GNU Linux-libre 4.19.264-gnu1
[releases.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grapping the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         } else if (is_device_public_page(new)) {
250                                 pte = pte_mkdevmap(pte);
251                         }
252                 }
253
254 #ifdef CONFIG_HUGETLB_PAGE
255                 if (PageHuge(new)) {
256                         pte = pte_mkhuge(pte);
257                         pte = arch_make_huge_pte(pte, vma, new, 0);
258                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259                         if (PageAnon(new))
260                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
261                         else
262                                 page_dup_rmap(new, true);
263                 } else
264 #endif
265                 {
266                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267
268                         if (PageAnon(new))
269                                 page_add_anon_rmap(new, vma, pvmw.address, false);
270                         else
271                                 page_add_file_rmap(new, false);
272                 }
273                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274                         mlock_vma_page(new);
275
276                 if (PageTransHuge(page) && PageMlocked(page))
277                         clear_page_mlock(page);
278
279                 /* No need to invalidate - it was non-present before */
280                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281         }
282
283         return true;
284 }
285
286 /*
287  * Get rid of all migration entries and replace them by
288  * references to the indicated page.
289  */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292         struct rmap_walk_control rwc = {
293                 .rmap_one = remove_migration_pte,
294                 .arg = old,
295         };
296
297         if (locked)
298                 rmap_walk_locked(new, &rwc);
299         else
300                 rmap_walk(new, &rwc);
301 }
302
303 /*
304  * Something used the pte of a page under migration. We need to
305  * get to the page and wait until migration is finished.
306  * When we return from this function the fault will be retried.
307  */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309                                 spinlock_t *ptl)
310 {
311         pte_t pte;
312         swp_entry_t entry;
313         struct page *page;
314
315         spin_lock(ptl);
316         pte = *ptep;
317         if (!is_swap_pte(pte))
318                 goto out;
319
320         entry = pte_to_swp_entry(pte);
321         if (!is_migration_entry(entry))
322                 goto out;
323
324         page = migration_entry_to_page(entry);
325
326         /*
327          * Once radix-tree replacement of page migration started, page_count
328          * *must* be zero. And, we don't want to call wait_on_page_locked()
329          * against a page without get_page().
330          * So, we use get_page_unless_zero(), here. Even failed, page fault
331          * will occur again.
332          */
333         if (!get_page_unless_zero(page))
334                 goto out;
335         pte_unmap_unlock(ptep, ptl);
336         wait_on_page_locked(page);
337         put_page(page);
338         return;
339 out:
340         pte_unmap_unlock(ptep, ptl);
341 }
342
343 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
344                                 unsigned long address)
345 {
346         spinlock_t *ptl = pte_lockptr(mm, pmd);
347         pte_t *ptep = pte_offset_map(pmd, address);
348         __migration_entry_wait(mm, ptep, ptl);
349 }
350
351 void migration_entry_wait_huge(struct vm_area_struct *vma,
352                 struct mm_struct *mm, pte_t *pte)
353 {
354         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
355         __migration_entry_wait(mm, pte, ptl);
356 }
357
358 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
359 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
360 {
361         spinlock_t *ptl;
362         struct page *page;
363
364         ptl = pmd_lock(mm, pmd);
365         if (!is_pmd_migration_entry(*pmd))
366                 goto unlock;
367         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
368         if (!get_page_unless_zero(page))
369                 goto unlock;
370         spin_unlock(ptl);
371         wait_on_page_locked(page);
372         put_page(page);
373         return;
374 unlock:
375         spin_unlock(ptl);
376 }
377 #endif
378
379 #ifdef CONFIG_BLOCK
380 /* Returns true if all buffers are successfully locked */
381 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
382                                                         enum migrate_mode mode)
383 {
384         struct buffer_head *bh = head;
385
386         /* Simple case, sync compaction */
387         if (mode != MIGRATE_ASYNC) {
388                 do {
389                         get_bh(bh);
390                         lock_buffer(bh);
391                         bh = bh->b_this_page;
392
393                 } while (bh != head);
394
395                 return true;
396         }
397
398         /* async case, we cannot block on lock_buffer so use trylock_buffer */
399         do {
400                 get_bh(bh);
401                 if (!trylock_buffer(bh)) {
402                         /*
403                          * We failed to lock the buffer and cannot stall in
404                          * async migration. Release the taken locks
405                          */
406                         struct buffer_head *failed_bh = bh;
407                         put_bh(failed_bh);
408                         bh = head;
409                         while (bh != failed_bh) {
410                                 unlock_buffer(bh);
411                                 put_bh(bh);
412                                 bh = bh->b_this_page;
413                         }
414                         return false;
415                 }
416
417                 bh = bh->b_this_page;
418         } while (bh != head);
419         return true;
420 }
421 #else
422 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
423                                                         enum migrate_mode mode)
424 {
425         return true;
426 }
427 #endif /* CONFIG_BLOCK */
428
429 /*
430  * Replace the page in the mapping.
431  *
432  * The number of remaining references must be:
433  * 1 for anonymous pages without a mapping
434  * 2 for pages with a mapping
435  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
436  */
437 int migrate_page_move_mapping(struct address_space *mapping,
438                 struct page *newpage, struct page *page,
439                 struct buffer_head *head, enum migrate_mode mode,
440                 int extra_count)
441 {
442         struct zone *oldzone, *newzone;
443         int dirty;
444         int expected_count = 1 + extra_count;
445         void **pslot;
446
447         /*
448          * Device public or private pages have an extra refcount as they are
449          * ZONE_DEVICE pages.
450          */
451         expected_count += is_device_private_page(page);
452         expected_count += is_device_public_page(page);
453
454         if (!mapping) {
455                 /* Anonymous page without mapping */
456                 if (page_count(page) != expected_count)
457                         return -EAGAIN;
458
459                 /* No turning back from here */
460                 newpage->index = page->index;
461                 newpage->mapping = page->mapping;
462                 if (PageSwapBacked(page))
463                         __SetPageSwapBacked(newpage);
464
465                 return MIGRATEPAGE_SUCCESS;
466         }
467
468         oldzone = page_zone(page);
469         newzone = page_zone(newpage);
470
471         xa_lock_irq(&mapping->i_pages);
472
473         pslot = radix_tree_lookup_slot(&mapping->i_pages,
474                                         page_index(page));
475         if (pslot == NULL) {
476                 xa_unlock_irq(&mapping->i_pages);
477                 return -EAGAIN;
478         }
479
480         expected_count += hpage_nr_pages(page) + page_has_private(page);
481         if (page_count(page) != expected_count ||
482                 radix_tree_deref_slot_protected(pslot,
483                                         &mapping->i_pages.xa_lock) != page) {
484                 xa_unlock_irq(&mapping->i_pages);
485                 return -EAGAIN;
486         }
487
488         if (!page_ref_freeze(page, expected_count)) {
489                 xa_unlock_irq(&mapping->i_pages);
490                 return -EAGAIN;
491         }
492
493         /*
494          * In the async migration case of moving a page with buffers, lock the
495          * buffers using trylock before the mapping is moved. If the mapping
496          * was moved, we later failed to lock the buffers and could not move
497          * the mapping back due to an elevated page count, we would have to
498          * block waiting on other references to be dropped.
499          */
500         if (mode == MIGRATE_ASYNC && head &&
501                         !buffer_migrate_lock_buffers(head, mode)) {
502                 page_ref_unfreeze(page, expected_count);
503                 xa_unlock_irq(&mapping->i_pages);
504                 return -EAGAIN;
505         }
506
507         /*
508          * Now we know that no one else is looking at the page:
509          * no turning back from here.
510          */
511         newpage->index = page->index;
512         newpage->mapping = page->mapping;
513         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
514         if (PageSwapBacked(page)) {
515                 __SetPageSwapBacked(newpage);
516                 if (PageSwapCache(page)) {
517                         SetPageSwapCache(newpage);
518                         set_page_private(newpage, page_private(page));
519                 }
520         } else {
521                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
522         }
523
524         /* Move dirty while page refs frozen and newpage not yet exposed */
525         dirty = PageDirty(page);
526         if (dirty) {
527                 ClearPageDirty(page);
528                 SetPageDirty(newpage);
529         }
530
531         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
532         if (PageTransHuge(page)) {
533                 int i;
534                 int index = page_index(page);
535
536                 for (i = 1; i < HPAGE_PMD_NR; i++) {
537                         pslot = radix_tree_lookup_slot(&mapping->i_pages,
538                                                        index + i);
539                         radix_tree_replace_slot(&mapping->i_pages, pslot,
540                                                 newpage + i);
541                 }
542         }
543
544         /*
545          * Drop cache reference from old page by unfreezing
546          * to one less reference.
547          * We know this isn't the last reference.
548          */
549         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
550
551         xa_unlock(&mapping->i_pages);
552         /* Leave irq disabled to prevent preemption while updating stats */
553
554         /*
555          * If moved to a different zone then also account
556          * the page for that zone. Other VM counters will be
557          * taken care of when we establish references to the
558          * new page and drop references to the old page.
559          *
560          * Note that anonymous pages are accounted for
561          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
562          * are mapped to swap space.
563          */
564         if (newzone != oldzone) {
565                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
566                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
567                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
568                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
569                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
570                 }
571                 if (dirty && mapping_cap_account_dirty(mapping)) {
572                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
573                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
574                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
575                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
576                 }
577         }
578         local_irq_enable();
579
580         return MIGRATEPAGE_SUCCESS;
581 }
582 EXPORT_SYMBOL(migrate_page_move_mapping);
583
584 /*
585  * The expected number of remaining references is the same as that
586  * of migrate_page_move_mapping().
587  */
588 int migrate_huge_page_move_mapping(struct address_space *mapping,
589                                    struct page *newpage, struct page *page)
590 {
591         int expected_count;
592         void **pslot;
593
594         xa_lock_irq(&mapping->i_pages);
595
596         pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
597         if (pslot == NULL) {
598                 xa_unlock_irq(&mapping->i_pages);
599                 return -EAGAIN;
600         }
601
602         expected_count = 2 + page_has_private(page);
603         if (page_count(page) != expected_count ||
604                 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
605                 xa_unlock_irq(&mapping->i_pages);
606                 return -EAGAIN;
607         }
608
609         if (!page_ref_freeze(page, expected_count)) {
610                 xa_unlock_irq(&mapping->i_pages);
611                 return -EAGAIN;
612         }
613
614         newpage->index = page->index;
615         newpage->mapping = page->mapping;
616
617         get_page(newpage);
618
619         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
620
621         page_ref_unfreeze(page, expected_count - 1);
622
623         xa_unlock_irq(&mapping->i_pages);
624
625         return MIGRATEPAGE_SUCCESS;
626 }
627
628 /*
629  * Gigantic pages are so large that we do not guarantee that page++ pointer
630  * arithmetic will work across the entire page.  We need something more
631  * specialized.
632  */
633 static void __copy_gigantic_page(struct page *dst, struct page *src,
634                                 int nr_pages)
635 {
636         int i;
637         struct page *dst_base = dst;
638         struct page *src_base = src;
639
640         for (i = 0; i < nr_pages; ) {
641                 cond_resched();
642                 copy_highpage(dst, src);
643
644                 i++;
645                 dst = mem_map_next(dst, dst_base, i);
646                 src = mem_map_next(src, src_base, i);
647         }
648 }
649
650 static void copy_huge_page(struct page *dst, struct page *src)
651 {
652         int i;
653         int nr_pages;
654
655         if (PageHuge(src)) {
656                 /* hugetlbfs page */
657                 struct hstate *h = page_hstate(src);
658                 nr_pages = pages_per_huge_page(h);
659
660                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
661                         __copy_gigantic_page(dst, src, nr_pages);
662                         return;
663                 }
664         } else {
665                 /* thp page */
666                 BUG_ON(!PageTransHuge(src));
667                 nr_pages = hpage_nr_pages(src);
668         }
669
670         for (i = 0; i < nr_pages; i++) {
671                 cond_resched();
672                 copy_highpage(dst + i, src + i);
673         }
674 }
675
676 /*
677  * Copy the page to its new location
678  */
679 void migrate_page_states(struct page *newpage, struct page *page)
680 {
681         int cpupid;
682
683         if (PageError(page))
684                 SetPageError(newpage);
685         if (PageReferenced(page))
686                 SetPageReferenced(newpage);
687         if (PageUptodate(page))
688                 SetPageUptodate(newpage);
689         if (TestClearPageActive(page)) {
690                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
691                 SetPageActive(newpage);
692         } else if (TestClearPageUnevictable(page))
693                 SetPageUnevictable(newpage);
694         if (PageChecked(page))
695                 SetPageChecked(newpage);
696         if (PageMappedToDisk(page))
697                 SetPageMappedToDisk(newpage);
698
699         /* Move dirty on pages not done by migrate_page_move_mapping() */
700         if (PageDirty(page))
701                 SetPageDirty(newpage);
702
703         if (page_is_young(page))
704                 set_page_young(newpage);
705         if (page_is_idle(page))
706                 set_page_idle(newpage);
707
708         /*
709          * Copy NUMA information to the new page, to prevent over-eager
710          * future migrations of this same page.
711          */
712         cpupid = page_cpupid_xchg_last(page, -1);
713         page_cpupid_xchg_last(newpage, cpupid);
714
715         ksm_migrate_page(newpage, page);
716         /*
717          * Please do not reorder this without considering how mm/ksm.c's
718          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
719          */
720         if (PageSwapCache(page))
721                 ClearPageSwapCache(page);
722         ClearPagePrivate(page);
723         set_page_private(page, 0);
724
725         /*
726          * If any waiters have accumulated on the new page then
727          * wake them up.
728          */
729         if (PageWriteback(newpage))
730                 end_page_writeback(newpage);
731
732         copy_page_owner(page, newpage);
733
734         mem_cgroup_migrate(page, newpage);
735 }
736 EXPORT_SYMBOL(migrate_page_states);
737
738 void migrate_page_copy(struct page *newpage, struct page *page)
739 {
740         if (PageHuge(page) || PageTransHuge(page))
741                 copy_huge_page(newpage, page);
742         else
743                 copy_highpage(newpage, page);
744
745         migrate_page_states(newpage, page);
746 }
747 EXPORT_SYMBOL(migrate_page_copy);
748
749 /************************************************************
750  *                    Migration functions
751  ***********************************************************/
752
753 /*
754  * Common logic to directly migrate a single LRU page suitable for
755  * pages that do not use PagePrivate/PagePrivate2.
756  *
757  * Pages are locked upon entry and exit.
758  */
759 int migrate_page(struct address_space *mapping,
760                 struct page *newpage, struct page *page,
761                 enum migrate_mode mode)
762 {
763         int rc;
764
765         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
766
767         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
768
769         if (rc != MIGRATEPAGE_SUCCESS)
770                 return rc;
771
772         if (mode != MIGRATE_SYNC_NO_COPY)
773                 migrate_page_copy(newpage, page);
774         else
775                 migrate_page_states(newpage, page);
776         return MIGRATEPAGE_SUCCESS;
777 }
778 EXPORT_SYMBOL(migrate_page);
779
780 #ifdef CONFIG_BLOCK
781 /*
782  * Migration function for pages with buffers. This function can only be used
783  * if the underlying filesystem guarantees that no other references to "page"
784  * exist.
785  */
786 int buffer_migrate_page(struct address_space *mapping,
787                 struct page *newpage, struct page *page, enum migrate_mode mode)
788 {
789         struct buffer_head *bh, *head;
790         int rc;
791
792         if (!page_has_buffers(page))
793                 return migrate_page(mapping, newpage, page, mode);
794
795         head = page_buffers(page);
796
797         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
798
799         if (rc != MIGRATEPAGE_SUCCESS)
800                 return rc;
801
802         /*
803          * In the async case, migrate_page_move_mapping locked the buffers
804          * with an IRQ-safe spinlock held. In the sync case, the buffers
805          * need to be locked now
806          */
807         if (mode != MIGRATE_ASYNC)
808                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
809
810         ClearPagePrivate(page);
811         set_page_private(newpage, page_private(page));
812         set_page_private(page, 0);
813         put_page(page);
814         get_page(newpage);
815
816         bh = head;
817         do {
818                 set_bh_page(bh, newpage, bh_offset(bh));
819                 bh = bh->b_this_page;
820
821         } while (bh != head);
822
823         SetPagePrivate(newpage);
824
825         if (mode != MIGRATE_SYNC_NO_COPY)
826                 migrate_page_copy(newpage, page);
827         else
828                 migrate_page_states(newpage, page);
829
830         bh = head;
831         do {
832                 unlock_buffer(bh);
833                 put_bh(bh);
834                 bh = bh->b_this_page;
835
836         } while (bh != head);
837
838         return MIGRATEPAGE_SUCCESS;
839 }
840 EXPORT_SYMBOL(buffer_migrate_page);
841 #endif
842
843 /*
844  * Writeback a page to clean the dirty state
845  */
846 static int writeout(struct address_space *mapping, struct page *page)
847 {
848         struct writeback_control wbc = {
849                 .sync_mode = WB_SYNC_NONE,
850                 .nr_to_write = 1,
851                 .range_start = 0,
852                 .range_end = LLONG_MAX,
853                 .for_reclaim = 1
854         };
855         int rc;
856
857         if (!mapping->a_ops->writepage)
858                 /* No write method for the address space */
859                 return -EINVAL;
860
861         if (!clear_page_dirty_for_io(page))
862                 /* Someone else already triggered a write */
863                 return -EAGAIN;
864
865         /*
866          * A dirty page may imply that the underlying filesystem has
867          * the page on some queue. So the page must be clean for
868          * migration. Writeout may mean we loose the lock and the
869          * page state is no longer what we checked for earlier.
870          * At this point we know that the migration attempt cannot
871          * be successful.
872          */
873         remove_migration_ptes(page, page, false);
874
875         rc = mapping->a_ops->writepage(page, &wbc);
876
877         if (rc != AOP_WRITEPAGE_ACTIVATE)
878                 /* unlocked. Relock */
879                 lock_page(page);
880
881         return (rc < 0) ? -EIO : -EAGAIN;
882 }
883
884 /*
885  * Default handling if a filesystem does not provide a migration function.
886  */
887 static int fallback_migrate_page(struct address_space *mapping,
888         struct page *newpage, struct page *page, enum migrate_mode mode)
889 {
890         if (PageDirty(page)) {
891                 /* Only writeback pages in full synchronous migration */
892                 switch (mode) {
893                 case MIGRATE_SYNC:
894                 case MIGRATE_SYNC_NO_COPY:
895                         break;
896                 default:
897                         return -EBUSY;
898                 }
899                 return writeout(mapping, page);
900         }
901
902         /*
903          * Buffers may be managed in a filesystem specific way.
904          * We must have no buffers or drop them.
905          */
906         if (page_has_private(page) &&
907             !try_to_release_page(page, GFP_KERNEL))
908                 return -EAGAIN;
909
910         return migrate_page(mapping, newpage, page, mode);
911 }
912
913 /*
914  * Move a page to a newly allocated page
915  * The page is locked and all ptes have been successfully removed.
916  *
917  * The new page will have replaced the old page if this function
918  * is successful.
919  *
920  * Return value:
921  *   < 0 - error code
922  *  MIGRATEPAGE_SUCCESS - success
923  */
924 static int move_to_new_page(struct page *newpage, struct page *page,
925                                 enum migrate_mode mode)
926 {
927         struct address_space *mapping;
928         int rc = -EAGAIN;
929         bool is_lru = !__PageMovable(page);
930
931         VM_BUG_ON_PAGE(!PageLocked(page), page);
932         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
933
934         mapping = page_mapping(page);
935
936         if (likely(is_lru)) {
937                 if (!mapping)
938                         rc = migrate_page(mapping, newpage, page, mode);
939                 else if (mapping->a_ops->migratepage)
940                         /*
941                          * Most pages have a mapping and most filesystems
942                          * provide a migratepage callback. Anonymous pages
943                          * are part of swap space which also has its own
944                          * migratepage callback. This is the most common path
945                          * for page migration.
946                          */
947                         rc = mapping->a_ops->migratepage(mapping, newpage,
948                                                         page, mode);
949                 else
950                         rc = fallback_migrate_page(mapping, newpage,
951                                                         page, mode);
952         } else {
953                 /*
954                  * In case of non-lru page, it could be released after
955                  * isolation step. In that case, we shouldn't try migration.
956                  */
957                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
958                 if (!PageMovable(page)) {
959                         rc = MIGRATEPAGE_SUCCESS;
960                         __ClearPageIsolated(page);
961                         goto out;
962                 }
963
964                 rc = mapping->a_ops->migratepage(mapping, newpage,
965                                                 page, mode);
966                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
967                         !PageIsolated(page));
968         }
969
970         /*
971          * When successful, old pagecache page->mapping must be cleared before
972          * page is freed; but stats require that PageAnon be left as PageAnon.
973          */
974         if (rc == MIGRATEPAGE_SUCCESS) {
975                 if (__PageMovable(page)) {
976                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
977
978                         /*
979                          * We clear PG_movable under page_lock so any compactor
980                          * cannot try to migrate this page.
981                          */
982                         __ClearPageIsolated(page);
983                 }
984
985                 /*
986                  * Anonymous and movable page->mapping will be cleard by
987                  * free_pages_prepare so don't reset it here for keeping
988                  * the type to work PageAnon, for example.
989                  */
990                 if (!PageMappingFlags(page))
991                         page->mapping = NULL;
992
993                 if (unlikely(is_zone_device_page(newpage))) {
994                         if (is_device_public_page(newpage))
995                                 flush_dcache_page(newpage);
996                 } else
997                         flush_dcache_page(newpage);
998
999         }
1000 out:
1001         return rc;
1002 }
1003
1004 static int __unmap_and_move(struct page *page, struct page *newpage,
1005                                 int force, enum migrate_mode mode)
1006 {
1007         int rc = -EAGAIN;
1008         int page_was_mapped = 0;
1009         struct anon_vma *anon_vma = NULL;
1010         bool is_lru = !__PageMovable(page);
1011
1012         if (!trylock_page(page)) {
1013                 if (!force || mode == MIGRATE_ASYNC)
1014                         goto out;
1015
1016                 /*
1017                  * It's not safe for direct compaction to call lock_page.
1018                  * For example, during page readahead pages are added locked
1019                  * to the LRU. Later, when the IO completes the pages are
1020                  * marked uptodate and unlocked. However, the queueing
1021                  * could be merging multiple pages for one bio (e.g.
1022                  * mpage_readpages). If an allocation happens for the
1023                  * second or third page, the process can end up locking
1024                  * the same page twice and deadlocking. Rather than
1025                  * trying to be clever about what pages can be locked,
1026                  * avoid the use of lock_page for direct compaction
1027                  * altogether.
1028                  */
1029                 if (current->flags & PF_MEMALLOC)
1030                         goto out;
1031
1032                 lock_page(page);
1033         }
1034
1035         if (PageWriteback(page)) {
1036                 /*
1037                  * Only in the case of a full synchronous migration is it
1038                  * necessary to wait for PageWriteback. In the async case,
1039                  * the retry loop is too short and in the sync-light case,
1040                  * the overhead of stalling is too much
1041                  */
1042                 switch (mode) {
1043                 case MIGRATE_SYNC:
1044                 case MIGRATE_SYNC_NO_COPY:
1045                         break;
1046                 default:
1047                         rc = -EBUSY;
1048                         goto out_unlock;
1049                 }
1050                 if (!force)
1051                         goto out_unlock;
1052                 wait_on_page_writeback(page);
1053         }
1054
1055         /*
1056          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1057          * we cannot notice that anon_vma is freed while we migrates a page.
1058          * This get_anon_vma() delays freeing anon_vma pointer until the end
1059          * of migration. File cache pages are no problem because of page_lock()
1060          * File Caches may use write_page() or lock_page() in migration, then,
1061          * just care Anon page here.
1062          *
1063          * Only page_get_anon_vma() understands the subtleties of
1064          * getting a hold on an anon_vma from outside one of its mms.
1065          * But if we cannot get anon_vma, then we won't need it anyway,
1066          * because that implies that the anon page is no longer mapped
1067          * (and cannot be remapped so long as we hold the page lock).
1068          */
1069         if (PageAnon(page) && !PageKsm(page))
1070                 anon_vma = page_get_anon_vma(page);
1071
1072         /*
1073          * Block others from accessing the new page when we get around to
1074          * establishing additional references. We are usually the only one
1075          * holding a reference to newpage at this point. We used to have a BUG
1076          * here if trylock_page(newpage) fails, but would like to allow for
1077          * cases where there might be a race with the previous use of newpage.
1078          * This is much like races on refcount of oldpage: just don't BUG().
1079          */
1080         if (unlikely(!trylock_page(newpage)))
1081                 goto out_unlock;
1082
1083         if (unlikely(!is_lru)) {
1084                 rc = move_to_new_page(newpage, page, mode);
1085                 goto out_unlock_both;
1086         }
1087
1088         /*
1089          * Corner case handling:
1090          * 1. When a new swap-cache page is read into, it is added to the LRU
1091          * and treated as swapcache but it has no rmap yet.
1092          * Calling try_to_unmap() against a page->mapping==NULL page will
1093          * trigger a BUG.  So handle it here.
1094          * 2. An orphaned page (see truncate_complete_page) might have
1095          * fs-private metadata. The page can be picked up due to memory
1096          * offlining.  Everywhere else except page reclaim, the page is
1097          * invisible to the vm, so the page can not be migrated.  So try to
1098          * free the metadata, so the page can be freed.
1099          */
1100         if (!page->mapping) {
1101                 VM_BUG_ON_PAGE(PageAnon(page), page);
1102                 if (page_has_private(page)) {
1103                         try_to_free_buffers(page);
1104                         goto out_unlock_both;
1105                 }
1106         } else if (page_mapped(page)) {
1107                 /* Establish migration ptes */
1108                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1109                                 page);
1110                 try_to_unmap(page,
1111                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1112                 page_was_mapped = 1;
1113         }
1114
1115         if (!page_mapped(page))
1116                 rc = move_to_new_page(newpage, page, mode);
1117
1118         if (page_was_mapped)
1119                 remove_migration_ptes(page,
1120                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1121
1122 out_unlock_both:
1123         unlock_page(newpage);
1124 out_unlock:
1125         /* Drop an anon_vma reference if we took one */
1126         if (anon_vma)
1127                 put_anon_vma(anon_vma);
1128         unlock_page(page);
1129 out:
1130         /*
1131          * If migration is successful, decrease refcount of the newpage
1132          * which will not free the page because new page owner increased
1133          * refcounter. As well, if it is LRU page, add the page to LRU
1134          * list in here. Use the old state of the isolated source page to
1135          * determine if we migrated a LRU page. newpage was already unlocked
1136          * and possibly modified by its owner - don't rely on the page
1137          * state.
1138          */
1139         if (rc == MIGRATEPAGE_SUCCESS) {
1140                 if (unlikely(!is_lru))
1141                         put_page(newpage);
1142                 else
1143                         putback_lru_page(newpage);
1144         }
1145
1146         return rc;
1147 }
1148
1149 /*
1150  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1151  * around it.
1152  */
1153 #if defined(CONFIG_ARM) && \
1154         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1155 #define ICE_noinline noinline
1156 #else
1157 #define ICE_noinline
1158 #endif
1159
1160 /*
1161  * Obtain the lock on page, remove all ptes and migrate the page
1162  * to the newly allocated page in newpage.
1163  */
1164 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1165                                    free_page_t put_new_page,
1166                                    unsigned long private, struct page *page,
1167                                    int force, enum migrate_mode mode,
1168                                    enum migrate_reason reason)
1169 {
1170         int rc = MIGRATEPAGE_SUCCESS;
1171         struct page *newpage;
1172
1173         if (!thp_migration_supported() && PageTransHuge(page))
1174                 return -ENOMEM;
1175
1176         newpage = get_new_page(page, private);
1177         if (!newpage)
1178                 return -ENOMEM;
1179
1180         if (page_count(page) == 1) {
1181                 /* page was freed from under us. So we are done. */
1182                 ClearPageActive(page);
1183                 ClearPageUnevictable(page);
1184                 if (unlikely(__PageMovable(page))) {
1185                         lock_page(page);
1186                         if (!PageMovable(page))
1187                                 __ClearPageIsolated(page);
1188                         unlock_page(page);
1189                 }
1190                 if (put_new_page)
1191                         put_new_page(newpage, private);
1192                 else
1193                         put_page(newpage);
1194                 goto out;
1195         }
1196
1197         rc = __unmap_and_move(page, newpage, force, mode);
1198         if (rc == MIGRATEPAGE_SUCCESS)
1199                 set_page_owner_migrate_reason(newpage, reason);
1200
1201 out:
1202         if (rc != -EAGAIN) {
1203                 /*
1204                  * A page that has been migrated has all references
1205                  * removed and will be freed. A page that has not been
1206                  * migrated will have kepts its references and be
1207                  * restored.
1208                  */
1209                 list_del(&page->lru);
1210
1211                 /*
1212                  * Compaction can migrate also non-LRU pages which are
1213                  * not accounted to NR_ISOLATED_*. They can be recognized
1214                  * as __PageMovable
1215                  */
1216                 if (likely(!__PageMovable(page)))
1217                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1218                                         page_is_file_cache(page), -hpage_nr_pages(page));
1219         }
1220
1221         /*
1222          * If migration is successful, releases reference grabbed during
1223          * isolation. Otherwise, restore the page to right list unless
1224          * we want to retry.
1225          */
1226         if (rc == MIGRATEPAGE_SUCCESS) {
1227                 put_page(page);
1228                 if (reason == MR_MEMORY_FAILURE) {
1229                         /*
1230                          * Set PG_HWPoison on just freed page
1231                          * intentionally. Although it's rather weird,
1232                          * it's how HWPoison flag works at the moment.
1233                          */
1234                         if (set_hwpoison_free_buddy_page(page))
1235                                 num_poisoned_pages_inc();
1236                 }
1237         } else {
1238                 if (rc != -EAGAIN) {
1239                         if (likely(!__PageMovable(page))) {
1240                                 putback_lru_page(page);
1241                                 goto put_new;
1242                         }
1243
1244                         lock_page(page);
1245                         if (PageMovable(page))
1246                                 putback_movable_page(page);
1247                         else
1248                                 __ClearPageIsolated(page);
1249                         unlock_page(page);
1250                         put_page(page);
1251                 }
1252 put_new:
1253                 if (put_new_page)
1254                         put_new_page(newpage, private);
1255                 else
1256                         put_page(newpage);
1257         }
1258
1259         return rc;
1260 }
1261
1262 /*
1263  * Counterpart of unmap_and_move_page() for hugepage migration.
1264  *
1265  * This function doesn't wait the completion of hugepage I/O
1266  * because there is no race between I/O and migration for hugepage.
1267  * Note that currently hugepage I/O occurs only in direct I/O
1268  * where no lock is held and PG_writeback is irrelevant,
1269  * and writeback status of all subpages are counted in the reference
1270  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1271  * under direct I/O, the reference of the head page is 512 and a bit more.)
1272  * This means that when we try to migrate hugepage whose subpages are
1273  * doing direct I/O, some references remain after try_to_unmap() and
1274  * hugepage migration fails without data corruption.
1275  *
1276  * There is also no race when direct I/O is issued on the page under migration,
1277  * because then pte is replaced with migration swap entry and direct I/O code
1278  * will wait in the page fault for migration to complete.
1279  */
1280 static int unmap_and_move_huge_page(new_page_t get_new_page,
1281                                 free_page_t put_new_page, unsigned long private,
1282                                 struct page *hpage, int force,
1283                                 enum migrate_mode mode, int reason)
1284 {
1285         int rc = -EAGAIN;
1286         int page_was_mapped = 0;
1287         struct page *new_hpage;
1288         struct anon_vma *anon_vma = NULL;
1289
1290         /*
1291          * Movability of hugepages depends on architectures and hugepage size.
1292          * This check is necessary because some callers of hugepage migration
1293          * like soft offline and memory hotremove don't walk through page
1294          * tables or check whether the hugepage is pmd-based or not before
1295          * kicking migration.
1296          */
1297         if (!hugepage_migration_supported(page_hstate(hpage))) {
1298                 putback_active_hugepage(hpage);
1299                 return -ENOSYS;
1300         }
1301
1302         new_hpage = get_new_page(hpage, private);
1303         if (!new_hpage)
1304                 return -ENOMEM;
1305
1306         if (!trylock_page(hpage)) {
1307                 if (!force)
1308                         goto out;
1309                 switch (mode) {
1310                 case MIGRATE_SYNC:
1311                 case MIGRATE_SYNC_NO_COPY:
1312                         break;
1313                 default:
1314                         goto out;
1315                 }
1316                 lock_page(hpage);
1317         }
1318
1319         /*
1320          * Check for pages which are in the process of being freed.  Without
1321          * page_mapping() set, hugetlbfs specific move page routine will not
1322          * be called and we could leak usage counts for subpools.
1323          */
1324         if (page_private(hpage) && !page_mapping(hpage)) {
1325                 rc = -EBUSY;
1326                 goto out_unlock;
1327         }
1328
1329         if (PageAnon(hpage))
1330                 anon_vma = page_get_anon_vma(hpage);
1331
1332         if (unlikely(!trylock_page(new_hpage)))
1333                 goto put_anon;
1334
1335         if (page_mapped(hpage)) {
1336                 try_to_unmap(hpage,
1337                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1338                 page_was_mapped = 1;
1339         }
1340
1341         if (!page_mapped(hpage))
1342                 rc = move_to_new_page(new_hpage, hpage, mode);
1343
1344         if (page_was_mapped)
1345                 remove_migration_ptes(hpage,
1346                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1347
1348         unlock_page(new_hpage);
1349
1350 put_anon:
1351         if (anon_vma)
1352                 put_anon_vma(anon_vma);
1353
1354         if (rc == MIGRATEPAGE_SUCCESS) {
1355                 move_hugetlb_state(hpage, new_hpage, reason);
1356                 put_new_page = NULL;
1357         }
1358
1359 out_unlock:
1360         unlock_page(hpage);
1361 out:
1362         if (rc != -EAGAIN)
1363                 putback_active_hugepage(hpage);
1364
1365         /*
1366          * If migration was not successful and there's a freeing callback, use
1367          * it.  Otherwise, put_page() will drop the reference grabbed during
1368          * isolation.
1369          */
1370         if (put_new_page)
1371                 put_new_page(new_hpage, private);
1372         else
1373                 putback_active_hugepage(new_hpage);
1374
1375         return rc;
1376 }
1377
1378 /*
1379  * migrate_pages - migrate the pages specified in a list, to the free pages
1380  *                 supplied as the target for the page migration
1381  *
1382  * @from:               The list of pages to be migrated.
1383  * @get_new_page:       The function used to allocate free pages to be used
1384  *                      as the target of the page migration.
1385  * @put_new_page:       The function used to free target pages if migration
1386  *                      fails, or NULL if no special handling is necessary.
1387  * @private:            Private data to be passed on to get_new_page()
1388  * @mode:               The migration mode that specifies the constraints for
1389  *                      page migration, if any.
1390  * @reason:             The reason for page migration.
1391  *
1392  * The function returns after 10 attempts or if no pages are movable any more
1393  * because the list has become empty or no retryable pages exist any more.
1394  * The caller should call putback_movable_pages() to return pages to the LRU
1395  * or free list only if ret != 0.
1396  *
1397  * Returns the number of pages that were not migrated, or an error code.
1398  */
1399 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1400                 free_page_t put_new_page, unsigned long private,
1401                 enum migrate_mode mode, int reason)
1402 {
1403         int retry = 1;
1404         int nr_failed = 0;
1405         int nr_succeeded = 0;
1406         int pass = 0;
1407         struct page *page;
1408         struct page *page2;
1409         int swapwrite = current->flags & PF_SWAPWRITE;
1410         int rc;
1411
1412         if (!swapwrite)
1413                 current->flags |= PF_SWAPWRITE;
1414
1415         for(pass = 0; pass < 10 && retry; pass++) {
1416                 retry = 0;
1417
1418                 list_for_each_entry_safe(page, page2, from, lru) {
1419 retry:
1420                         cond_resched();
1421
1422                         if (PageHuge(page))
1423                                 rc = unmap_and_move_huge_page(get_new_page,
1424                                                 put_new_page, private, page,
1425                                                 pass > 2, mode, reason);
1426                         else
1427                                 rc = unmap_and_move(get_new_page, put_new_page,
1428                                                 private, page, pass > 2, mode,
1429                                                 reason);
1430
1431                         switch(rc) {
1432                         case -ENOMEM:
1433                                 /*
1434                                  * THP migration might be unsupported or the
1435                                  * allocation could've failed so we should
1436                                  * retry on the same page with the THP split
1437                                  * to base pages.
1438                                  *
1439                                  * Head page is retried immediately and tail
1440                                  * pages are added to the tail of the list so
1441                                  * we encounter them after the rest of the list
1442                                  * is processed.
1443                                  */
1444                                 if (PageTransHuge(page) && !PageHuge(page)) {
1445                                         lock_page(page);
1446                                         rc = split_huge_page_to_list(page, from);
1447                                         unlock_page(page);
1448                                         if (!rc) {
1449                                                 list_safe_reset_next(page, page2, lru);
1450                                                 goto retry;
1451                                         }
1452                                 }
1453                                 nr_failed++;
1454                                 goto out;
1455                         case -EAGAIN:
1456                                 retry++;
1457                                 break;
1458                         case MIGRATEPAGE_SUCCESS:
1459                                 nr_succeeded++;
1460                                 break;
1461                         default:
1462                                 /*
1463                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1464                                  * unlike -EAGAIN case, the failed page is
1465                                  * removed from migration page list and not
1466                                  * retried in the next outer loop.
1467                                  */
1468                                 nr_failed++;
1469                                 break;
1470                         }
1471                 }
1472         }
1473         nr_failed += retry;
1474         rc = nr_failed;
1475 out:
1476         if (nr_succeeded)
1477                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1478         if (nr_failed)
1479                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1480         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1481
1482         if (!swapwrite)
1483                 current->flags &= ~PF_SWAPWRITE;
1484
1485         return rc;
1486 }
1487
1488 #ifdef CONFIG_NUMA
1489
1490 static int store_status(int __user *status, int start, int value, int nr)
1491 {
1492         while (nr-- > 0) {
1493                 if (put_user(value, status + start))
1494                         return -EFAULT;
1495                 start++;
1496         }
1497
1498         return 0;
1499 }
1500
1501 static int do_move_pages_to_node(struct mm_struct *mm,
1502                 struct list_head *pagelist, int node)
1503 {
1504         int err;
1505
1506         if (list_empty(pagelist))
1507                 return 0;
1508
1509         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1510                         MIGRATE_SYNC, MR_SYSCALL);
1511         if (err)
1512                 putback_movable_pages(pagelist);
1513         return err;
1514 }
1515
1516 /*
1517  * Resolves the given address to a struct page, isolates it from the LRU and
1518  * puts it to the given pagelist.
1519  * Returns:
1520  *     errno - if the page cannot be found/isolated
1521  *     0 - when it doesn't have to be migrated because it is already on the
1522  *         target node
1523  *     1 - when it has been queued
1524  */
1525 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1526                 int node, struct list_head *pagelist, bool migrate_all)
1527 {
1528         struct vm_area_struct *vma;
1529         struct page *page;
1530         unsigned int follflags;
1531         int err;
1532
1533         down_read(&mm->mmap_sem);
1534         err = -EFAULT;
1535         vma = find_vma(mm, addr);
1536         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1537                 goto out;
1538
1539         /* FOLL_DUMP to ignore special (like zero) pages */
1540         follflags = FOLL_GET | FOLL_DUMP;
1541         page = follow_page(vma, addr, follflags);
1542
1543         err = PTR_ERR(page);
1544         if (IS_ERR(page))
1545                 goto out;
1546
1547         err = -ENOENT;
1548         if (!page)
1549                 goto out;
1550
1551         err = 0;
1552         if (page_to_nid(page) == node)
1553                 goto out_putpage;
1554
1555         err = -EACCES;
1556         if (page_mapcount(page) > 1 && !migrate_all)
1557                 goto out_putpage;
1558
1559         if (PageHuge(page)) {
1560                 if (PageHead(page)) {
1561                         isolate_huge_page(page, pagelist);
1562                         err = 1;
1563                 }
1564         } else {
1565                 struct page *head;
1566
1567                 head = compound_head(page);
1568                 err = isolate_lru_page(head);
1569                 if (err)
1570                         goto out_putpage;
1571
1572                 err = 1;
1573                 list_add_tail(&head->lru, pagelist);
1574                 mod_node_page_state(page_pgdat(head),
1575                         NR_ISOLATED_ANON + page_is_file_cache(head),
1576                         hpage_nr_pages(head));
1577         }
1578 out_putpage:
1579         /*
1580          * Either remove the duplicate refcount from
1581          * isolate_lru_page() or drop the page ref if it was
1582          * not isolated.
1583          */
1584         put_page(page);
1585 out:
1586         up_read(&mm->mmap_sem);
1587         return err;
1588 }
1589
1590 /*
1591  * Migrate an array of page address onto an array of nodes and fill
1592  * the corresponding array of status.
1593  */
1594 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1595                          unsigned long nr_pages,
1596                          const void __user * __user *pages,
1597                          const int __user *nodes,
1598                          int __user *status, int flags)
1599 {
1600         int current_node = NUMA_NO_NODE;
1601         LIST_HEAD(pagelist);
1602         int start, i;
1603         int err = 0, err1;
1604
1605         migrate_prep();
1606
1607         for (i = start = 0; i < nr_pages; i++) {
1608                 const void __user *p;
1609                 unsigned long addr;
1610                 int node;
1611
1612                 err = -EFAULT;
1613                 if (get_user(p, pages + i))
1614                         goto out_flush;
1615                 if (get_user(node, nodes + i))
1616                         goto out_flush;
1617                 addr = (unsigned long)p;
1618
1619                 err = -ENODEV;
1620                 if (node < 0 || node >= MAX_NUMNODES)
1621                         goto out_flush;
1622                 if (!node_state(node, N_MEMORY))
1623                         goto out_flush;
1624
1625                 err = -EACCES;
1626                 if (!node_isset(node, task_nodes))
1627                         goto out_flush;
1628
1629                 if (current_node == NUMA_NO_NODE) {
1630                         current_node = node;
1631                         start = i;
1632                 } else if (node != current_node) {
1633                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1634                         if (err) {
1635                                 /*
1636                                  * Positive err means the number of failed
1637                                  * pages to migrate.  Since we are going to
1638                                  * abort and return the number of non-migrated
1639                                  * pages, so need to incude the rest of the
1640                                  * nr_pages that have not been attempted as
1641                                  * well.
1642                                  */
1643                                 if (err > 0)
1644                                         err += nr_pages - i - 1;
1645                                 goto out;
1646                         }
1647                         err = store_status(status, start, current_node, i - start);
1648                         if (err)
1649                                 goto out;
1650                         start = i;
1651                         current_node = node;
1652                 }
1653
1654                 /*
1655                  * Errors in the page lookup or isolation are not fatal and we simply
1656                  * report them via status
1657                  */
1658                 err = add_page_for_migration(mm, addr, current_node,
1659                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1660
1661                 if (!err) {
1662                         /* The page is already on the target node */
1663                         err = store_status(status, i, current_node, 1);
1664                         if (err)
1665                                 goto out_flush;
1666                         continue;
1667                 } else if (err > 0) {
1668                         /* The page is successfully queued for migration */
1669                         continue;
1670                 }
1671
1672                 err = store_status(status, i, err, 1);
1673                 if (err)
1674                         goto out_flush;
1675
1676                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1677                 if (err) {
1678                         if (err > 0)
1679                                 err += nr_pages - i - 1;
1680                         goto out;
1681                 }
1682                 if (i > start) {
1683                         err = store_status(status, start, current_node, i - start);
1684                         if (err)
1685                                 goto out;
1686                 }
1687                 current_node = NUMA_NO_NODE;
1688         }
1689 out_flush:
1690         if (list_empty(&pagelist))
1691                 return err;
1692
1693         /* Make sure we do not overwrite the existing error */
1694         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1695         /*
1696          * Don't have to report non-attempted pages here since:
1697          *     - If the above loop is done gracefully all pages have been
1698          *       attempted.
1699          *     - If the above loop is aborted it means a fatal error
1700          *       happened, should return ret.
1701          */
1702         if (!err1)
1703                 err1 = store_status(status, start, current_node, i - start);
1704         if (err >= 0)
1705                 err = err1;
1706 out:
1707         return err;
1708 }
1709
1710 /*
1711  * Determine the nodes of an array of pages and store it in an array of status.
1712  */
1713 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1714                                 const void __user **pages, int *status)
1715 {
1716         unsigned long i;
1717
1718         down_read(&mm->mmap_sem);
1719
1720         for (i = 0; i < nr_pages; i++) {
1721                 unsigned long addr = (unsigned long)(*pages);
1722                 struct vm_area_struct *vma;
1723                 struct page *page;
1724                 int err = -EFAULT;
1725
1726                 vma = find_vma(mm, addr);
1727                 if (!vma || addr < vma->vm_start)
1728                         goto set_status;
1729
1730                 /* FOLL_DUMP to ignore special (like zero) pages */
1731                 page = follow_page(vma, addr, FOLL_DUMP);
1732
1733                 err = PTR_ERR(page);
1734                 if (IS_ERR(page))
1735                         goto set_status;
1736
1737                 err = page ? page_to_nid(page) : -ENOENT;
1738 set_status:
1739                 *status = err;
1740
1741                 pages++;
1742                 status++;
1743         }
1744
1745         up_read(&mm->mmap_sem);
1746 }
1747
1748 /*
1749  * Determine the nodes of a user array of pages and store it in
1750  * a user array of status.
1751  */
1752 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1753                          const void __user * __user *pages,
1754                          int __user *status)
1755 {
1756 #define DO_PAGES_STAT_CHUNK_NR 16
1757         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1758         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1759
1760         while (nr_pages) {
1761                 unsigned long chunk_nr;
1762
1763                 chunk_nr = nr_pages;
1764                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1765                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1766
1767                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1768                         break;
1769
1770                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1771
1772                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1773                         break;
1774
1775                 pages += chunk_nr;
1776                 status += chunk_nr;
1777                 nr_pages -= chunk_nr;
1778         }
1779         return nr_pages ? -EFAULT : 0;
1780 }
1781
1782 /*
1783  * Move a list of pages in the address space of the currently executing
1784  * process.
1785  */
1786 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1787                              const void __user * __user *pages,
1788                              const int __user *nodes,
1789                              int __user *status, int flags)
1790 {
1791         struct task_struct *task;
1792         struct mm_struct *mm;
1793         int err;
1794         nodemask_t task_nodes;
1795
1796         /* Check flags */
1797         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1798                 return -EINVAL;
1799
1800         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1801                 return -EPERM;
1802
1803         /* Find the mm_struct */
1804         rcu_read_lock();
1805         task = pid ? find_task_by_vpid(pid) : current;
1806         if (!task) {
1807                 rcu_read_unlock();
1808                 return -ESRCH;
1809         }
1810         get_task_struct(task);
1811
1812         /*
1813          * Check if this process has the right to modify the specified
1814          * process. Use the regular "ptrace_may_access()" checks.
1815          */
1816         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1817                 rcu_read_unlock();
1818                 err = -EPERM;
1819                 goto out;
1820         }
1821         rcu_read_unlock();
1822
1823         err = security_task_movememory(task);
1824         if (err)
1825                 goto out;
1826
1827         task_nodes = cpuset_mems_allowed(task);
1828         mm = get_task_mm(task);
1829         put_task_struct(task);
1830
1831         if (!mm)
1832                 return -EINVAL;
1833
1834         if (nodes)
1835                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1836                                     nodes, status, flags);
1837         else
1838                 err = do_pages_stat(mm, nr_pages, pages, status);
1839
1840         mmput(mm);
1841         return err;
1842
1843 out:
1844         put_task_struct(task);
1845         return err;
1846 }
1847
1848 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1849                 const void __user * __user *, pages,
1850                 const int __user *, nodes,
1851                 int __user *, status, int, flags)
1852 {
1853         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1854 }
1855
1856 #ifdef CONFIG_COMPAT
1857 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1858                        compat_uptr_t __user *, pages32,
1859                        const int __user *, nodes,
1860                        int __user *, status,
1861                        int, flags)
1862 {
1863         const void __user * __user *pages;
1864         int i;
1865
1866         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1867         for (i = 0; i < nr_pages; i++) {
1868                 compat_uptr_t p;
1869
1870                 if (get_user(p, pages32 + i) ||
1871                         put_user(compat_ptr(p), pages + i))
1872                         return -EFAULT;
1873         }
1874         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1875 }
1876 #endif /* CONFIG_COMPAT */
1877
1878 #ifdef CONFIG_NUMA_BALANCING
1879 /*
1880  * Returns true if this is a safe migration target node for misplaced NUMA
1881  * pages. Currently it only checks the watermarks which crude
1882  */
1883 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1884                                    unsigned long nr_migrate_pages)
1885 {
1886         int z;
1887
1888         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1889                 struct zone *zone = pgdat->node_zones + z;
1890
1891                 if (!populated_zone(zone))
1892                         continue;
1893
1894                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1895                 if (!zone_watermark_ok(zone, 0,
1896                                        high_wmark_pages(zone) +
1897                                        nr_migrate_pages,
1898                                        0, 0))
1899                         continue;
1900                 return true;
1901         }
1902         return false;
1903 }
1904
1905 static struct page *alloc_misplaced_dst_page(struct page *page,
1906                                            unsigned long data)
1907 {
1908         int nid = (int) data;
1909         struct page *newpage;
1910
1911         newpage = __alloc_pages_node(nid,
1912                                          (GFP_HIGHUSER_MOVABLE |
1913                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1914                                           __GFP_NORETRY | __GFP_NOWARN) &
1915                                          ~__GFP_RECLAIM, 0);
1916
1917         return newpage;
1918 }
1919
1920 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1921 {
1922         int page_lru;
1923
1924         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1925
1926         /* Avoid migrating to a node that is nearly full */
1927         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1928                 return 0;
1929
1930         if (isolate_lru_page(page))
1931                 return 0;
1932
1933         /*
1934          * migrate_misplaced_transhuge_page() skips page migration's usual
1935          * check on page_count(), so we must do it here, now that the page
1936          * has been isolated: a GUP pin, or any other pin, prevents migration.
1937          * The expected page count is 3: 1 for page's mapcount and 1 for the
1938          * caller's pin and 1 for the reference taken by isolate_lru_page().
1939          */
1940         if (PageTransHuge(page) && page_count(page) != 3) {
1941                 putback_lru_page(page);
1942                 return 0;
1943         }
1944
1945         page_lru = page_is_file_cache(page);
1946         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1947                                 hpage_nr_pages(page));
1948
1949         /*
1950          * Isolating the page has taken another reference, so the
1951          * caller's reference can be safely dropped without the page
1952          * disappearing underneath us during migration.
1953          */
1954         put_page(page);
1955         return 1;
1956 }
1957
1958 bool pmd_trans_migrating(pmd_t pmd)
1959 {
1960         struct page *page = pmd_page(pmd);
1961         return PageLocked(page);
1962 }
1963
1964 /*
1965  * Attempt to migrate a misplaced page to the specified destination
1966  * node. Caller is expected to have an elevated reference count on
1967  * the page that will be dropped by this function before returning.
1968  */
1969 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1970                            int node)
1971 {
1972         pg_data_t *pgdat = NODE_DATA(node);
1973         int isolated;
1974         int nr_remaining;
1975         LIST_HEAD(migratepages);
1976
1977         /*
1978          * Don't migrate file pages that are mapped in multiple processes
1979          * with execute permissions as they are probably shared libraries.
1980          */
1981         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1982             (vma->vm_flags & VM_EXEC))
1983                 goto out;
1984
1985         /*
1986          * Also do not migrate dirty pages as not all filesystems can move
1987          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1988          */
1989         if (page_is_file_cache(page) && PageDirty(page))
1990                 goto out;
1991
1992         isolated = numamigrate_isolate_page(pgdat, page);
1993         if (!isolated)
1994                 goto out;
1995
1996         list_add(&page->lru, &migratepages);
1997         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1998                                      NULL, node, MIGRATE_ASYNC,
1999                                      MR_NUMA_MISPLACED);
2000         if (nr_remaining) {
2001                 if (!list_empty(&migratepages)) {
2002                         list_del(&page->lru);
2003                         dec_node_page_state(page, NR_ISOLATED_ANON +
2004                                         page_is_file_cache(page));
2005                         putback_lru_page(page);
2006                 }
2007                 isolated = 0;
2008         } else
2009                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2010         BUG_ON(!list_empty(&migratepages));
2011         return isolated;
2012
2013 out:
2014         put_page(page);
2015         return 0;
2016 }
2017 #endif /* CONFIG_NUMA_BALANCING */
2018
2019 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2020 /*
2021  * Migrates a THP to a given target node. page must be locked and is unlocked
2022  * before returning.
2023  */
2024 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2025                                 struct vm_area_struct *vma,
2026                                 pmd_t *pmd, pmd_t entry,
2027                                 unsigned long address,
2028                                 struct page *page, int node)
2029 {
2030         spinlock_t *ptl;
2031         pg_data_t *pgdat = NODE_DATA(node);
2032         int isolated = 0;
2033         struct page *new_page = NULL;
2034         int page_lru = page_is_file_cache(page);
2035         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2036         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2037
2038         new_page = alloc_pages_node(node,
2039                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2040                 HPAGE_PMD_ORDER);
2041         if (!new_page)
2042                 goto out_fail;
2043         prep_transhuge_page(new_page);
2044
2045         isolated = numamigrate_isolate_page(pgdat, page);
2046         if (!isolated) {
2047                 put_page(new_page);
2048                 goto out_fail;
2049         }
2050
2051         /* Prepare a page as a migration target */
2052         __SetPageLocked(new_page);
2053         if (PageSwapBacked(page))
2054                 __SetPageSwapBacked(new_page);
2055
2056         /* anon mapping, we can simply copy page->mapping to the new page: */
2057         new_page->mapping = page->mapping;
2058         new_page->index = page->index;
2059         migrate_page_copy(new_page, page);
2060         WARN_ON(PageLRU(new_page));
2061
2062         /* Recheck the target PMD */
2063         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2064         ptl = pmd_lock(mm, pmd);
2065         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2066                 spin_unlock(ptl);
2067                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2068
2069                 /* Reverse changes made by migrate_page_copy() */
2070                 if (TestClearPageActive(new_page))
2071                         SetPageActive(page);
2072                 if (TestClearPageUnevictable(new_page))
2073                         SetPageUnevictable(page);
2074
2075                 unlock_page(new_page);
2076                 put_page(new_page);             /* Free it */
2077
2078                 /* Retake the callers reference and putback on LRU */
2079                 get_page(page);
2080                 putback_lru_page(page);
2081                 mod_node_page_state(page_pgdat(page),
2082                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2083
2084                 goto out_unlock;
2085         }
2086
2087         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2088         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2089
2090         /*
2091          * Overwrite the old entry under pagetable lock and establish
2092          * the new PTE. Any parallel GUP will either observe the old
2093          * page blocking on the page lock, block on the page table
2094          * lock or observe the new page. The SetPageUptodate on the
2095          * new page and page_add_new_anon_rmap guarantee the copy is
2096          * visible before the pagetable update.
2097          */
2098         flush_cache_range(vma, mmun_start, mmun_end);
2099         page_add_anon_rmap(new_page, vma, mmun_start, true);
2100         /*
2101          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2102          * has already been flushed globally.  So no TLB can be currently
2103          * caching this non present pmd mapping.  There's no need to clear the
2104          * pmd before doing set_pmd_at(), nor to flush the TLB after
2105          * set_pmd_at().  Clearing the pmd here would introduce a race
2106          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2107          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2108          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2109          * pmd.
2110          */
2111         set_pmd_at(mm, mmun_start, pmd, entry);
2112         update_mmu_cache_pmd(vma, address, &entry);
2113
2114         page_ref_unfreeze(page, 2);
2115         mlock_migrate_page(new_page, page);
2116         page_remove_rmap(page, true);
2117         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2118
2119         spin_unlock(ptl);
2120         /*
2121          * No need to double call mmu_notifier->invalidate_range() callback as
2122          * the above pmdp_huge_clear_flush_notify() did already call it.
2123          */
2124         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2125
2126         /* Take an "isolate" reference and put new page on the LRU. */
2127         get_page(new_page);
2128         putback_lru_page(new_page);
2129
2130         unlock_page(new_page);
2131         unlock_page(page);
2132         put_page(page);                 /* Drop the rmap reference */
2133         put_page(page);                 /* Drop the LRU isolation reference */
2134
2135         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2136         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2137
2138         mod_node_page_state(page_pgdat(page),
2139                         NR_ISOLATED_ANON + page_lru,
2140                         -HPAGE_PMD_NR);
2141         return isolated;
2142
2143 out_fail:
2144         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2145         ptl = pmd_lock(mm, pmd);
2146         if (pmd_same(*pmd, entry)) {
2147                 entry = pmd_modify(entry, vma->vm_page_prot);
2148                 set_pmd_at(mm, mmun_start, pmd, entry);
2149                 update_mmu_cache_pmd(vma, address, &entry);
2150         }
2151         spin_unlock(ptl);
2152
2153 out_unlock:
2154         unlock_page(page);
2155         put_page(page);
2156         return 0;
2157 }
2158 #endif /* CONFIG_NUMA_BALANCING */
2159
2160 #endif /* CONFIG_NUMA */
2161
2162 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2163 struct migrate_vma {
2164         struct vm_area_struct   *vma;
2165         unsigned long           *dst;
2166         unsigned long           *src;
2167         unsigned long           cpages;
2168         unsigned long           npages;
2169         unsigned long           start;
2170         unsigned long           end;
2171 };
2172
2173 static int migrate_vma_collect_hole(unsigned long start,
2174                                     unsigned long end,
2175                                     struct mm_walk *walk)
2176 {
2177         struct migrate_vma *migrate = walk->private;
2178         unsigned long addr;
2179
2180         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2181                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2182                 migrate->dst[migrate->npages] = 0;
2183                 migrate->npages++;
2184                 migrate->cpages++;
2185         }
2186
2187         return 0;
2188 }
2189
2190 static int migrate_vma_collect_skip(unsigned long start,
2191                                     unsigned long end,
2192                                     struct mm_walk *walk)
2193 {
2194         struct migrate_vma *migrate = walk->private;
2195         unsigned long addr;
2196
2197         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2198                 migrate->dst[migrate->npages] = 0;
2199                 migrate->src[migrate->npages++] = 0;
2200         }
2201
2202         return 0;
2203 }
2204
2205 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2206                                    unsigned long start,
2207                                    unsigned long end,
2208                                    struct mm_walk *walk)
2209 {
2210         struct migrate_vma *migrate = walk->private;
2211         struct vm_area_struct *vma = walk->vma;
2212         struct mm_struct *mm = vma->vm_mm;
2213         unsigned long addr = start, unmapped = 0;
2214         spinlock_t *ptl;
2215         pte_t *ptep;
2216
2217 again:
2218         if (pmd_none(*pmdp))
2219                 return migrate_vma_collect_hole(start, end, walk);
2220
2221         if (pmd_trans_huge(*pmdp)) {
2222                 struct page *page;
2223
2224                 ptl = pmd_lock(mm, pmdp);
2225                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2226                         spin_unlock(ptl);
2227                         goto again;
2228                 }
2229
2230                 page = pmd_page(*pmdp);
2231                 if (is_huge_zero_page(page)) {
2232                         spin_unlock(ptl);
2233                         split_huge_pmd(vma, pmdp, addr);
2234                         if (pmd_trans_unstable(pmdp))
2235                                 return migrate_vma_collect_skip(start, end,
2236                                                                 walk);
2237                 } else {
2238                         int ret;
2239
2240                         get_page(page);
2241                         spin_unlock(ptl);
2242                         if (unlikely(!trylock_page(page)))
2243                                 return migrate_vma_collect_skip(start, end,
2244                                                                 walk);
2245                         ret = split_huge_page(page);
2246                         unlock_page(page);
2247                         put_page(page);
2248                         if (ret)
2249                                 return migrate_vma_collect_skip(start, end,
2250                                                                 walk);
2251                         if (pmd_none(*pmdp))
2252                                 return migrate_vma_collect_hole(start, end,
2253                                                                 walk);
2254                 }
2255         }
2256
2257         if (unlikely(pmd_bad(*pmdp)))
2258                 return migrate_vma_collect_skip(start, end, walk);
2259
2260         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2261         arch_enter_lazy_mmu_mode();
2262
2263         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2264                 unsigned long mpfn, pfn;
2265                 struct page *page;
2266                 swp_entry_t entry;
2267                 pte_t pte;
2268
2269                 pte = *ptep;
2270                 pfn = pte_pfn(pte);
2271
2272                 if (pte_none(pte)) {
2273                         mpfn = MIGRATE_PFN_MIGRATE;
2274                         migrate->cpages++;
2275                         pfn = 0;
2276                         goto next;
2277                 }
2278
2279                 if (!pte_present(pte)) {
2280                         mpfn = pfn = 0;
2281
2282                         /*
2283                          * Only care about unaddressable device page special
2284                          * page table entry. Other special swap entries are not
2285                          * migratable, and we ignore regular swapped page.
2286                          */
2287                         entry = pte_to_swp_entry(pte);
2288                         if (!is_device_private_entry(entry))
2289                                 goto next;
2290
2291                         page = device_private_entry_to_page(entry);
2292                         mpfn = migrate_pfn(page_to_pfn(page))|
2293                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2294                         if (is_write_device_private_entry(entry))
2295                                 mpfn |= MIGRATE_PFN_WRITE;
2296                 } else {
2297                         if (is_zero_pfn(pfn)) {
2298                                 mpfn = MIGRATE_PFN_MIGRATE;
2299                                 migrate->cpages++;
2300                                 pfn = 0;
2301                                 goto next;
2302                         }
2303                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2304                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2305                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2306                 }
2307
2308                 /* FIXME support THP */
2309                 if (!page || !page->mapping || PageTransCompound(page)) {
2310                         mpfn = pfn = 0;
2311                         goto next;
2312                 }
2313                 pfn = page_to_pfn(page);
2314
2315                 /*
2316                  * By getting a reference on the page we pin it and that blocks
2317                  * any kind of migration. Side effect is that it "freezes" the
2318                  * pte.
2319                  *
2320                  * We drop this reference after isolating the page from the lru
2321                  * for non device page (device page are not on the lru and thus
2322                  * can't be dropped from it).
2323                  */
2324                 get_page(page);
2325                 migrate->cpages++;
2326
2327                 /*
2328                  * Optimize for the common case where page is only mapped once
2329                  * in one process. If we can lock the page, then we can safely
2330                  * set up a special migration page table entry now.
2331                  */
2332                 if (trylock_page(page)) {
2333                         pte_t swp_pte;
2334
2335                         mpfn |= MIGRATE_PFN_LOCKED;
2336                         ptep_get_and_clear(mm, addr, ptep);
2337
2338                         /* Setup special migration page table entry */
2339                         entry = make_migration_entry(page, mpfn &
2340                                                      MIGRATE_PFN_WRITE);
2341                         swp_pte = swp_entry_to_pte(entry);
2342                         if (pte_soft_dirty(pte))
2343                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2344                         set_pte_at(mm, addr, ptep, swp_pte);
2345
2346                         /*
2347                          * This is like regular unmap: we remove the rmap and
2348                          * drop page refcount. Page won't be freed, as we took
2349                          * a reference just above.
2350                          */
2351                         page_remove_rmap(page, false);
2352                         put_page(page);
2353
2354                         if (pte_present(pte))
2355                                 unmapped++;
2356                 }
2357
2358 next:
2359                 migrate->dst[migrate->npages] = 0;
2360                 migrate->src[migrate->npages++] = mpfn;
2361         }
2362
2363         /* Only flush the TLB if we actually modified any entries */
2364         if (unmapped)
2365                 flush_tlb_range(walk->vma, start, end);
2366
2367         arch_leave_lazy_mmu_mode();
2368         pte_unmap_unlock(ptep - 1, ptl);
2369
2370         return 0;
2371 }
2372
2373 /*
2374  * migrate_vma_collect() - collect pages over a range of virtual addresses
2375  * @migrate: migrate struct containing all migration information
2376  *
2377  * This will walk the CPU page table. For each virtual address backed by a
2378  * valid page, it updates the src array and takes a reference on the page, in
2379  * order to pin the page until we lock it and unmap it.
2380  */
2381 static void migrate_vma_collect(struct migrate_vma *migrate)
2382 {
2383         struct mm_walk mm_walk = {
2384                 .pmd_entry = migrate_vma_collect_pmd,
2385                 .pte_hole = migrate_vma_collect_hole,
2386                 .vma = migrate->vma,
2387                 .mm = migrate->vma->vm_mm,
2388                 .private = migrate,
2389         };
2390
2391         mmu_notifier_invalidate_range_start(mm_walk.mm,
2392                                             migrate->start,
2393                                             migrate->end);
2394         walk_page_range(migrate->start, migrate->end, &mm_walk);
2395         mmu_notifier_invalidate_range_end(mm_walk.mm,
2396                                           migrate->start,
2397                                           migrate->end);
2398
2399         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2400 }
2401
2402 /*
2403  * migrate_vma_check_page() - check if page is pinned or not
2404  * @page: struct page to check
2405  *
2406  * Pinned pages cannot be migrated. This is the same test as in
2407  * migrate_page_move_mapping(), except that here we allow migration of a
2408  * ZONE_DEVICE page.
2409  */
2410 static bool migrate_vma_check_page(struct page *page)
2411 {
2412         /*
2413          * One extra ref because caller holds an extra reference, either from
2414          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2415          * a device page.
2416          */
2417         int extra = 1;
2418
2419         /*
2420          * FIXME support THP (transparent huge page), it is bit more complex to
2421          * check them than regular pages, because they can be mapped with a pmd
2422          * or with a pte (split pte mapping).
2423          */
2424         if (PageCompound(page))
2425                 return false;
2426
2427         /* Page from ZONE_DEVICE have one extra reference */
2428         if (is_zone_device_page(page)) {
2429                 /*
2430                  * Private page can never be pin as they have no valid pte and
2431                  * GUP will fail for those. Yet if there is a pending migration
2432                  * a thread might try to wait on the pte migration entry and
2433                  * will bump the page reference count. Sadly there is no way to
2434                  * differentiate a regular pin from migration wait. Hence to
2435                  * avoid 2 racing thread trying to migrate back to CPU to enter
2436                  * infinite loop (one stoping migration because the other is
2437                  * waiting on pte migration entry). We always return true here.
2438                  *
2439                  * FIXME proper solution is to rework migration_entry_wait() so
2440                  * it does not need to take a reference on page.
2441                  */
2442                 if (is_device_private_page(page))
2443                         return true;
2444
2445                 /*
2446                  * Only allow device public page to be migrated and account for
2447                  * the extra reference count imply by ZONE_DEVICE pages.
2448                  */
2449                 if (!is_device_public_page(page))
2450                         return false;
2451                 extra++;
2452         }
2453
2454         /* For file back page */
2455         if (page_mapping(page))
2456                 extra += 1 + page_has_private(page);
2457
2458         if ((page_count(page) - extra) > page_mapcount(page))
2459                 return false;
2460
2461         return true;
2462 }
2463
2464 /*
2465  * migrate_vma_prepare() - lock pages and isolate them from the lru
2466  * @migrate: migrate struct containing all migration information
2467  *
2468  * This locks pages that have been collected by migrate_vma_collect(). Once each
2469  * page is locked it is isolated from the lru (for non-device pages). Finally,
2470  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2471  * migrated by concurrent kernel threads.
2472  */
2473 static void migrate_vma_prepare(struct migrate_vma *migrate)
2474 {
2475         const unsigned long npages = migrate->npages;
2476         const unsigned long start = migrate->start;
2477         unsigned long addr, i, restore = 0;
2478         bool allow_drain = true;
2479
2480         lru_add_drain();
2481
2482         for (i = 0; (i < npages) && migrate->cpages; i++) {
2483                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2484                 bool remap = true;
2485
2486                 if (!page)
2487                         continue;
2488
2489                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2490                         /*
2491                          * Because we are migrating several pages there can be
2492                          * a deadlock between 2 concurrent migration where each
2493                          * are waiting on each other page lock.
2494                          *
2495                          * Make migrate_vma() a best effort thing and backoff
2496                          * for any page we can not lock right away.
2497                          */
2498                         if (!trylock_page(page)) {
2499                                 migrate->src[i] = 0;
2500                                 migrate->cpages--;
2501                                 put_page(page);
2502                                 continue;
2503                         }
2504                         remap = false;
2505                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2506                 }
2507
2508                 /* ZONE_DEVICE pages are not on LRU */
2509                 if (!is_zone_device_page(page)) {
2510                         if (!PageLRU(page) && allow_drain) {
2511                                 /* Drain CPU's pagevec */
2512                                 lru_add_drain_all();
2513                                 allow_drain = false;
2514                         }
2515
2516                         if (isolate_lru_page(page)) {
2517                                 if (remap) {
2518                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2519                                         migrate->cpages--;
2520                                         restore++;
2521                                 } else {
2522                                         migrate->src[i] = 0;
2523                                         unlock_page(page);
2524                                         migrate->cpages--;
2525                                         put_page(page);
2526                                 }
2527                                 continue;
2528                         }
2529
2530                         /* Drop the reference we took in collect */
2531                         put_page(page);
2532                 }
2533
2534                 if (!migrate_vma_check_page(page)) {
2535                         if (remap) {
2536                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2537                                 migrate->cpages--;
2538                                 restore++;
2539
2540                                 if (!is_zone_device_page(page)) {
2541                                         get_page(page);
2542                                         putback_lru_page(page);
2543                                 }
2544                         } else {
2545                                 migrate->src[i] = 0;
2546                                 unlock_page(page);
2547                                 migrate->cpages--;
2548
2549                                 if (!is_zone_device_page(page))
2550                                         putback_lru_page(page);
2551                                 else
2552                                         put_page(page);
2553                         }
2554                 }
2555         }
2556
2557         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2558                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2559
2560                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2561                         continue;
2562
2563                 remove_migration_pte(page, migrate->vma, addr, page);
2564
2565                 migrate->src[i] = 0;
2566                 unlock_page(page);
2567                 put_page(page);
2568                 restore--;
2569         }
2570 }
2571
2572 /*
2573  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2574  * @migrate: migrate struct containing all migration information
2575  *
2576  * Replace page mapping (CPU page table pte) with a special migration pte entry
2577  * and check again if it has been pinned. Pinned pages are restored because we
2578  * cannot migrate them.
2579  *
2580  * This is the last step before we call the device driver callback to allocate
2581  * destination memory and copy contents of original page over to new page.
2582  */
2583 static void migrate_vma_unmap(struct migrate_vma *migrate)
2584 {
2585         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2586         const unsigned long npages = migrate->npages;
2587         const unsigned long start = migrate->start;
2588         unsigned long addr, i, restore = 0;
2589
2590         for (i = 0; i < npages; i++) {
2591                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2592
2593                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2594                         continue;
2595
2596                 if (page_mapped(page)) {
2597                         try_to_unmap(page, flags);
2598                         if (page_mapped(page))
2599                                 goto restore;
2600                 }
2601
2602                 if (migrate_vma_check_page(page))
2603                         continue;
2604
2605 restore:
2606                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2607                 migrate->cpages--;
2608                 restore++;
2609         }
2610
2611         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2612                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2613
2614                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2615                         continue;
2616
2617                 remove_migration_ptes(page, page, false);
2618
2619                 migrate->src[i] = 0;
2620                 unlock_page(page);
2621                 restore--;
2622
2623                 if (is_zone_device_page(page))
2624                         put_page(page);
2625                 else
2626                         putback_lru_page(page);
2627         }
2628 }
2629
2630 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2631                                     unsigned long addr,
2632                                     struct page *page,
2633                                     unsigned long *src,
2634                                     unsigned long *dst)
2635 {
2636         struct vm_area_struct *vma = migrate->vma;
2637         struct mm_struct *mm = vma->vm_mm;
2638         struct mem_cgroup *memcg;
2639         bool flush = false;
2640         spinlock_t *ptl;
2641         pte_t entry;
2642         pgd_t *pgdp;
2643         p4d_t *p4dp;
2644         pud_t *pudp;
2645         pmd_t *pmdp;
2646         pte_t *ptep;
2647
2648         /* Only allow populating anonymous memory */
2649         if (!vma_is_anonymous(vma))
2650                 goto abort;
2651
2652         pgdp = pgd_offset(mm, addr);
2653         p4dp = p4d_alloc(mm, pgdp, addr);
2654         if (!p4dp)
2655                 goto abort;
2656         pudp = pud_alloc(mm, p4dp, addr);
2657         if (!pudp)
2658                 goto abort;
2659         pmdp = pmd_alloc(mm, pudp, addr);
2660         if (!pmdp)
2661                 goto abort;
2662
2663         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2664                 goto abort;
2665
2666         /*
2667          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2668          * pte_offset_map() on pmds where a huge pmd might be created
2669          * from a different thread.
2670          *
2671          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2672          * parallel threads are excluded by other means.
2673          *
2674          * Here we only have down_read(mmap_sem).
2675          */
2676         if (pte_alloc(mm, pmdp, addr))
2677                 goto abort;
2678
2679         /* See the comment in pte_alloc_one_map() */
2680         if (unlikely(pmd_trans_unstable(pmdp)))
2681                 goto abort;
2682
2683         if (unlikely(anon_vma_prepare(vma)))
2684                 goto abort;
2685         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2686                 goto abort;
2687
2688         /*
2689          * The memory barrier inside __SetPageUptodate makes sure that
2690          * preceding stores to the page contents become visible before
2691          * the set_pte_at() write.
2692          */
2693         __SetPageUptodate(page);
2694
2695         if (is_zone_device_page(page)) {
2696                 if (is_device_private_page(page)) {
2697                         swp_entry_t swp_entry;
2698
2699                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2700                         entry = swp_entry_to_pte(swp_entry);
2701                 } else if (is_device_public_page(page)) {
2702                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2703                         if (vma->vm_flags & VM_WRITE)
2704                                 entry = pte_mkwrite(pte_mkdirty(entry));
2705                         entry = pte_mkdevmap(entry);
2706                 }
2707         } else {
2708                 entry = mk_pte(page, vma->vm_page_prot);
2709                 if (vma->vm_flags & VM_WRITE)
2710                         entry = pte_mkwrite(pte_mkdirty(entry));
2711         }
2712
2713         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2714
2715         if (pte_present(*ptep)) {
2716                 unsigned long pfn = pte_pfn(*ptep);
2717
2718                 if (!is_zero_pfn(pfn)) {
2719                         pte_unmap_unlock(ptep, ptl);
2720                         mem_cgroup_cancel_charge(page, memcg, false);
2721                         goto abort;
2722                 }
2723                 flush = true;
2724         } else if (!pte_none(*ptep)) {
2725                 pte_unmap_unlock(ptep, ptl);
2726                 mem_cgroup_cancel_charge(page, memcg, false);
2727                 goto abort;
2728         }
2729
2730         /*
2731          * Check for usefaultfd but do not deliver the fault. Instead,
2732          * just back off.
2733          */
2734         if (userfaultfd_missing(vma)) {
2735                 pte_unmap_unlock(ptep, ptl);
2736                 mem_cgroup_cancel_charge(page, memcg, false);
2737                 goto abort;
2738         }
2739
2740         inc_mm_counter(mm, MM_ANONPAGES);
2741         page_add_new_anon_rmap(page, vma, addr, false);
2742         mem_cgroup_commit_charge(page, memcg, false, false);
2743         if (!is_zone_device_page(page))
2744                 lru_cache_add_active_or_unevictable(page, vma);
2745         get_page(page);
2746
2747         if (flush) {
2748                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2749                 ptep_clear_flush_notify(vma, addr, ptep);
2750                 set_pte_at_notify(mm, addr, ptep, entry);
2751                 update_mmu_cache(vma, addr, ptep);
2752         } else {
2753                 /* No need to invalidate - it was non-present before */
2754                 set_pte_at(mm, addr, ptep, entry);
2755                 update_mmu_cache(vma, addr, ptep);
2756         }
2757
2758         pte_unmap_unlock(ptep, ptl);
2759         *src = MIGRATE_PFN_MIGRATE;
2760         return;
2761
2762 abort:
2763         *src &= ~MIGRATE_PFN_MIGRATE;
2764 }
2765
2766 /*
2767  * migrate_vma_pages() - migrate meta-data from src page to dst page
2768  * @migrate: migrate struct containing all migration information
2769  *
2770  * This migrates struct page meta-data from source struct page to destination
2771  * struct page. This effectively finishes the migration from source page to the
2772  * destination page.
2773  */
2774 static void migrate_vma_pages(struct migrate_vma *migrate)
2775 {
2776         const unsigned long npages = migrate->npages;
2777         const unsigned long start = migrate->start;
2778         struct vm_area_struct *vma = migrate->vma;
2779         struct mm_struct *mm = vma->vm_mm;
2780         unsigned long addr, i, mmu_start;
2781         bool notified = false;
2782
2783         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2784                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2785                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2786                 struct address_space *mapping;
2787                 int r;
2788
2789                 if (!newpage) {
2790                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2791                         continue;
2792                 }
2793
2794                 if (!page) {
2795                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2796                                 continue;
2797                         }
2798                         if (!notified) {
2799                                 mmu_start = addr;
2800                                 notified = true;
2801                                 mmu_notifier_invalidate_range_start(mm,
2802                                                                 mmu_start,
2803                                                                 migrate->end);
2804                         }
2805                         migrate_vma_insert_page(migrate, addr, newpage,
2806                                                 &migrate->src[i],
2807                                                 &migrate->dst[i]);
2808                         continue;
2809                 }
2810
2811                 mapping = page_mapping(page);
2812
2813                 if (is_zone_device_page(newpage)) {
2814                         if (is_device_private_page(newpage)) {
2815                                 /*
2816                                  * For now only support private anonymous when
2817                                  * migrating to un-addressable device memory.
2818                                  */
2819                                 if (mapping) {
2820                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2821                                         continue;
2822                                 }
2823                         } else if (!is_device_public_page(newpage)) {
2824                                 /*
2825                                  * Other types of ZONE_DEVICE page are not
2826                                  * supported.
2827                                  */
2828                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2829                                 continue;
2830                         }
2831                 }
2832
2833                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2834                 if (r != MIGRATEPAGE_SUCCESS)
2835                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2836         }
2837
2838         /*
2839          * No need to double call mmu_notifier->invalidate_range() callback as
2840          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2841          * did already call it.
2842          */
2843         if (notified)
2844                 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2845                                                        migrate->end);
2846 }
2847
2848 /*
2849  * migrate_vma_finalize() - restore CPU page table entry
2850  * @migrate: migrate struct containing all migration information
2851  *
2852  * This replaces the special migration pte entry with either a mapping to the
2853  * new page if migration was successful for that page, or to the original page
2854  * otherwise.
2855  *
2856  * This also unlocks the pages and puts them back on the lru, or drops the extra
2857  * refcount, for device pages.
2858  */
2859 static void migrate_vma_finalize(struct migrate_vma *migrate)
2860 {
2861         const unsigned long npages = migrate->npages;
2862         unsigned long i;
2863
2864         for (i = 0; i < npages; i++) {
2865                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2866                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2867
2868                 if (!page) {
2869                         if (newpage) {
2870                                 unlock_page(newpage);
2871                                 put_page(newpage);
2872                         }
2873                         continue;
2874                 }
2875
2876                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2877                         if (newpage) {
2878                                 unlock_page(newpage);
2879                                 put_page(newpage);
2880                         }
2881                         newpage = page;
2882                 }
2883
2884                 remove_migration_ptes(page, newpage, false);
2885                 unlock_page(page);
2886                 migrate->cpages--;
2887
2888                 if (is_zone_device_page(page))
2889                         put_page(page);
2890                 else
2891                         putback_lru_page(page);
2892
2893                 if (newpage != page) {
2894                         unlock_page(newpage);
2895                         if (is_zone_device_page(newpage))
2896                                 put_page(newpage);
2897                         else
2898                                 putback_lru_page(newpage);
2899                 }
2900         }
2901 }
2902
2903 /*
2904  * migrate_vma() - migrate a range of memory inside vma
2905  *
2906  * @ops: migration callback for allocating destination memory and copying
2907  * @vma: virtual memory area containing the range to be migrated
2908  * @start: start address of the range to migrate (inclusive)
2909  * @end: end address of the range to migrate (exclusive)
2910  * @src: array of hmm_pfn_t containing source pfns
2911  * @dst: array of hmm_pfn_t containing destination pfns
2912  * @private: pointer passed back to each of the callback
2913  * Returns: 0 on success, error code otherwise
2914  *
2915  * This function tries to migrate a range of memory virtual address range, using
2916  * callbacks to allocate and copy memory from source to destination. First it
2917  * collects all the pages backing each virtual address in the range, saving this
2918  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2919  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2920  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2921  * in the corresponding src array entry. It then restores any pages that are
2922  * pinned, by remapping and unlocking those pages.
2923  *
2924  * At this point it calls the alloc_and_copy() callback. For documentation on
2925  * what is expected from that callback, see struct migrate_vma_ops comments in
2926  * include/linux/migrate.h
2927  *
2928  * After the alloc_and_copy() callback, this function goes over each entry in
2929  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2930  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2931  * then the function tries to migrate struct page information from the source
2932  * struct page to the destination struct page. If it fails to migrate the struct
2933  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2934  * array.
2935  *
2936  * At this point all successfully migrated pages have an entry in the src
2937  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2938  * array entry with MIGRATE_PFN_VALID flag set.
2939  *
2940  * It then calls the finalize_and_map() callback. See comments for "struct
2941  * migrate_vma_ops", in include/linux/migrate.h for details about
2942  * finalize_and_map() behavior.
2943  *
2944  * After the finalize_and_map() callback, for successfully migrated pages, this
2945  * function updates the CPU page table to point to new pages, otherwise it
2946  * restores the CPU page table to point to the original source pages.
2947  *
2948  * Function returns 0 after the above steps, even if no pages were migrated
2949  * (The function only returns an error if any of the arguments are invalid.)
2950  *
2951  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2952  * unsigned long entries.
2953  */
2954 int migrate_vma(const struct migrate_vma_ops *ops,
2955                 struct vm_area_struct *vma,
2956                 unsigned long start,
2957                 unsigned long end,
2958                 unsigned long *src,
2959                 unsigned long *dst,
2960                 void *private)
2961 {
2962         struct migrate_vma migrate;
2963
2964         /* Sanity check the arguments */
2965         start &= PAGE_MASK;
2966         end &= PAGE_MASK;
2967         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2968                         vma_is_dax(vma))
2969                 return -EINVAL;
2970         if (start < vma->vm_start || start >= vma->vm_end)
2971                 return -EINVAL;
2972         if (end <= vma->vm_start || end > vma->vm_end)
2973                 return -EINVAL;
2974         if (!ops || !src || !dst || start >= end)
2975                 return -EINVAL;
2976
2977         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2978         migrate.src = src;
2979         migrate.dst = dst;
2980         migrate.start = start;
2981         migrate.npages = 0;
2982         migrate.cpages = 0;
2983         migrate.end = end;
2984         migrate.vma = vma;
2985
2986         /* Collect, and try to unmap source pages */
2987         migrate_vma_collect(&migrate);
2988         if (!migrate.cpages)
2989                 return 0;
2990
2991         /* Lock and isolate page */
2992         migrate_vma_prepare(&migrate);
2993         if (!migrate.cpages)
2994                 return 0;
2995
2996         /* Unmap pages */
2997         migrate_vma_unmap(&migrate);
2998         if (!migrate.cpages)
2999                 return 0;
3000
3001         /*
3002          * At this point pages are locked and unmapped, and thus they have
3003          * stable content and can safely be copied to destination memory that
3004          * is allocated by the callback.
3005          *
3006          * Note that migration can fail in migrate_vma_struct_page() for each
3007          * individual page.
3008          */
3009         ops->alloc_and_copy(vma, src, dst, start, end, private);
3010
3011         /* This does the real migration of struct page */
3012         migrate_vma_pages(&migrate);
3013
3014         ops->finalize_and_map(vma, src, dst, start, end, private);
3015
3016         /* Unlock and remap pages */
3017         migrate_vma_finalize(&migrate);
3018
3019         return 0;
3020 }
3021 EXPORT_SYMBOL(migrate_vma);
3022 #endif /* defined(MIGRATE_VMA_HELPER) */