &fault_page, &fault_entry);
3253         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3254                 goto uncharge_out;
3255
3256         if (!(ret & VM_FAULT_DAX_LOCKED))
3257                 copy_user_highpage(new_page, fault_page, fe->address, vma);
3258         __SetPageUptodate(new_page);
3259
3260         ret |= alloc_set_pte(fe, memcg, new_page);
3261         if (fe->pte)
3262                 pte_unmap_unlock(fe->pte, fe->ptl);
3263         if (!(ret & VM_FAULT_DAX_LOCKED)) {
3264                 unlock_page(fault_page);
3265                 put_page(fault_page);
3266         } else {
3267                 dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff);
3268         }
3269         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3270                 goto uncharge_out;
3271         return ret;
3272 uncharge_out:
3273         mem_cgroup_cancel_charge(new_page, memcg, false);
3274         put_page(new_page);
3275         return ret;
3276 }
3277
3278 static int do_shared_fault(struct fault_env *fe, pgoff_t pgoff)
3279 {
3280         struct vm_area_struct *vma = fe->vma;
3281         struct page *fault_page;
3282         struct address_space *mapping;
3283         int dirtied = 0;
3284         int ret, tmp;
3285
3286         ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
3287         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3288                 return ret;
3289
3290         /*
3291          * Check if the backing address space wants to know that the page is
3292          * about to become writable
3293          */
3294         if (vma->vm_ops->page_mkwrite) {
3295                 unlock_page(fault_page);
3296                 tmp = do_page_mkwrite(vma, fault_page, fe->address);
3297                 if (unlikely(!tmp ||
3298                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3299                         put_page(fault_page);
3300                         return tmp;
3301                 }
3302         }
3303
3304         ret |= alloc_set_pte(fe, NULL, fault_page);
3305         if (fe->pte)
3306                 pte_unmap_unlock(fe->pte, fe->ptl);
3307         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3308                                         VM_FAULT_RETRY))) {
3309                 unlock_page(fault_page);
3310                 put_page(fault_page);
3311                 return ret;
3312         }
3313
3314         if (set_page_dirty(fault_page))
3315                 dirtied = 1;
3316         /*
3317          * Take a local copy of the address_space - page.mapping may be zeroed
3318          * by truncate after unlock_page().   The address_space itself remains
3319          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3320          * release semantics to prevent the compiler from undoing this copying.
3321          */
3322         mapping = page_rmapping(fault_page);
3323         unlock_page(fault_page);
3324         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3325                 /*
3326                  * Some device drivers do not set page.mapping but still
3327                  * dirty their pages
3328                  */
3329                 balance_dirty_pages_ratelimited(mapping);
3330         }
3331
3332         if (!vma->vm_ops->page_mkwrite)
3333                 file_update_time(vma->vm_file);
3334
3335         return ret;
3336 }
3337
3338 /*
3339  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3340  * but allow concurrent faults).
3341  * The mmap_sem may have been released depending on flags and our
3342  * return value.  See filemap_fault() and __lock_page_or_retry().
3343  */
3344 static int do_fault(struct fault_env *fe)
3345 {
3346         struct vm_area_struct *vma = fe->vma;
3347         pgoff_t pgoff = linear_page_index(vma, fe->address);
3348         int ret;
3349
3350         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3351         if (!vma->vm_ops->fault)
3352                 ret = VM_FAULT_SIGBUS;
3353         else if (!(fe->flags & FAULT_FLAG_WRITE))
3354                 ret = do_read_fault(fe, pgoff);
3355         else if (!(vma->vm_flags & VM_SHARED))
3356                 ret = do_cow_fault(fe, pgoff);
3357         else
3358                 ret = do_shared_fault(fe, pgoff);
3359
3360         /* preallocated pagetable is unused: free it */
3361         if (fe->prealloc_pte) {
3362                 pte_free(vma->vm_mm, fe->prealloc_pte);
3363                 fe->prealloc_pte = 0;
3364         }
3365         return ret;
3366 }
3367
3368 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3369                                 unsigned long addr, int page_nid,
3370                                 int *flags)
3371 {
3372         get_page(page);
3373
3374         count_vm_numa_event(NUMA_HINT_FAULTS);
3375         if (page_nid == numa_node_id()) {
3376                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3377                 *flags |= TNF_FAULT_LOCAL;
3378         }
3379
3380         return mpol_misplaced(page, vma, addr);
3381 }
3382
3383 static int do_numa_page(struct fault_env *fe, pte_t pte)
3384 {
3385         struct vm_area_struct *vma = fe->vma;
3386         struct page *page = NULL;
3387         int page_nid = -1;
3388         int last_cpupid;
3389         int target_nid;
3390         bool migrated = false;
3391         bool was_writable = pte_write(pte);
3392         int flags = 0;
3393
3394         /*
3395         * The "pte" at this point cannot be used safely without
3396         * validation through pte_unmap_same(). It's of NUMA type but
3397         * the pfn may be screwed if the read is non atomic.
3398         *
3399         * We can safely just do a "set_pte_at()", because the old
3400         * page table entry is not accessible, so there would be no
3401         * concurrent hardware modifications to the PTE.
3402         */
3403         fe->ptl = pte_lockptr(vma->vm_mm, fe->pmd);
3404         spin_lock(fe->ptl);
3405         if (unlikely(!pte_same(*fe->pte, pte))) {
3406                 pte_unmap_unlock(fe->pte, fe->ptl);
3407                 goto out;
3408         }
3409
3410         /* Make it present again */
3411         pte = pte_modify(pte, vma->vm_page_prot);
3412         pte = pte_mkyoung(pte);
3413         if (was_writable)
3414                 pte = pte_mkwrite(pte);
3415         set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
3416         update_mmu_cache(vma, fe->address, fe->pte);
3417
3418         page = vm_normal_page(vma, fe->address, pte);
3419         if (!page) {
3420                 pte_unmap_unlock(fe->pte, fe->ptl);
3421                 return 0;
3422         }
3423
3424         /* TODO: handle PTE-mapped THP */
3425         if (PageCompound(page)) {
3426                 pte_unmap_unlock(fe->pte, fe->ptl);
3427                 return 0;
3428         }
3429
3430         /*
3431          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3432          * much anyway since they can be in shared cache state. This misses
3433          * the case where a mapping is writable but the process never writes
3434          * to it but pte_write gets cleared during protection updates and
3435          * pte_dirty has unpredictable behaviour between PTE scan updates,
3436          * background writeback, dirty balancing and application behaviour.
3437          */
3438         if (!pte_write(pte))
3439                 flags |= TNF_NO_GROUP;
3440
3441         /*
3442          * Flag if the page is shared between multiple address spaces. This
3443          * is later used when determining whether to group tasks together
3444          */
3445         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3446                 flags |= TNF_SHARED;
3447
3448         last_cpupid = page_cpupid_last(page);
3449         page_nid = page_to_nid(page);
3450         target_nid = numa_migrate_prep(page, vma, fe->address, page_nid,
3451                         &flags);
3452         pte_unmap_unlock(fe->pte, fe->ptl);
3453         if (target_nid == -1) {
3454                 put_page(page);
3455                 goto out;
3456         }
3457
3458         /* Migrate to the requested node */
3459         migrated = migrate_misplaced_page(page, vma, target_nid);
3460         if (migrated) {
3461                 page_nid = target_nid;
3462                 flags |= TNF_MIGRATED;
3463         } else
3464                 flags |= TNF_MIGRATE_FAIL;
3465
3466 out:
3467         if (page_nid != -1)
3468                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3469         return 0;
3470 }
3471
3472 static int create_huge_pmd(struct fault_env *fe)
3473 {
3474         struct vm_area_struct *vma = fe->vma;
3475         if (vma_is_anonymous(vma))
3476                 return do_huge_pmd_anonymous_page(fe);
3477         if (vma->vm_ops->pmd_fault)
3478                 return vma->vm_ops->pmd_fault(vma, fe->address, fe->pmd,
3479                                 fe->flags);
3480         return VM_FAULT_FALLBACK;
3481 }
3482
3483 static int wp_huge_pmd(struct fault_env *fe, pmd_t orig_pmd)
3484 {
3485         if (vma_is_anonymous(fe->vma))
3486                 return do_huge_pmd_wp_page(fe, orig_pmd);
3487         if (fe->vma->vm_ops->pmd_fault)
3488                 return fe->vma->vm_ops->pmd_fault(fe->vma, fe->address, fe->pmd,
3489                                 fe->flags);
3490
3491         /* COW handled on pte level: split pmd */
3492         VM_BUG_ON_VMA(fe->vma->vm_flags & VM_SHARED, fe->vma);
3493         split_huge_pmd(fe->vma, fe->pmd, fe->address);
3494
3495         return VM_FAULT_FALLBACK;
3496 }
3497
3498 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3499 {
3500         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3501 }
3502
3503 /*
3504  * These routines also need to handle stuff like marking pages dirty
3505  * and/or accessed for architectures that don't do it in hardware (most
3506  * RISC architectures).  The early dirtying is also good on the i386.
3507  *
3508  * There is also a hook called "update_mmu_cache()" that architectures
3509  * with external mmu caches can use to update those (ie the Sparc or
3510  * PowerPC hashed page tables that act as extended TLBs).
3511  *
3512  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3513  * concurrent faults).
3514  *
3515  * The mmap_sem may have been released depending on flags and our return value.
3516  * See filemap_fault() and __lock_page_or_retry().
3517  */
3518 static int handle_pte_fault(struct fault_env *fe)
3519 {
3520         pte_t entry;
3521
3522         if (unlikely(pmd_none(*fe->pmd))) {
3523                 /*
3524                  * Leave __pte_alloc() until later: because vm_ops->fault may
3525                  * want to allocate huge page, and if we expose page table
3526                  * for an instant, it will be difficult to retract from
3527                  * concurrent faults and from rmap lookups.
3528                  */
3529                 fe->pte = NULL;
3530         } else {
3531                 /* See comment in pte_alloc_one_map() */
3532                 if (pmd_devmap_trans_unstable(fe->pmd))
3533                         return 0;
3534                 /*
3535                  * A regular pmd is established and it can't morph into a huge
3536                  * pmd from under us anymore at this point because we hold the
3537                  * mmap_sem read mode and khugepaged takes it in write mode.
3538                  * So now it's safe to run pte_offset_map().
3539                  */
3540                 fe->pte = pte_offset_map(fe->pmd, fe->address);
3541
3542                 entry = *fe->pte;
3543
3544                 /*
3545                  * some architectures can have larger ptes than wordsize,
3546                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3547                  * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3548                  * atomic accesses.  The code below just needs a consistent
3549                  * view for the ifs and we later double check anyway with the
3550                  * ptl lock held. So here a barrier will do.
3551                  */
3552                 barrier();
3553                 if (pte_none(entry)) {
3554                         pte_unmap(fe->pte);
3555                         fe->pte = NULL;
3556                 }
3557         }
3558
3559         if (!fe->pte) {
3560                 if (vma_is_anonymous(fe->vma))
3561                         return do_anonymous_page(fe);
3562                 else
3563                         return do_fault(fe);
3564         }
3565
3566         if (!pte_present(entry))
3567                 return do_swap_page(fe, entry);
3568
3569         if (pte_protnone(entry) && vma_is_accessible(fe->vma))
3570                 return do_numa_page(fe, entry);
3571
3572         fe->ptl = pte_lockptr(fe->vma->vm_mm, fe->pmd);
3573         spin_lock(fe->ptl);
3574         if (unlikely(!pte_same(*fe->pte, entry)))
3575                 goto unlock;
3576         if (fe->flags & FAULT_FLAG_WRITE) {
3577                 if (!pte_write(entry))
3578                         return do_wp_page(fe, entry);
3579                 entry = pte_mkdirty(entry);
3580         }
3581         entry = pte_mkyoung(entry);
3582         if (ptep_set_access_flags(fe->vma, fe->address, fe->pte, entry,
3583                                 fe->flags & FAULT_FLAG_WRITE)) {
3584                 update_mmu_cache(fe->vma, fe->address, fe->pte);
3585         } else {
3586                 /*
3587                  * This is needed only for protection faults but the arch code
3588                  * is not yet telling us if this is a protection fault or not.
3589                  * This still avoids useless tlb flushes for .text page faults
3590                  * with threads.
3591                  */
3592                 if (fe->flags & FAULT_FLAG_WRITE)
3593                         flush_tlb_fix_spurious_fault(fe->vma, fe->address);
3594         }
3595 unlock:
3596         pte_unmap_unlock(fe->pte, fe->ptl);
3597         return 0;
3598 }
3599
3600 /*
3601  * By the time we get here, we already hold the mm semaphore
3602  *
3603  * The mmap_sem may have been released depending on flags and our
3604  * return value.  See filemap_fault() and __lock_page_or_retry().
3605  */
3606 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3607                 unsigned int flags)
3608 {
3609         struct fault_env fe = {
3610                 .vma = vma,
3611                 .address = address,
3612                 .flags = flags,
3613         };
3614         struct mm_struct *mm = vma->vm_mm;
3615         pgd_t *pgd;
3616         pud_t *pud;
3617
3618         pgd = pgd_offset(mm, address);
3619         pud = pud_alloc(mm, pgd, address);
3620         if (!pud)
3621                 return VM_FAULT_OOM;
3622         fe.pmd = pmd_alloc(mm, pud, address);
3623         if (!fe.pmd)
3624                 return VM_FAULT_OOM;
3625         if (pmd_none(*fe.pmd) && transparent_hugepage_enabled(vma)) {
3626                 int ret = create_huge_pmd(&fe);
3627                 if (!(ret & VM_FAULT_FALLBACK))
3628                         return ret;
3629         } else {
3630                 pmd_t orig_pmd = *fe.pmd;
3631                 int ret;
3632
3633                 barrier();
3634                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3635                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3636                                 return do_huge_pmd_numa_page(&fe, orig_pmd);
3637
3638                         if ((fe.flags & FAULT_FLAG_WRITE) &&
3639                                         !pmd_write(orig_pmd)) {
3640                                 ret = wp_huge_pmd(&fe, orig_pmd);
3641                                 if (!(ret & VM_FAULT_FALLBACK))
3642                                         return ret;
3643                         } else {
3644                                 huge_pmd_set_accessed(&fe, orig_pmd);
3645                                 return 0;
3646                         }
3647                 }
3648         }
3649
3650         return handle_pte_fault(&fe);
3651 }
3652
3653 /*
3654  * By the time we get here, we already hold the mm semaphore
3655  *
3656  * The mmap_sem may have been released depending on flags and our
3657  * return value.  See filemap_fault() and __lock_page_or_retry().
3658  */
3659 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3660                 unsigned int flags)
3661 {
3662         int ret;
3663
3664         __set_current_state(TASK_RUNNING);
3665
3666         count_vm_event(PGFAULT);
3667         mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3668
3669         /* do counter updates before entering really critical section. */
3670         check_sync_rss_stat(current);
3671
3672         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3673                                             flags & FAULT_FLAG_INSTRUCTION,
3674                                             flags & FAULT_FLAG_REMOTE))
3675                 return VM_FAULT_SIGSEGV;
3676
3677         /*
3678          * Enable the memcg OOM handling for faults triggered in user
3679          * space.  Kernel faults are handled more gracefully.
3680          */
3681         if (flags & FAULT_FLAG_USER)
3682                 mem_cgroup_oom_enable();
3683
3684         if (unlikely(is_vm_hugetlb_page(vma)))
3685                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3686         else
3687                 ret = __handle_mm_fault(vma, address, flags);
3688
3689         if (flags & FAULT_FLAG_USER) {
3690                 mem_cgroup_oom_disable();
3691                 /*
3692                  * The task may have entered a memcg OOM situation but
3693                  * if the allocation error was handled gracefully (no
3694                  * VM_FAULT_OOM), there is no need to kill anything.
3695                  * Just clean up the OOM state peacefully.
3696                  */
3697                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3698                         mem_cgroup_oom_synchronize(false);
3699         }
3700
3701         /*
3702          * This mm has been already reaped by the oom reaper and so the
3703          * refault cannot be trusted in general. Anonymous refaults would
3704          * lose data and give a zero page instead e.g. This is especially
3705          * problem for use_mm() because regular tasks will just die and
3706          * the corrupted data will not be visible anywhere while kthread
3707          * will outlive the oom victim and potentially propagate the date
3708          * further.
3709          */
3710         if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3711                                 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags))) {
3712
3713                 /*
3714                  * We are going to enforce SIGBUS but the PF path might have
3715                  * dropped the mmap_sem already so take it again so that
3716                  * we do not break expectations of all arch specific PF paths
3717                  * and g-u-p
3718                  */
3719                 if (ret & VM_FAULT_RETRY)
3720                         down_read(&vma->vm_mm->mmap_sem);
3721                 ret = VM_FAULT_SIGBUS;
3722         }
3723
3724         return ret;
3725 }
3726 EXPORT_SYMBOL_GPL(handle_mm_fault);
3727
3728 #ifndef __PAGETABLE_PUD_FOLDED
3729 /*
3730  * Allocate page upper directory.
3731  * We've already handled the fast-path in-line.
3732  */
3733 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3734 {
3735         pud_t *new = pud_alloc_one(mm, address);
3736         if (!new)
3737                 return -ENOMEM;
3738
3739         smp_wmb(); /* See comment in __pte_alloc */
3740
3741         spin_lock(&mm->page_table_lock);
3742         if (pgd_present(*pgd))          /* Another has populated it */
3743                 pud_free(mm, new);
3744         else
3745                 pgd_populate(mm, pgd, new);
3746         spin_unlock(&mm->page_table_lock);
3747         return 0;
3748 }
3749 #endif /* __PAGETABLE_PUD_FOLDED */
3750
3751 #ifndef __PAGETABLE_PMD_FOLDED
3752 /*
3753  * Allocate page middle directory.
3754  * We've already handled the fast-path in-line.
3755  */
3756 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3757 {
3758         pmd_t *new = pmd_alloc_one(mm, address);
3759         if (!new)
3760                 return -ENOMEM;
3761
3762         smp_wmb(); /* See comment in __pte_alloc */
3763
3764         spin_lock(&mm->page_table_lock);
3765 #ifndef __ARCH_HAS_4LEVEL_HACK
3766         if (!pud_present(*pud)) {
3767                 mm_inc_nr_pmds(mm);
3768                 pud_populate(mm, pud, new);
3769         } else  /* Another has populated it */
3770                 pmd_free(mm, new);
3771 #else
3772         if (!pgd_present(*pud)) {
3773                 mm_inc_nr_pmds(mm);
3774                 pgd_populate(mm, pud, new);
3775         } else /* Another has populated it */
3776                 pmd_free(mm, new);
3777 #endif /* __ARCH_HAS_4LEVEL_HACK */
3778         spin_unlock(&mm->page_table_lock);
3779         return 0;
3780 }
3781 #endif /* __PAGETABLE_PMD_FOLDED */
3782
3783 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3784                 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3785 {
3786         pgd_t *pgd;
3787         pud_t *pud;
3788         pmd_t *pmd;
3789         pte_t *ptep;
3790
3791         pgd = pgd_offset(mm, address);
3792         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3793                 goto out;
3794
3795         pud = pud_offset(pgd, address);
3796         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3797                 goto out;
3798
3799         pmd = pmd_offset(pud, address);
3800         VM_BUG_ON(pmd_trans_huge(*pmd));
3801
3802         if (pmd_huge(*pmd)) {
3803                 if (!pmdpp)
3804                         goto out;
3805
3806                 *ptlp = pmd_lock(mm, pmd);
3807                 if (pmd_huge(*pmd)) {
3808                         *pmdpp = pmd;
3809                         return 0;
3810                 }
3811                 spin_unlock(*ptlp);
3812         }
3813
3814         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3815                 goto out;
3816
3817         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3818         if (!ptep)
3819                 goto out;
3820         if (!pte_present(*ptep))
3821                 goto unlock;
3822         *ptepp = ptep;
3823         return 0;
3824 unlock:
3825         pte_unmap_unlock(ptep, *ptlp);
3826 out:
3827         return -EINVAL;
3828 }
3829
3830 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3831                              pte_t **ptepp, spinlock_t **ptlp)
3832 {
3833         int res;
3834
3835         /* (void) is needed to make gcc happy */
3836         (void) __cond_lock(*ptlp,
3837                            !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3838                                            ptlp)));
3839         return res;
3840 }
3841
3842 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3843                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3844 {
3845         int res;
3846
3847         /* (void) is needed to make gcc happy */
3848         (void) __cond_lock(*ptlp,
3849                            !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3850                                            ptlp)));
3851         return res;
3852 }
3853 EXPORT_SYMBOL(follow_pte_pmd);
3854
3855 /**
3856  * follow_pfn - look up PFN at a user virtual address
3857  * @vma: memory mapping
3858  * @address: user virtual address
3859  * @pfn: location to store found PFN
3860  *
3861  * Only IO mappings and raw PFN mappings are allowed.
3862  *
3863  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3864  */
3865 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3866         unsigned long *pfn)
3867 {
3868         int ret = -EINVAL;
3869         spinlock_t *ptl;
3870         pte_t *ptep;
3871
3872         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3873                 return ret;
3874
3875         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3876         if (ret)
3877                 return ret;
3878         *pfn = pte_pfn(*ptep);
3879         pte_unmap_unlock(ptep, ptl);
3880         return 0;
3881 }
3882 EXPORT_SYMBOL(follow_pfn);
3883
3884 #ifdef CONFIG_HAVE_IOREMAP_PROT
3885 int follow_phys(struct vm_area_struct *vma,
3886                 unsigned long address, unsigned int flags,
3887                 unsigned long *prot, resource_size_t *phys)
3888 {
3889         int ret = -EINVAL;
3890         pte_t *ptep, pte;
3891         spinlock_t *ptl;
3892
3893         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3894                 goto out;
3895
3896         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3897                 goto out;
3898         pte = *ptep;
3899
3900         if ((flags & FOLL_WRITE) && !pte_write(pte))
3901                 goto unlock;
3902
3903         *prot = pgprot_val(pte_pgprot(pte));
3904         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3905
3906         ret = 0;
3907 unlock:
3908         pte_unmap_unlock(ptep, ptl);
3909 out:
3910         return ret;
3911 }
3912
3913 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3914                         void *buf, int len, int write)
3915 {
3916         resource_size_t phys_addr;
3917         unsigned long prot = 0;
3918         void __iomem *maddr;
3919         int offset = addr & (PAGE_SIZE-1);
3920
3921         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3922                 return -EINVAL;
3923
3924         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3925         if (!maddr)
3926                 return -ENOMEM;
3927
3928         if (write)
3929                 memcpy_toio(maddr + offset, buf, len);
3930         else
3931                 memcpy_fromio(buf, maddr + offset, len);
3932         iounmap(maddr);
3933
3934         return len;
3935 }
3936 EXPORT_SYMBOL_GPL(generic_access_phys);
3937 #endif
3938
3939 /*
3940  * Access another process' address space as given in mm.  If non-NULL, use the
3941  * given task for page fault accounting.
3942  */
3943 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3944                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
3945 {
3946         struct vm_area_struct *vma;
3947         void *old_buf = buf;
3948         int write = gup_flags & FOLL_WRITE;
3949
3950         down_read(&mm->mmap_sem);
3951         /* ignore errors, just check how much was successfully transferred */
3952         while (len) {
3953                 int bytes, ret, offset;
3954                 void *maddr;
3955                 struct page *page = NULL;
3956
3957                 ret = get_user_pages_remote(tsk, mm, addr, 1,
3958                                 gup_flags, &page, &vma);
3959                 if (ret <= 0) {
3960 #ifndef CONFIG_HAVE_IOREMAP_PROT
3961                         break;
3962 #else
3963                         /*
3964                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3965                          * we can access using slightly different code.
3966                          */
3967                         vma = find_vma(mm, addr);
3968                         if (!vma || vma->vm_start > addr)
3969                                 break;
3970                         if (vma->vm_ops && vma->vm_ops->access)
3971                                 ret = vma->vm_ops->access(vma, addr, buf,
3972                                                           len, write);
3973                         if (ret <= 0)
3974                                 break;
3975                         bytes = ret;
3976 #endif
3977                 } else {
3978                         bytes = len;
3979                         offset = addr & (PAGE_SIZE-1);
3980                         if (bytes > PAGE_SIZE-offset)
3981                                 bytes = PAGE_SIZE-offset;
3982
3983                         maddr = kmap(page);
3984                         if (write) {
3985                                 copy_to_user_page(vma, page, addr,
3986                                                   maddr + offset, buf, bytes);
3987                                 set_page_dirty_lock(page);
3988                         } else {
3989                                 copy_from_user_page(vma, page, addr,
3990                                                     buf, maddr + offset, bytes);
3991                         }
3992                         kunmap(page);
3993                         put_page(page);
3994                 }
3995                 len -= bytes;
3996                 buf += bytes;
3997                 addr += bytes;
3998         }
3999         up_read(&mm->mmap_sem);
4000
4001         return buf - old_buf;
4002 }
4003
4004 /**
4005  * access_remote_vm - access another process' address space
4006  * @mm:         the mm_struct of the target address space
4007  * @addr:       start address to access
4008  * @buf:        source or destination buffer
4009  * @len:        number of bytes to transfer
4010  * @gup_flags:  flags modifying lookup behaviour
4011  *
4012  * The caller must hold a reference on @mm.
4013  */
4014 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4015                 void *buf, int len, unsigned int gup_flags)
4016 {
4017         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4018 }
4019
4020 /*
4021  * Access another process' address space.
4022  * Source/target buffer must be kernel space,
4023  * Do not walk the page table directly, use get_user_pages
4024  */
4025 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4026                 void *buf, int len, unsigned int gup_flags)
4027 {
4028         struct mm_struct *mm;
4029         int ret;
4030
4031         mm = get_task_mm(tsk);
4032         if (!mm)
4033                 return 0;
4034
4035         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4036
4037         mmput(mm);
4038
4039         return ret;
4040 }
4041
4042 /*
4043  * Print the name of a VMA.
4044  */
4045 void print_vma_addr(char *prefix, unsigned long ip)
4046 {
4047         struct mm_struct *mm = current->mm;
4048         struct vm_area_struct *vma;
4049
4050         /*
4051          * Do not print if we are in atomic
4052          * contexts (in exception stacks, etc.):
4053          */
4054         if (preempt_count())
4055                 return;
4056
4057         down_read(&mm->mmap_sem);
4058         vma = find_vma(mm, ip);
4059         if (vma && vma->vm_file) {
4060                 struct file *f = vma->vm_file;
4061                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4062                 if (buf) {
4063                         char *p;
4064
4065                         p = file_path(f, buf, PAGE_SIZE);
4066                         if (IS_ERR(p))
4067                                 p = "?";
4068                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4069                                         vma->vm_start,
4070                                         vma->vm_end - vma->vm_start);
4071                         free_page((unsigned long)buf);
4072                 }
4073         }
4074         up_read(&mm->mmap_sem);
4075 }
4076
4077 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4078 void __might_fault(const char *file, int line)
4079 {
4080         /*
4081          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4082          * holding the mmap_sem, this is safe because kernel memory doesn't
4083          * get paged out, therefore we'll never actually fault, and the
4084          * below annotations will generate false positives.
4085          */
4086         if (segment_eq(get_fs(), KERNEL_DS))
4087                 return;
4088         if (pagefault_disabled())
4089                 return;
4090         __might_sleep(file, line, 0);
4091 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4092         if (current->mm)
4093                 might_lock_read(&current->mm->mmap_sem);
4094 #endif
4095 }
4096 EXPORT_SYMBOL(__might_fault);
4097 #endif
4098
4099 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4100 static void clear_gigantic_page(struct page *page,
4101                                 unsigned long addr,
4102                                 unsigned int pages_per_huge_page)
4103 {
4104         int i;
4105         struct page *p = page;
4106
4107         might_sleep();
4108         for (i = 0; i < pages_per_huge_page;
4109              i++, p = mem_map_next(p, page, i)) {
4110                 cond_resched();
4111                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4112         }
4113 }
4114 void clear_huge_page(struct page *page,
4115                      unsigned long addr, unsigned int pages_per_huge_page)
4116 {
4117         int i;
4118
4119         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4120                 clear_gigantic_page(page, addr, pages_per_huge_page);
4121                 return;
4122         }
4123
4124         might_sleep();
4125         for (i = 0; i < pages_per_huge_page; i++) {
4126                 cond_resched();
4127                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4128         }
4129 }
4130
4131 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4132                                     unsigned long addr,
4133                                     struct vm_area_struct *vma,
4134                                     unsigned int pages_per_huge_page)
4135 {
4136         int i;
4137         struct page *dst_base = dst;
4138         struct page *src_base = src;
4139
4140         for (i = 0; i < pages_per_huge_page; ) {
4141                 cond_resched();
4142                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4143
4144                 i++;
4145                 dst = mem_map_next(dst, dst_base, i);
4146                 src = mem_map_next(src, src_base, i);
4147         }
4148 }
4149
4150 void copy_user_huge_page(struct page *dst, struct page *src,
4151                          unsigned long addr, struct vm_area_struct *vma,
4152                          unsigned int pages_per_huge_page)
4153 {
4154         int i;
4155
4156         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4157                 copy_user_gigantic_page(dst, src, addr, vma,
4158                                         pages_per_huge_page);
4159                 return;
4160         }
4161
4162         might_sleep();
4163         for (i = 0; i < pages_per_huge_page; i++) {
4164                 cond_resched();
4165                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4166         }
4167 }
4168 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4169
4170 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4171
4172 static struct kmem_cache *page_ptl_cachep;
4173
4174 void __init ptlock_cache_init(void)
4175 {
4176         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4177                         SLAB_PANIC, NULL);
4178 }
4179
4180 bool ptlock_alloc(struct page *page)
4181 {
4182         spinlock_t *ptl;
4183
4184         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4185         if (!ptl)
4186                 return false;
4187         page->ptl = ptl;
4188         return true;
4189 }
4190
4191 void ptlock_free(struct page *page)
4192 {
4193         kmem_cache_free(page_ptl_cachep, page->ptl);
4194 }
4195 #endif