GNU Linux-libre 4.14.290-gnu1
[releases.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49
50 #include <asm/tlbflush.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/migrate.h>
54
55 #include "internal.h"
56
57 /*
58  * migrate_prep() needs to be called before we start compiling a list of pages
59  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
60  * undesirable, use migrate_prep_local()
61  */
62 int migrate_prep(void)
63 {
64         /*
65          * Clear the LRU lists so pages can be isolated.
66          * Note that pages may be moved off the LRU after we have
67          * drained them. Those pages will fail to migrate like other
68          * pages that may be busy.
69          */
70         lru_add_drain_all();
71
72         return 0;
73 }
74
75 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
76 int migrate_prep_local(void)
77 {
78         lru_add_drain();
79
80         return 0;
81 }
82
83 int isolate_movable_page(struct page *page, isolate_mode_t mode)
84 {
85         struct address_space *mapping;
86
87         /*
88          * Avoid burning cycles with pages that are yet under __free_pages(),
89          * or just got freed under us.
90          *
91          * In case we 'win' a race for a movable page being freed under us and
92          * raise its refcount preventing __free_pages() from doing its job
93          * the put_page() at the end of this block will take care of
94          * release this page, thus avoiding a nasty leakage.
95          */
96         if (unlikely(!get_page_unless_zero(page)))
97                 goto out;
98
99         /*
100          * Check PageMovable before holding a PG_lock because page's owner
101          * assumes anybody doesn't touch PG_lock of newly allocated page
102          * so unconditionally grapping the lock ruins page's owner side.
103          */
104         if (unlikely(!__PageMovable(page)))
105                 goto out_putpage;
106         /*
107          * As movable pages are not isolated from LRU lists, concurrent
108          * compaction threads can race against page migration functions
109          * as well as race against the releasing a page.
110          *
111          * In order to avoid having an already isolated movable page
112          * being (wrongly) re-isolated while it is under migration,
113          * or to avoid attempting to isolate pages being released,
114          * lets be sure we have the page lock
115          * before proceeding with the movable page isolation steps.
116          */
117         if (unlikely(!trylock_page(page)))
118                 goto out_putpage;
119
120         if (!PageMovable(page) || PageIsolated(page))
121                 goto out_no_isolated;
122
123         mapping = page_mapping(page);
124         VM_BUG_ON_PAGE(!mapping, page);
125
126         if (!mapping->a_ops->isolate_page(page, mode))
127                 goto out_no_isolated;
128
129         /* Driver shouldn't use PG_isolated bit of page->flags */
130         WARN_ON_ONCE(PageIsolated(page));
131         __SetPageIsolated(page);
132         unlock_page(page);
133
134         return 0;
135
136 out_no_isolated:
137         unlock_page(page);
138 out_putpage:
139         put_page(page);
140 out:
141         return -EBUSY;
142 }
143
144 /* It should be called on page which is PG_movable */
145 void putback_movable_page(struct page *page)
146 {
147         struct address_space *mapping;
148
149         VM_BUG_ON_PAGE(!PageLocked(page), page);
150         VM_BUG_ON_PAGE(!PageMovable(page), page);
151         VM_BUG_ON_PAGE(!PageIsolated(page), page);
152
153         mapping = page_mapping(page);
154         mapping->a_ops->putback_page(page);
155         __ClearPageIsolated(page);
156 }
157
158 /*
159  * Put previously isolated pages back onto the appropriate lists
160  * from where they were once taken off for compaction/migration.
161  *
162  * This function shall be used whenever the isolated pageset has been
163  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
164  * and isolate_huge_page().
165  */
166 void putback_movable_pages(struct list_head *l)
167 {
168         struct page *page;
169         struct page *page2;
170
171         list_for_each_entry_safe(page, page2, l, lru) {
172                 if (unlikely(PageHuge(page))) {
173                         putback_active_hugepage(page);
174                         continue;
175                 }
176                 list_del(&page->lru);
177                 /*
178                  * We isolated non-lru movable page so here we can use
179                  * __PageMovable because LRU page's mapping cannot have
180                  * PAGE_MAPPING_MOVABLE.
181                  */
182                 if (unlikely(__PageMovable(page))) {
183                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
184                         lock_page(page);
185                         if (PageMovable(page))
186                                 putback_movable_page(page);
187                         else
188                                 __ClearPageIsolated(page);
189                         unlock_page(page);
190                         put_page(page);
191                 } else {
192                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
193                                         page_is_file_cache(page), -hpage_nr_pages(page));
194                         putback_lru_page(page);
195                 }
196         }
197 }
198
199 /*
200  * Restore a potential migration pte to a working pte entry
201  */
202 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
203                                  unsigned long addr, void *old)
204 {
205         struct page_vma_mapped_walk pvmw = {
206                 .page = old,
207                 .vma = vma,
208                 .address = addr,
209                 .flags = PVMW_SYNC | PVMW_MIGRATION,
210         };
211         struct page *new;
212         pte_t pte;
213         swp_entry_t entry;
214
215         VM_BUG_ON_PAGE(PageTail(page), page);
216         while (page_vma_mapped_walk(&pvmw)) {
217                 if (PageKsm(page))
218                         new = page;
219                 else
220                         new = page - pvmw.page->index +
221                                 linear_page_index(vma, pvmw.address);
222
223 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
224                 /* PMD-mapped THP migration entry */
225                 if (!pvmw.pte) {
226                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
227                         remove_migration_pmd(&pvmw, new);
228                         continue;
229                 }
230 #endif
231
232                 get_page(new);
233                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
234                 if (pte_swp_soft_dirty(*pvmw.pte))
235                         pte = pte_mksoft_dirty(pte);
236
237                 /*
238                  * Recheck VMA as permissions can change since migration started
239                  */
240                 entry = pte_to_swp_entry(*pvmw.pte);
241                 if (is_write_migration_entry(entry))
242                         pte = maybe_mkwrite(pte, vma);
243
244                 if (unlikely(is_zone_device_page(new))) {
245                         if (is_device_private_page(new)) {
246                                 entry = make_device_private_entry(new, pte_write(pte));
247                                 pte = swp_entry_to_pte(entry);
248                         } else if (is_device_public_page(new)) {
249                                 pte = pte_mkdevmap(pte);
250                         }
251                 }
252
253 #ifdef CONFIG_HUGETLB_PAGE
254                 if (PageHuge(new)) {
255                         pte = pte_mkhuge(pte);
256                         pte = arch_make_huge_pte(pte, vma, new, 0);
257                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258                         if (PageAnon(new))
259                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
260                         else
261                                 page_dup_rmap(new, true);
262                 } else
263 #endif
264                 {
265                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266
267                         if (PageAnon(new))
268                                 page_add_anon_rmap(new, vma, pvmw.address, false);
269                         else
270                                 page_add_file_rmap(new, false);
271                 }
272                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
273                         mlock_vma_page(new);
274
275                 if (PageTransHuge(page) && PageMlocked(page))
276                         clear_page_mlock(page);
277
278                 /* No need to invalidate - it was non-present before */
279                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280         }
281
282         return true;
283 }
284
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291         struct rmap_walk_control rwc = {
292                 .rmap_one = remove_migration_pte,
293                 .arg = old,
294         };
295
296         if (locked)
297                 rmap_walk_locked(new, &rwc);
298         else
299                 rmap_walk(new, &rwc);
300 }
301
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308                                 spinlock_t *ptl)
309 {
310         pte_t pte;
311         swp_entry_t entry;
312         struct page *page;
313
314         spin_lock(ptl);
315         pte = *ptep;
316         if (!is_swap_pte(pte))
317                 goto out;
318
319         entry = pte_to_swp_entry(pte);
320         if (!is_migration_entry(entry))
321                 goto out;
322
323         page = migration_entry_to_page(entry);
324
325         /*
326          * Once radix-tree replacement of page migration started, page_count
327          * *must* be zero. And, we don't want to call wait_on_page_locked()
328          * against a page without get_page().
329          * So, we use get_page_unless_zero(), here. Even failed, page fault
330          * will occur again.
331          */
332         if (!get_page_unless_zero(page))
333                 goto out;
334         pte_unmap_unlock(ptep, ptl);
335         wait_on_page_locked(page);
336         put_page(page);
337         return;
338 out:
339         pte_unmap_unlock(ptep, ptl);
340 }
341
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343                                 unsigned long address)
344 {
345         spinlock_t *ptl = pte_lockptr(mm, pmd);
346         pte_t *ptep = pte_offset_map(pmd, address);
347         __migration_entry_wait(mm, ptep, ptl);
348 }
349
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351                 struct mm_struct *mm, pte_t *pte)
352 {
353         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354         __migration_entry_wait(mm, pte, ptl);
355 }
356
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360         spinlock_t *ptl;
361         struct page *page;
362
363         ptl = pmd_lock(mm, pmd);
364         if (!is_pmd_migration_entry(*pmd))
365                 goto unlock;
366         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367         if (!get_page_unless_zero(page))
368                 goto unlock;
369         spin_unlock(ptl);
370         wait_on_page_locked(page);
371         put_page(page);
372         return;
373 unlock:
374         spin_unlock(ptl);
375 }
376 #endif
377
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381                                                         enum migrate_mode mode)
382 {
383         struct buffer_head *bh = head;
384
385         /* Simple case, sync compaction */
386         if (mode != MIGRATE_ASYNC) {
387                 do {
388                         get_bh(bh);
389                         lock_buffer(bh);
390                         bh = bh->b_this_page;
391
392                 } while (bh != head);
393
394                 return true;
395         }
396
397         /* async case, we cannot block on lock_buffer so use trylock_buffer */
398         do {
399                 get_bh(bh);
400                 if (!trylock_buffer(bh)) {
401                         /*
402                          * We failed to lock the buffer and cannot stall in
403                          * async migration. Release the taken locks
404                          */
405                         struct buffer_head *failed_bh = bh;
406                         put_bh(failed_bh);
407                         bh = head;
408                         while (bh != failed_bh) {
409                                 unlock_buffer(bh);
410                                 put_bh(bh);
411                                 bh = bh->b_this_page;
412                         }
413                         return false;
414                 }
415
416                 bh = bh->b_this_page;
417         } while (bh != head);
418         return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422                                                         enum migrate_mode mode)
423 {
424         return true;
425 }
426 #endif /* CONFIG_BLOCK */
427
428 /*
429  * Replace the page in the mapping.
430  *
431  * The number of remaining references must be:
432  * 1 for anonymous pages without a mapping
433  * 2 for pages with a mapping
434  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435  */
436 int migrate_page_move_mapping(struct address_space *mapping,
437                 struct page *newpage, struct page *page,
438                 struct buffer_head *head, enum migrate_mode mode,
439                 int extra_count)
440 {
441         struct zone *oldzone, *newzone;
442         int dirty;
443         int expected_count = 1 + extra_count;
444         void **pslot;
445
446         /*
447          * Device public or private pages have an extra refcount as they are
448          * ZONE_DEVICE pages.
449          */
450         expected_count += is_device_private_page(page);
451         expected_count += is_device_public_page(page);
452
453         if (!mapping) {
454                 /* Anonymous page without mapping */
455                 if (page_count(page) != expected_count)
456                         return -EAGAIN;
457
458                 /* No turning back from here */
459                 newpage->index = page->index;
460                 newpage->mapping = page->mapping;
461                 if (PageSwapBacked(page))
462                         __SetPageSwapBacked(newpage);
463
464                 return MIGRATEPAGE_SUCCESS;
465         }
466
467         oldzone = page_zone(page);
468         newzone = page_zone(newpage);
469
470         spin_lock_irq(&mapping->tree_lock);
471
472         pslot = radix_tree_lookup_slot(&mapping->page_tree,
473                                         page_index(page));
474
475         expected_count += 1 + page_has_private(page);
476         if (page_count(page) != expected_count ||
477                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
478                 spin_unlock_irq(&mapping->tree_lock);
479                 return -EAGAIN;
480         }
481
482         if (!page_ref_freeze(page, expected_count)) {
483                 spin_unlock_irq(&mapping->tree_lock);
484                 return -EAGAIN;
485         }
486
487         /*
488          * In the async migration case of moving a page with buffers, lock the
489          * buffers using trylock before the mapping is moved. If the mapping
490          * was moved, we later failed to lock the buffers and could not move
491          * the mapping back due to an elevated page count, we would have to
492          * block waiting on other references to be dropped.
493          */
494         if (mode == MIGRATE_ASYNC && head &&
495                         !buffer_migrate_lock_buffers(head, mode)) {
496                 page_ref_unfreeze(page, expected_count);
497                 spin_unlock_irq(&mapping->tree_lock);
498                 return -EAGAIN;
499         }
500
501         /*
502          * Now we know that no one else is looking at the page:
503          * no turning back from here.
504          */
505         newpage->index = page->index;
506         newpage->mapping = page->mapping;
507         get_page(newpage);      /* add cache reference */
508         if (PageSwapBacked(page)) {
509                 __SetPageSwapBacked(newpage);
510                 if (PageSwapCache(page)) {
511                         SetPageSwapCache(newpage);
512                         set_page_private(newpage, page_private(page));
513                 }
514         } else {
515                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
516         }
517
518         /* Move dirty while page refs frozen and newpage not yet exposed */
519         dirty = PageDirty(page);
520         if (dirty) {
521                 ClearPageDirty(page);
522                 SetPageDirty(newpage);
523         }
524
525         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
526
527         /*
528          * Drop cache reference from old page by unfreezing
529          * to one less reference.
530          * We know this isn't the last reference.
531          */
532         page_ref_unfreeze(page, expected_count - 1);
533
534         spin_unlock(&mapping->tree_lock);
535         /* Leave irq disabled to prevent preemption while updating stats */
536
537         /*
538          * If moved to a different zone then also account
539          * the page for that zone. Other VM counters will be
540          * taken care of when we establish references to the
541          * new page and drop references to the old page.
542          *
543          * Note that anonymous pages are accounted for
544          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
545          * are mapped to swap space.
546          */
547         if (newzone != oldzone) {
548                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
549                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
550                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
551                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
552                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
553                 }
554                 if (dirty && mapping_cap_account_dirty(mapping)) {
555                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
556                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
557                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
558                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
559                 }
560         }
561         local_irq_enable();
562
563         return MIGRATEPAGE_SUCCESS;
564 }
565 EXPORT_SYMBOL(migrate_page_move_mapping);
566
567 /*
568  * The expected number of remaining references is the same as that
569  * of migrate_page_move_mapping().
570  */
571 int migrate_huge_page_move_mapping(struct address_space *mapping,
572                                    struct page *newpage, struct page *page)
573 {
574         int expected_count;
575         void **pslot;
576
577         spin_lock_irq(&mapping->tree_lock);
578
579         pslot = radix_tree_lookup_slot(&mapping->page_tree,
580                                         page_index(page));
581
582         expected_count = 2 + page_has_private(page);
583         if (page_count(page) != expected_count ||
584                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
585                 spin_unlock_irq(&mapping->tree_lock);
586                 return -EAGAIN;
587         }
588
589         if (!page_ref_freeze(page, expected_count)) {
590                 spin_unlock_irq(&mapping->tree_lock);
591                 return -EAGAIN;
592         }
593
594         newpage->index = page->index;
595         newpage->mapping = page->mapping;
596
597         get_page(newpage);
598
599         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
600
601         page_ref_unfreeze(page, expected_count - 1);
602
603         spin_unlock_irq(&mapping->tree_lock);
604
605         return MIGRATEPAGE_SUCCESS;
606 }
607
608 /*
609  * Gigantic pages are so large that we do not guarantee that page++ pointer
610  * arithmetic will work across the entire page.  We need something more
611  * specialized.
612  */
613 static void __copy_gigantic_page(struct page *dst, struct page *src,
614                                 int nr_pages)
615 {
616         int i;
617         struct page *dst_base = dst;
618         struct page *src_base = src;
619
620         for (i = 0; i < nr_pages; ) {
621                 cond_resched();
622                 copy_highpage(dst, src);
623
624                 i++;
625                 dst = mem_map_next(dst, dst_base, i);
626                 src = mem_map_next(src, src_base, i);
627         }
628 }
629
630 static void copy_huge_page(struct page *dst, struct page *src)
631 {
632         int i;
633         int nr_pages;
634
635         if (PageHuge(src)) {
636                 /* hugetlbfs page */
637                 struct hstate *h = page_hstate(src);
638                 nr_pages = pages_per_huge_page(h);
639
640                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
641                         __copy_gigantic_page(dst, src, nr_pages);
642                         return;
643                 }
644         } else {
645                 /* thp page */
646                 BUG_ON(!PageTransHuge(src));
647                 nr_pages = hpage_nr_pages(src);
648         }
649
650         for (i = 0; i < nr_pages; i++) {
651                 cond_resched();
652                 copy_highpage(dst + i, src + i);
653         }
654 }
655
656 /*
657  * Copy the page to its new location
658  */
659 void migrate_page_states(struct page *newpage, struct page *page)
660 {
661         int cpupid;
662
663         if (PageError(page))
664                 SetPageError(newpage);
665         if (PageReferenced(page))
666                 SetPageReferenced(newpage);
667         if (PageUptodate(page))
668                 SetPageUptodate(newpage);
669         if (TestClearPageActive(page)) {
670                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
671                 SetPageActive(newpage);
672         } else if (TestClearPageUnevictable(page))
673                 SetPageUnevictable(newpage);
674         if (PageChecked(page))
675                 SetPageChecked(newpage);
676         if (PageMappedToDisk(page))
677                 SetPageMappedToDisk(newpage);
678
679         /* Move dirty on pages not done by migrate_page_move_mapping() */
680         if (PageDirty(page))
681                 SetPageDirty(newpage);
682
683         if (page_is_young(page))
684                 set_page_young(newpage);
685         if (page_is_idle(page))
686                 set_page_idle(newpage);
687
688         /*
689          * Copy NUMA information to the new page, to prevent over-eager
690          * future migrations of this same page.
691          */
692         cpupid = page_cpupid_xchg_last(page, -1);
693         page_cpupid_xchg_last(newpage, cpupid);
694
695         ksm_migrate_page(newpage, page);
696         /*
697          * Please do not reorder this without considering how mm/ksm.c's
698          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
699          */
700         if (PageSwapCache(page))
701                 ClearPageSwapCache(page);
702         ClearPagePrivate(page);
703         set_page_private(page, 0);
704
705         /*
706          * If any waiters have accumulated on the new page then
707          * wake them up.
708          */
709         if (PageWriteback(newpage))
710                 end_page_writeback(newpage);
711
712         copy_page_owner(page, newpage);
713
714         mem_cgroup_migrate(page, newpage);
715 }
716 EXPORT_SYMBOL(migrate_page_states);
717
718 void migrate_page_copy(struct page *newpage, struct page *page)
719 {
720         if (PageHuge(page) || PageTransHuge(page))
721                 copy_huge_page(newpage, page);
722         else
723                 copy_highpage(newpage, page);
724
725         migrate_page_states(newpage, page);
726 }
727 EXPORT_SYMBOL(migrate_page_copy);
728
729 /************************************************************
730  *                    Migration functions
731  ***********************************************************/
732
733 /*
734  * Common logic to directly migrate a single LRU page suitable for
735  * pages that do not use PagePrivate/PagePrivate2.
736  *
737  * Pages are locked upon entry and exit.
738  */
739 int migrate_page(struct address_space *mapping,
740                 struct page *newpage, struct page *page,
741                 enum migrate_mode mode)
742 {
743         int rc;
744
745         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
746
747         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
748
749         if (rc != MIGRATEPAGE_SUCCESS)
750                 return rc;
751
752         if (mode != MIGRATE_SYNC_NO_COPY)
753                 migrate_page_copy(newpage, page);
754         else
755                 migrate_page_states(newpage, page);
756         return MIGRATEPAGE_SUCCESS;
757 }
758 EXPORT_SYMBOL(migrate_page);
759
760 #ifdef CONFIG_BLOCK
761 /*
762  * Migration function for pages with buffers. This function can only be used
763  * if the underlying filesystem guarantees that no other references to "page"
764  * exist.
765  */
766 int buffer_migrate_page(struct address_space *mapping,
767                 struct page *newpage, struct page *page, enum migrate_mode mode)
768 {
769         struct buffer_head *bh, *head;
770         int rc;
771
772         if (!page_has_buffers(page))
773                 return migrate_page(mapping, newpage, page, mode);
774
775         head = page_buffers(page);
776
777         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
778
779         if (rc != MIGRATEPAGE_SUCCESS)
780                 return rc;
781
782         /*
783          * In the async case, migrate_page_move_mapping locked the buffers
784          * with an IRQ-safe spinlock held. In the sync case, the buffers
785          * need to be locked now
786          */
787         if (mode != MIGRATE_ASYNC)
788                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
789
790         ClearPagePrivate(page);
791         set_page_private(newpage, page_private(page));
792         set_page_private(page, 0);
793         put_page(page);
794         get_page(newpage);
795
796         bh = head;
797         do {
798                 set_bh_page(bh, newpage, bh_offset(bh));
799                 bh = bh->b_this_page;
800
801         } while (bh != head);
802
803         SetPagePrivate(newpage);
804
805         if (mode != MIGRATE_SYNC_NO_COPY)
806                 migrate_page_copy(newpage, page);
807         else
808                 migrate_page_states(newpage, page);
809
810         bh = head;
811         do {
812                 unlock_buffer(bh);
813                 put_bh(bh);
814                 bh = bh->b_this_page;
815
816         } while (bh != head);
817
818         return MIGRATEPAGE_SUCCESS;
819 }
820 EXPORT_SYMBOL(buffer_migrate_page);
821 #endif
822
823 /*
824  * Writeback a page to clean the dirty state
825  */
826 static int writeout(struct address_space *mapping, struct page *page)
827 {
828         struct writeback_control wbc = {
829                 .sync_mode = WB_SYNC_NONE,
830                 .nr_to_write = 1,
831                 .range_start = 0,
832                 .range_end = LLONG_MAX,
833                 .for_reclaim = 1
834         };
835         int rc;
836
837         if (!mapping->a_ops->writepage)
838                 /* No write method for the address space */
839                 return -EINVAL;
840
841         if (!clear_page_dirty_for_io(page))
842                 /* Someone else already triggered a write */
843                 return -EAGAIN;
844
845         /*
846          * A dirty page may imply that the underlying filesystem has
847          * the page on some queue. So the page must be clean for
848          * migration. Writeout may mean we loose the lock and the
849          * page state is no longer what we checked for earlier.
850          * At this point we know that the migration attempt cannot
851          * be successful.
852          */
853         remove_migration_ptes(page, page, false);
854
855         rc = mapping->a_ops->writepage(page, &wbc);
856
857         if (rc != AOP_WRITEPAGE_ACTIVATE)
858                 /* unlocked. Relock */
859                 lock_page(page);
860
861         return (rc < 0) ? -EIO : -EAGAIN;
862 }
863
864 /*
865  * Default handling if a filesystem does not provide a migration function.
866  */
867 static int fallback_migrate_page(struct address_space *mapping,
868         struct page *newpage, struct page *page, enum migrate_mode mode)
869 {
870         if (PageDirty(page)) {
871                 /* Only writeback pages in full synchronous migration */
872                 switch (mode) {
873                 case MIGRATE_SYNC:
874                 case MIGRATE_SYNC_NO_COPY:
875                         break;
876                 default:
877                         return -EBUSY;
878                 }
879                 return writeout(mapping, page);
880         }
881
882         /*
883          * Buffers may be managed in a filesystem specific way.
884          * We must have no buffers or drop them.
885          */
886         if (page_has_private(page) &&
887             !try_to_release_page(page, GFP_KERNEL))
888                 return -EAGAIN;
889
890         return migrate_page(mapping, newpage, page, mode);
891 }
892
893 /*
894  * Move a page to a newly allocated page
895  * The page is locked and all ptes have been successfully removed.
896  *
897  * The new page will have replaced the old page if this function
898  * is successful.
899  *
900  * Return value:
901  *   < 0 - error code
902  *  MIGRATEPAGE_SUCCESS - success
903  */
904 static int move_to_new_page(struct page *newpage, struct page *page,
905                                 enum migrate_mode mode)
906 {
907         struct address_space *mapping;
908         int rc = -EAGAIN;
909         bool is_lru = !__PageMovable(page);
910
911         VM_BUG_ON_PAGE(!PageLocked(page), page);
912         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
913
914         mapping = page_mapping(page);
915
916         if (likely(is_lru)) {
917                 if (!mapping)
918                         rc = migrate_page(mapping, newpage, page, mode);
919                 else if (mapping->a_ops->migratepage)
920                         /*
921                          * Most pages have a mapping and most filesystems
922                          * provide a migratepage callback. Anonymous pages
923                          * are part of swap space which also has its own
924                          * migratepage callback. This is the most common path
925                          * for page migration.
926                          */
927                         rc = mapping->a_ops->migratepage(mapping, newpage,
928                                                         page, mode);
929                 else
930                         rc = fallback_migrate_page(mapping, newpage,
931                                                         page, mode);
932         } else {
933                 /*
934                  * In case of non-lru page, it could be released after
935                  * isolation step. In that case, we shouldn't try migration.
936                  */
937                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
938                 if (!PageMovable(page)) {
939                         rc = MIGRATEPAGE_SUCCESS;
940                         __ClearPageIsolated(page);
941                         goto out;
942                 }
943
944                 rc = mapping->a_ops->migratepage(mapping, newpage,
945                                                 page, mode);
946                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
947                         !PageIsolated(page));
948         }
949
950         /*
951          * When successful, old pagecache page->mapping must be cleared before
952          * page is freed; but stats require that PageAnon be left as PageAnon.
953          */
954         if (rc == MIGRATEPAGE_SUCCESS) {
955                 if (__PageMovable(page)) {
956                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
957
958                         /*
959                          * We clear PG_movable under page_lock so any compactor
960                          * cannot try to migrate this page.
961                          */
962                         __ClearPageIsolated(page);
963                 }
964
965                 /*
966                  * Anonymous and movable page->mapping will be cleard by
967                  * free_pages_prepare so don't reset it here for keeping
968                  * the type to work PageAnon, for example.
969                  */
970                 if (!PageMappingFlags(page))
971                         page->mapping = NULL;
972
973                 if (unlikely(is_zone_device_page(newpage))) {
974                         if (is_device_public_page(newpage))
975                                 flush_dcache_page(newpage);
976                 } else
977                         flush_dcache_page(newpage);
978
979         }
980 out:
981         return rc;
982 }
983
984 static int __unmap_and_move(struct page *page, struct page *newpage,
985                                 int force, enum migrate_mode mode)
986 {
987         int rc = -EAGAIN;
988         int page_was_mapped = 0;
989         struct anon_vma *anon_vma = NULL;
990         bool is_lru = !__PageMovable(page);
991
992         if (!trylock_page(page)) {
993                 if (!force || mode == MIGRATE_ASYNC)
994                         goto out;
995
996                 /*
997                  * It's not safe for direct compaction to call lock_page.
998                  * For example, during page readahead pages are added locked
999                  * to the LRU. Later, when the IO completes the pages are
1000                  * marked uptodate and unlocked. However, the queueing
1001                  * could be merging multiple pages for one bio (e.g.
1002                  * mpage_readpages). If an allocation happens for the
1003                  * second or third page, the process can end up locking
1004                  * the same page twice and deadlocking. Rather than
1005                  * trying to be clever about what pages can be locked,
1006                  * avoid the use of lock_page for direct compaction
1007                  * altogether.
1008                  */
1009                 if (current->flags & PF_MEMALLOC)
1010                         goto out;
1011
1012                 lock_page(page);
1013         }
1014
1015         if (PageWriteback(page)) {
1016                 /*
1017                  * Only in the case of a full synchronous migration is it
1018                  * necessary to wait for PageWriteback. In the async case,
1019                  * the retry loop is too short and in the sync-light case,
1020                  * the overhead of stalling is too much
1021                  */
1022                 switch (mode) {
1023                 case MIGRATE_SYNC:
1024                 case MIGRATE_SYNC_NO_COPY:
1025                         break;
1026                 default:
1027                         rc = -EBUSY;
1028                         goto out_unlock;
1029                 }
1030                 if (!force)
1031                         goto out_unlock;
1032                 wait_on_page_writeback(page);
1033         }
1034
1035         /*
1036          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1037          * we cannot notice that anon_vma is freed while we migrates a page.
1038          * This get_anon_vma() delays freeing anon_vma pointer until the end
1039          * of migration. File cache pages are no problem because of page_lock()
1040          * File Caches may use write_page() or lock_page() in migration, then,
1041          * just care Anon page here.
1042          *
1043          * Only page_get_anon_vma() understands the subtleties of
1044          * getting a hold on an anon_vma from outside one of its mms.
1045          * But if we cannot get anon_vma, then we won't need it anyway,
1046          * because that implies that the anon page is no longer mapped
1047          * (and cannot be remapped so long as we hold the page lock).
1048          */
1049         if (PageAnon(page) && !PageKsm(page))
1050                 anon_vma = page_get_anon_vma(page);
1051
1052         /*
1053          * Block others from accessing the new page when we get around to
1054          * establishing additional references. We are usually the only one
1055          * holding a reference to newpage at this point. We used to have a BUG
1056          * here if trylock_page(newpage) fails, but would like to allow for
1057          * cases where there might be a race with the previous use of newpage.
1058          * This is much like races on refcount of oldpage: just don't BUG().
1059          */
1060         if (unlikely(!trylock_page(newpage)))
1061                 goto out_unlock;
1062
1063         if (unlikely(!is_lru)) {
1064                 rc = move_to_new_page(newpage, page, mode);
1065                 goto out_unlock_both;
1066         }
1067
1068         /*
1069          * Corner case handling:
1070          * 1. When a new swap-cache page is read into, it is added to the LRU
1071          * and treated as swapcache but it has no rmap yet.
1072          * Calling try_to_unmap() against a page->mapping==NULL page will
1073          * trigger a BUG.  So handle it here.
1074          * 2. An orphaned page (see truncate_complete_page) might have
1075          * fs-private metadata. The page can be picked up due to memory
1076          * offlining.  Everywhere else except page reclaim, the page is
1077          * invisible to the vm, so the page can not be migrated.  So try to
1078          * free the metadata, so the page can be freed.
1079          */
1080         if (!page->mapping) {
1081                 VM_BUG_ON_PAGE(PageAnon(page), page);
1082                 if (page_has_private(page)) {
1083                         try_to_free_buffers(page);
1084                         goto out_unlock_both;
1085                 }
1086         } else if (page_mapped(page)) {
1087                 /* Establish migration ptes */
1088                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1089                                 page);
1090                 try_to_unmap(page,
1091                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1092                 page_was_mapped = 1;
1093         }
1094
1095         if (!page_mapped(page))
1096                 rc = move_to_new_page(newpage, page, mode);
1097
1098         if (page_was_mapped)
1099                 remove_migration_ptes(page,
1100                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1101
1102 out_unlock_both:
1103         unlock_page(newpage);
1104 out_unlock:
1105         /* Drop an anon_vma reference if we took one */
1106         if (anon_vma)
1107                 put_anon_vma(anon_vma);
1108         unlock_page(page);
1109 out:
1110         /*
1111          * If migration is successful, decrease refcount of the newpage
1112          * which will not free the page because new page owner increased
1113          * refcounter. As well, if it is LRU page, add the page to LRU
1114          * list in here. Use the old state of the isolated source page to
1115          * determine if we migrated a LRU page. newpage was already unlocked
1116          * and possibly modified by its owner - don't rely on the page
1117          * state.
1118          */
1119         if (rc == MIGRATEPAGE_SUCCESS) {
1120                 if (unlikely(!is_lru))
1121                         put_page(newpage);
1122                 else
1123                         putback_lru_page(newpage);
1124         }
1125
1126         return rc;
1127 }
1128
1129 /*
1130  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1131  * around it.
1132  */
1133 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1134 #define ICE_noinline noinline
1135 #else
1136 #define ICE_noinline
1137 #endif
1138
1139 /*
1140  * Obtain the lock on page, remove all ptes and migrate the page
1141  * to the newly allocated page in newpage.
1142  */
1143 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1144                                    free_page_t put_new_page,
1145                                    unsigned long private, struct page *page,
1146                                    int force, enum migrate_mode mode,
1147                                    enum migrate_reason reason)
1148 {
1149         int rc = MIGRATEPAGE_SUCCESS;
1150         int *result = NULL;
1151         struct page *newpage;
1152
1153         newpage = get_new_page(page, private, &result);
1154         if (!newpage)
1155                 return -ENOMEM;
1156
1157         if (page_count(page) == 1) {
1158                 /* page was freed from under us. So we are done. */
1159                 ClearPageActive(page);
1160                 ClearPageUnevictable(page);
1161                 if (unlikely(__PageMovable(page))) {
1162                         lock_page(page);
1163                         if (!PageMovable(page))
1164                                 __ClearPageIsolated(page);
1165                         unlock_page(page);
1166                 }
1167                 if (put_new_page)
1168                         put_new_page(newpage, private);
1169                 else
1170                         put_page(newpage);
1171                 goto out;
1172         }
1173
1174         if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1175                 lock_page(page);
1176                 rc = split_huge_page(page);
1177                 unlock_page(page);
1178                 if (rc)
1179                         goto out;
1180         }
1181
1182         rc = __unmap_and_move(page, newpage, force, mode);
1183         if (rc == MIGRATEPAGE_SUCCESS)
1184                 set_page_owner_migrate_reason(newpage, reason);
1185
1186 out:
1187         if (rc != -EAGAIN) {
1188                 /*
1189                  * A page that has been migrated has all references
1190                  * removed and will be freed. A page that has not been
1191                  * migrated will have kepts its references and be
1192                  * restored.
1193                  */
1194                 list_del(&page->lru);
1195
1196                 /*
1197                  * Compaction can migrate also non-LRU pages which are
1198                  * not accounted to NR_ISOLATED_*. They can be recognized
1199                  * as __PageMovable
1200                  */
1201                 if (likely(!__PageMovable(page)))
1202                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1203                                         page_is_file_cache(page), -hpage_nr_pages(page));
1204         }
1205
1206         /*
1207          * If migration is successful, releases reference grabbed during
1208          * isolation. Otherwise, restore the page to right list unless
1209          * we want to retry.
1210          */
1211         if (rc == MIGRATEPAGE_SUCCESS) {
1212                 put_page(page);
1213                 if (reason == MR_MEMORY_FAILURE) {
1214                         /*
1215                          * Set PG_HWPoison on just freed page
1216                          * intentionally. Although it's rather weird,
1217                          * it's how HWPoison flag works at the moment.
1218                          */
1219                         if (!test_set_page_hwpoison(page))
1220                                 num_poisoned_pages_inc();
1221                 }
1222         } else {
1223                 if (rc != -EAGAIN) {
1224                         if (likely(!__PageMovable(page))) {
1225                                 putback_lru_page(page);
1226                                 goto put_new;
1227                         }
1228
1229                         lock_page(page);
1230                         if (PageMovable(page))
1231                                 putback_movable_page(page);
1232                         else
1233                                 __ClearPageIsolated(page);
1234                         unlock_page(page);
1235                         put_page(page);
1236                 }
1237 put_new:
1238                 if (put_new_page)
1239                         put_new_page(newpage, private);
1240                 else
1241                         put_page(newpage);
1242         }
1243
1244         if (result) {
1245                 if (rc)
1246                         *result = rc;
1247                 else
1248                         *result = page_to_nid(newpage);
1249         }
1250         return rc;
1251 }
1252
1253 /*
1254  * Counterpart of unmap_and_move_page() for hugepage migration.
1255  *
1256  * This function doesn't wait the completion of hugepage I/O
1257  * because there is no race between I/O and migration for hugepage.
1258  * Note that currently hugepage I/O occurs only in direct I/O
1259  * where no lock is held and PG_writeback is irrelevant,
1260  * and writeback status of all subpages are counted in the reference
1261  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1262  * under direct I/O, the reference of the head page is 512 and a bit more.)
1263  * This means that when we try to migrate hugepage whose subpages are
1264  * doing direct I/O, some references remain after try_to_unmap() and
1265  * hugepage migration fails without data corruption.
1266  *
1267  * There is also no race when direct I/O is issued on the page under migration,
1268  * because then pte is replaced with migration swap entry and direct I/O code
1269  * will wait in the page fault for migration to complete.
1270  */
1271 static int unmap_and_move_huge_page(new_page_t get_new_page,
1272                                 free_page_t put_new_page, unsigned long private,
1273                                 struct page *hpage, int force,
1274                                 enum migrate_mode mode, int reason)
1275 {
1276         int rc = -EAGAIN;
1277         int *result = NULL;
1278         int page_was_mapped = 0;
1279         struct page *new_hpage;
1280         struct anon_vma *anon_vma = NULL;
1281
1282         /*
1283          * Movability of hugepages depends on architectures and hugepage size.
1284          * This check is necessary because some callers of hugepage migration
1285          * like soft offline and memory hotremove don't walk through page
1286          * tables or check whether the hugepage is pmd-based or not before
1287          * kicking migration.
1288          */
1289         if (!hugepage_migration_supported(page_hstate(hpage))) {
1290                 putback_active_hugepage(hpage);
1291                 return -ENOSYS;
1292         }
1293
1294         new_hpage = get_new_page(hpage, private, &result);
1295         if (!new_hpage)
1296                 return -ENOMEM;
1297
1298         if (!trylock_page(hpage)) {
1299                 if (!force)
1300                         goto out;
1301                 switch (mode) {
1302                 case MIGRATE_SYNC:
1303                 case MIGRATE_SYNC_NO_COPY:
1304                         break;
1305                 default:
1306                         goto out;
1307                 }
1308                 lock_page(hpage);
1309         }
1310
1311         /*
1312          * Check for pages which are in the process of being freed.  Without
1313          * page_mapping() set, hugetlbfs specific move page routine will not
1314          * be called and we could leak usage counts for subpools.
1315          */
1316         if (page_private(hpage) && !page_mapping(hpage)) {
1317                 rc = -EBUSY;
1318                 goto out_unlock;
1319         }
1320
1321         if (PageAnon(hpage))
1322                 anon_vma = page_get_anon_vma(hpage);
1323
1324         if (unlikely(!trylock_page(new_hpage)))
1325                 goto put_anon;
1326
1327         if (page_mapped(hpage)) {
1328                 try_to_unmap(hpage,
1329                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1330                 page_was_mapped = 1;
1331         }
1332
1333         if (!page_mapped(hpage))
1334                 rc = move_to_new_page(new_hpage, hpage, mode);
1335
1336         if (page_was_mapped)
1337                 remove_migration_ptes(hpage,
1338                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1339
1340         unlock_page(new_hpage);
1341
1342 put_anon:
1343         if (anon_vma)
1344                 put_anon_vma(anon_vma);
1345
1346         if (rc == MIGRATEPAGE_SUCCESS) {
1347                 hugetlb_cgroup_migrate(hpage, new_hpage);
1348                 put_new_page = NULL;
1349                 set_page_owner_migrate_reason(new_hpage, reason);
1350         }
1351
1352 out_unlock:
1353         unlock_page(hpage);
1354 out:
1355         if (rc != -EAGAIN)
1356                 putback_active_hugepage(hpage);
1357         if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1358                 num_poisoned_pages_inc();
1359
1360         /*
1361          * If migration was not successful and there's a freeing callback, use
1362          * it.  Otherwise, put_page() will drop the reference grabbed during
1363          * isolation.
1364          */
1365         if (put_new_page)
1366                 put_new_page(new_hpage, private);
1367         else
1368                 putback_active_hugepage(new_hpage);
1369
1370         if (result) {
1371                 if (rc)
1372                         *result = rc;
1373                 else
1374                         *result = page_to_nid(new_hpage);
1375         }
1376         return rc;
1377 }
1378
1379 /*
1380  * migrate_pages - migrate the pages specified in a list, to the free pages
1381  *                 supplied as the target for the page migration
1382  *
1383  * @from:               The list of pages to be migrated.
1384  * @get_new_page:       The function used to allocate free pages to be used
1385  *                      as the target of the page migration.
1386  * @put_new_page:       The function used to free target pages if migration
1387  *                      fails, or NULL if no special handling is necessary.
1388  * @private:            Private data to be passed on to get_new_page()
1389  * @mode:               The migration mode that specifies the constraints for
1390  *                      page migration, if any.
1391  * @reason:             The reason for page migration.
1392  *
1393  * The function returns after 10 attempts or if no pages are movable any more
1394  * because the list has become empty or no retryable pages exist any more.
1395  * The caller should call putback_movable_pages() to return pages to the LRU
1396  * or free list only if ret != 0.
1397  *
1398  * Returns the number of pages that were not migrated, or an error code.
1399  */
1400 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1401                 free_page_t put_new_page, unsigned long private,
1402                 enum migrate_mode mode, int reason)
1403 {
1404         int retry = 1;
1405         int nr_failed = 0;
1406         int nr_succeeded = 0;
1407         int pass = 0;
1408         struct page *page;
1409         struct page *page2;
1410         int swapwrite = current->flags & PF_SWAPWRITE;
1411         int rc;
1412
1413         if (!swapwrite)
1414                 current->flags |= PF_SWAPWRITE;
1415
1416         for(pass = 0; pass < 10 && retry; pass++) {
1417                 retry = 0;
1418
1419                 list_for_each_entry_safe(page, page2, from, lru) {
1420                         cond_resched();
1421
1422                         if (PageHuge(page))
1423                                 rc = unmap_and_move_huge_page(get_new_page,
1424                                                 put_new_page, private, page,
1425                                                 pass > 2, mode, reason);
1426                         else
1427                                 rc = unmap_and_move(get_new_page, put_new_page,
1428                                                 private, page, pass > 2, mode,
1429                                                 reason);
1430
1431                         switch(rc) {
1432                         case -ENOMEM:
1433                                 nr_failed++;
1434                                 goto out;
1435                         case -EAGAIN:
1436                                 retry++;
1437                                 break;
1438                         case MIGRATEPAGE_SUCCESS:
1439                                 nr_succeeded++;
1440                                 break;
1441                         default:
1442                                 /*
1443                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1444                                  * unlike -EAGAIN case, the failed page is
1445                                  * removed from migration page list and not
1446                                  * retried in the next outer loop.
1447                                  */
1448                                 nr_failed++;
1449                                 break;
1450                         }
1451                 }
1452         }
1453         nr_failed += retry;
1454         rc = nr_failed;
1455 out:
1456         if (nr_succeeded)
1457                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1458         if (nr_failed)
1459                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1460         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1461
1462         if (!swapwrite)
1463                 current->flags &= ~PF_SWAPWRITE;
1464
1465         return rc;
1466 }
1467
1468 #ifdef CONFIG_NUMA
1469 /*
1470  * Move a list of individual pages
1471  */
1472 struct page_to_node {
1473         unsigned long addr;
1474         struct page *page;
1475         int node;
1476         int status;
1477 };
1478
1479 static struct page *new_page_node(struct page *p, unsigned long private,
1480                 int **result)
1481 {
1482         struct page_to_node *pm = (struct page_to_node *)private;
1483
1484         while (pm->node != MAX_NUMNODES && pm->page != p)
1485                 pm++;
1486
1487         if (pm->node == MAX_NUMNODES)
1488                 return NULL;
1489
1490         *result = &pm->status;
1491
1492         if (PageHuge(p))
1493                 return alloc_huge_page_node(page_hstate(compound_head(p)),
1494                                         pm->node);
1495         else if (thp_migration_supported() && PageTransHuge(p)) {
1496                 struct page *thp;
1497
1498                 thp = alloc_pages_node(pm->node,
1499                         (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1500                         HPAGE_PMD_ORDER);
1501                 if (!thp)
1502                         return NULL;
1503                 prep_transhuge_page(thp);
1504                 return thp;
1505         } else
1506                 return __alloc_pages_node(pm->node,
1507                                 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1508 }
1509
1510 /*
1511  * Move a set of pages as indicated in the pm array. The addr
1512  * field must be set to the virtual address of the page to be moved
1513  * and the node number must contain a valid target node.
1514  * The pm array ends with node = MAX_NUMNODES.
1515  */
1516 static int do_move_page_to_node_array(struct mm_struct *mm,
1517                                       struct page_to_node *pm,
1518                                       int migrate_all)
1519 {
1520         int err;
1521         struct page_to_node *pp;
1522         LIST_HEAD(pagelist);
1523
1524         down_read(&mm->mmap_sem);
1525
1526         /*
1527          * Build a list of pages to migrate
1528          */
1529         for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1530                 struct vm_area_struct *vma;
1531                 struct page *page;
1532                 struct page *head;
1533                 unsigned int follflags;
1534
1535                 err = -EFAULT;
1536                 vma = find_vma(mm, pp->addr);
1537                 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1538                         goto set_status;
1539
1540                 /* FOLL_DUMP to ignore special (like zero) pages */
1541                 follflags = FOLL_GET | FOLL_DUMP;
1542                 if (!thp_migration_supported())
1543                         follflags |= FOLL_SPLIT;
1544                 page = follow_page(vma, pp->addr, follflags);
1545
1546                 err = PTR_ERR(page);
1547                 if (IS_ERR(page))
1548                         goto set_status;
1549
1550                 err = -ENOENT;
1551                 if (!page)
1552                         goto set_status;
1553
1554                 err = page_to_nid(page);
1555
1556                 if (err == pp->node)
1557                         /*
1558                          * Node already in the right place
1559                          */
1560                         goto put_and_set;
1561
1562                 err = -EACCES;
1563                 if (page_mapcount(page) > 1 &&
1564                                 !migrate_all)
1565                         goto put_and_set;
1566
1567                 if (PageHuge(page)) {
1568                         if (PageHead(page)) {
1569                                 isolate_huge_page(page, &pagelist);
1570                                 err = 0;
1571                                 pp->page = page;
1572                         }
1573                         goto put_and_set;
1574                 }
1575
1576                 pp->page = compound_head(page);
1577                 head = compound_head(page);
1578                 err = isolate_lru_page(head);
1579                 if (!err) {
1580                         list_add_tail(&head->lru, &pagelist);
1581                         mod_node_page_state(page_pgdat(head),
1582                                 NR_ISOLATED_ANON + page_is_file_cache(head),
1583                                 hpage_nr_pages(head));
1584                 }
1585 put_and_set:
1586                 /*
1587                  * Either remove the duplicate refcount from
1588                  * isolate_lru_page() or drop the page ref if it was
1589                  * not isolated.
1590                  */
1591                 put_page(page);
1592 set_status:
1593                 pp->status = err;
1594         }
1595
1596         err = 0;
1597         if (!list_empty(&pagelist)) {
1598                 err = migrate_pages(&pagelist, new_page_node, NULL,
1599                                 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1600                 if (err)
1601                         putback_movable_pages(&pagelist);
1602         }
1603
1604         up_read(&mm->mmap_sem);
1605         return err;
1606 }
1607
1608 /*
1609  * Migrate an array of page address onto an array of nodes and fill
1610  * the corresponding array of status.
1611  */
1612 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1613                          unsigned long nr_pages,
1614                          const void __user * __user *pages,
1615                          const int __user *nodes,
1616                          int __user *status, int flags)
1617 {
1618         struct page_to_node *pm;
1619         unsigned long chunk_nr_pages;
1620         unsigned long chunk_start;
1621         int err;
1622
1623         err = -ENOMEM;
1624         pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1625         if (!pm)
1626                 goto out;
1627
1628         migrate_prep();
1629
1630         /*
1631          * Store a chunk of page_to_node array in a page,
1632          * but keep the last one as a marker
1633          */
1634         chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1635
1636         for (chunk_start = 0;
1637              chunk_start < nr_pages;
1638              chunk_start += chunk_nr_pages) {
1639                 int j;
1640
1641                 if (chunk_start + chunk_nr_pages > nr_pages)
1642                         chunk_nr_pages = nr_pages - chunk_start;
1643
1644                 /* fill the chunk pm with addrs and nodes from user-space */
1645                 for (j = 0; j < chunk_nr_pages; j++) {
1646                         const void __user *p;
1647                         int node;
1648
1649                         err = -EFAULT;
1650                         if (get_user(p, pages + j + chunk_start))
1651                                 goto out_pm;
1652                         pm[j].addr = (unsigned long) p;
1653
1654                         if (get_user(node, nodes + j + chunk_start))
1655                                 goto out_pm;
1656
1657                         err = -ENODEV;
1658                         if (node < 0 || node >= MAX_NUMNODES)
1659                                 goto out_pm;
1660
1661                         if (!node_state(node, N_MEMORY))
1662                                 goto out_pm;
1663
1664                         err = -EACCES;
1665                         if (!node_isset(node, task_nodes))
1666                                 goto out_pm;
1667
1668                         pm[j].node = node;
1669                 }
1670
1671                 /* End marker for this chunk */
1672                 pm[chunk_nr_pages].node = MAX_NUMNODES;
1673
1674                 /* Migrate this chunk */
1675                 err = do_move_page_to_node_array(mm, pm,
1676                                                  flags & MPOL_MF_MOVE_ALL);
1677                 if (err < 0)
1678                         goto out_pm;
1679
1680                 /* Return status information */
1681                 for (j = 0; j < chunk_nr_pages; j++)
1682                         if (put_user(pm[j].status, status + j + chunk_start)) {
1683                                 err = -EFAULT;
1684                                 goto out_pm;
1685                         }
1686         }
1687         err = 0;
1688
1689 out_pm:
1690         free_page((unsigned long)pm);
1691 out:
1692         return err;
1693 }
1694
1695 /*
1696  * Determine the nodes of an array of pages and store it in an array of status.
1697  */
1698 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1699                                 const void __user **pages, int *status)
1700 {
1701         unsigned long i;
1702
1703         down_read(&mm->mmap_sem);
1704
1705         for (i = 0; i < nr_pages; i++) {
1706                 unsigned long addr = (unsigned long)(*pages);
1707                 struct vm_area_struct *vma;
1708                 struct page *page;
1709                 int err = -EFAULT;
1710
1711                 vma = find_vma(mm, addr);
1712                 if (!vma || addr < vma->vm_start)
1713                         goto set_status;
1714
1715                 /* FOLL_DUMP to ignore special (like zero) pages */
1716                 page = follow_page(vma, addr, FOLL_DUMP);
1717
1718                 err = PTR_ERR(page);
1719                 if (IS_ERR(page))
1720                         goto set_status;
1721
1722                 err = page ? page_to_nid(page) : -ENOENT;
1723 set_status:
1724                 *status = err;
1725
1726                 pages++;
1727                 status++;
1728         }
1729
1730         up_read(&mm->mmap_sem);
1731 }
1732
1733 /*
1734  * Determine the nodes of a user array of pages and store it in
1735  * a user array of status.
1736  */
1737 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1738                          const void __user * __user *pages,
1739                          int __user *status)
1740 {
1741 #define DO_PAGES_STAT_CHUNK_NR 16
1742         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1743         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1744
1745         while (nr_pages) {
1746                 unsigned long chunk_nr;
1747
1748                 chunk_nr = nr_pages;
1749                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1750                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1751
1752                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1753                         break;
1754
1755                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1756
1757                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1758                         break;
1759
1760                 pages += chunk_nr;
1761                 status += chunk_nr;
1762                 nr_pages -= chunk_nr;
1763         }
1764         return nr_pages ? -EFAULT : 0;
1765 }
1766
1767 /*
1768  * Move a list of pages in the address space of the currently executing
1769  * process.
1770  */
1771 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1772                 const void __user * __user *, pages,
1773                 const int __user *, nodes,
1774                 int __user *, status, int, flags)
1775 {
1776         struct task_struct *task;
1777         struct mm_struct *mm;
1778         int err;
1779         nodemask_t task_nodes;
1780
1781         /* Check flags */
1782         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1783                 return -EINVAL;
1784
1785         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1786                 return -EPERM;
1787
1788         /* Find the mm_struct */
1789         rcu_read_lock();
1790         task = pid ? find_task_by_vpid(pid) : current;
1791         if (!task) {
1792                 rcu_read_unlock();
1793                 return -ESRCH;
1794         }
1795         get_task_struct(task);
1796
1797         /*
1798          * Check if this process has the right to modify the specified
1799          * process. Use the regular "ptrace_may_access()" checks.
1800          */
1801         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1802                 rcu_read_unlock();
1803                 err = -EPERM;
1804                 goto out;
1805         }
1806         rcu_read_unlock();
1807
1808         err = security_task_movememory(task);
1809         if (err)
1810                 goto out;
1811
1812         task_nodes = cpuset_mems_allowed(task);
1813         mm = get_task_mm(task);
1814         put_task_struct(task);
1815
1816         if (!mm)
1817                 return -EINVAL;
1818
1819         if (nodes)
1820                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1821                                     nodes, status, flags);
1822         else
1823                 err = do_pages_stat(mm, nr_pages, pages, status);
1824
1825         mmput(mm);
1826         return err;
1827
1828 out:
1829         put_task_struct(task);
1830         return err;
1831 }
1832
1833 #ifdef CONFIG_NUMA_BALANCING
1834 /*
1835  * Returns true if this is a safe migration target node for misplaced NUMA
1836  * pages. Currently it only checks the watermarks which crude
1837  */
1838 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1839                                    unsigned long nr_migrate_pages)
1840 {
1841         int z;
1842
1843         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1844                 struct zone *zone = pgdat->node_zones + z;
1845
1846                 if (!populated_zone(zone))
1847                         continue;
1848
1849                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1850                 if (!zone_watermark_ok(zone, 0,
1851                                        high_wmark_pages(zone) +
1852                                        nr_migrate_pages,
1853                                        0, 0))
1854                         continue;
1855                 return true;
1856         }
1857         return false;
1858 }
1859
1860 static struct page *alloc_misplaced_dst_page(struct page *page,
1861                                            unsigned long data,
1862                                            int **result)
1863 {
1864         int nid = (int) data;
1865         struct page *newpage;
1866
1867         newpage = __alloc_pages_node(nid,
1868                                          (GFP_HIGHUSER_MOVABLE |
1869                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1870                                           __GFP_NORETRY | __GFP_NOWARN) &
1871                                          ~__GFP_RECLAIM, 0);
1872
1873         return newpage;
1874 }
1875
1876 /*
1877  * page migration rate limiting control.
1878  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1879  * window of time. Default here says do not migrate more than 1280M per second.
1880  */
1881 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1882 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1883
1884 /* Returns true if the node is migrate rate-limited after the update */
1885 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1886                                         unsigned long nr_pages)
1887 {
1888         /*
1889          * Rate-limit the amount of data that is being migrated to a node.
1890          * Optimal placement is no good if the memory bus is saturated and
1891          * all the time is being spent migrating!
1892          */
1893         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1894                 spin_lock(&pgdat->numabalancing_migrate_lock);
1895                 pgdat->numabalancing_migrate_nr_pages = 0;
1896                 pgdat->numabalancing_migrate_next_window = jiffies +
1897                         msecs_to_jiffies(migrate_interval_millisecs);
1898                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1899         }
1900         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1901                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1902                                                                 nr_pages);
1903                 return true;
1904         }
1905
1906         /*
1907          * This is an unlocked non-atomic update so errors are possible.
1908          * The consequences are failing to migrate when we potentiall should
1909          * have which is not severe enough to warrant locking. If it is ever
1910          * a problem, it can be converted to a per-cpu counter.
1911          */
1912         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1913         return false;
1914 }
1915
1916 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1917 {
1918         int page_lru;
1919
1920         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1921
1922         /* Avoid migrating to a node that is nearly full */
1923         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1924                 return 0;
1925
1926         if (isolate_lru_page(page))
1927                 return 0;
1928
1929         /*
1930          * migrate_misplaced_transhuge_page() skips page migration's usual
1931          * check on page_count(), so we must do it here, now that the page
1932          * has been isolated: a GUP pin, or any other pin, prevents migration.
1933          * The expected page count is 3: 1 for page's mapcount and 1 for the
1934          * caller's pin and 1 for the reference taken by isolate_lru_page().
1935          */
1936         if (PageTransHuge(page) && page_count(page) != 3) {
1937                 putback_lru_page(page);
1938                 return 0;
1939         }
1940
1941         page_lru = page_is_file_cache(page);
1942         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1943                                 hpage_nr_pages(page));
1944
1945         /*
1946          * Isolating the page has taken another reference, so the
1947          * caller's reference can be safely dropped without the page
1948          * disappearing underneath us during migration.
1949          */
1950         put_page(page);
1951         return 1;
1952 }
1953
1954 bool pmd_trans_migrating(pmd_t pmd)
1955 {
1956         struct page *page = pmd_page(pmd);
1957         return PageLocked(page);
1958 }
1959
1960 /*
1961  * Attempt to migrate a misplaced page to the specified destination
1962  * node. Caller is expected to have an elevated reference count on
1963  * the page that will be dropped by this function before returning.
1964  */
1965 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1966                            int node)
1967 {
1968         pg_data_t *pgdat = NODE_DATA(node);
1969         int isolated;
1970         int nr_remaining;
1971         LIST_HEAD(migratepages);
1972
1973         /*
1974          * Don't migrate file pages that are mapped in multiple processes
1975          * with execute permissions as they are probably shared libraries.
1976          */
1977         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1978             (vma->vm_flags & VM_EXEC))
1979                 goto out;
1980
1981         /*
1982          * Rate-limit the amount of data that is being migrated to a node.
1983          * Optimal placement is no good if the memory bus is saturated and
1984          * all the time is being spent migrating!
1985          */
1986         if (numamigrate_update_ratelimit(pgdat, 1))
1987                 goto out;
1988
1989         isolated = numamigrate_isolate_page(pgdat, page);
1990         if (!isolated)
1991                 goto out;
1992
1993         list_add(&page->lru, &migratepages);
1994         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1995                                      NULL, node, MIGRATE_ASYNC,
1996                                      MR_NUMA_MISPLACED);
1997         if (nr_remaining) {
1998                 if (!list_empty(&migratepages)) {
1999                         list_del(&page->lru);
2000                         dec_node_page_state(page, NR_ISOLATED_ANON +
2001                                         page_is_file_cache(page));
2002                         putback_lru_page(page);
2003                 }
2004                 isolated = 0;
2005         } else
2006                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2007         BUG_ON(!list_empty(&migratepages));
2008         return isolated;
2009
2010 out:
2011         put_page(page);
2012         return 0;
2013 }
2014 #endif /* CONFIG_NUMA_BALANCING */
2015
2016 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2017 /*
2018  * Migrates a THP to a given target node. page must be locked and is unlocked
2019  * before returning.
2020  */
2021 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2022                                 struct vm_area_struct *vma,
2023                                 pmd_t *pmd, pmd_t entry,
2024                                 unsigned long address,
2025                                 struct page *page, int node)
2026 {
2027         spinlock_t *ptl;
2028         pg_data_t *pgdat = NODE_DATA(node);
2029         int isolated = 0;
2030         struct page *new_page = NULL;
2031         int page_lru = page_is_file_cache(page);
2032         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2033         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2034
2035         /*
2036          * Rate-limit the amount of data that is being migrated to a node.
2037          * Optimal placement is no good if the memory bus is saturated and
2038          * all the time is being spent migrating!
2039          */
2040         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2041                 goto out_dropref;
2042
2043         new_page = alloc_pages_node(node,
2044                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2045                 HPAGE_PMD_ORDER);
2046         if (!new_page)
2047                 goto out_fail;
2048         prep_transhuge_page(new_page);
2049
2050         isolated = numamigrate_isolate_page(pgdat, page);
2051         if (!isolated) {
2052                 put_page(new_page);
2053                 goto out_fail;
2054         }
2055
2056         /* Prepare a page as a migration target */
2057         __SetPageLocked(new_page);
2058         if (PageSwapBacked(page))
2059                 __SetPageSwapBacked(new_page);
2060
2061         /* anon mapping, we can simply copy page->mapping to the new page: */
2062         new_page->mapping = page->mapping;
2063         new_page->index = page->index;
2064         migrate_page_copy(new_page, page);
2065         WARN_ON(PageLRU(new_page));
2066
2067         /* Recheck the target PMD */
2068         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2069         ptl = pmd_lock(mm, pmd);
2070         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2071                 spin_unlock(ptl);
2072                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2073
2074                 /* Reverse changes made by migrate_page_copy() */
2075                 if (TestClearPageActive(new_page))
2076                         SetPageActive(page);
2077                 if (TestClearPageUnevictable(new_page))
2078                         SetPageUnevictable(page);
2079
2080                 unlock_page(new_page);
2081                 put_page(new_page);             /* Free it */
2082
2083                 /* Retake the callers reference and putback on LRU */
2084                 get_page(page);
2085                 putback_lru_page(page);
2086                 mod_node_page_state(page_pgdat(page),
2087                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2088
2089                 goto out_unlock;
2090         }
2091
2092         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2093         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2094
2095         /*
2096          * Clear the old entry under pagetable lock and establish the new PTE.
2097          * Any parallel GUP will either observe the old page blocking on the
2098          * page lock, block on the page table lock or observe the new page.
2099          * The SetPageUptodate on the new page and page_add_new_anon_rmap
2100          * guarantee the copy is visible before the pagetable update.
2101          */
2102         flush_cache_range(vma, mmun_start, mmun_end);
2103         page_add_anon_rmap(new_page, vma, mmun_start, true);
2104         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2105         set_pmd_at(mm, mmun_start, pmd, entry);
2106         update_mmu_cache_pmd(vma, address, &entry);
2107
2108         page_ref_unfreeze(page, 2);
2109         mlock_migrate_page(new_page, page);
2110         page_remove_rmap(page, true);
2111         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2112
2113         spin_unlock(ptl);
2114         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2115
2116         /* Take an "isolate" reference and put new page on the LRU. */
2117         get_page(new_page);
2118         putback_lru_page(new_page);
2119
2120         unlock_page(new_page);
2121         unlock_page(page);
2122         put_page(page);                 /* Drop the rmap reference */
2123         put_page(page);                 /* Drop the LRU isolation reference */
2124
2125         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2126         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2127
2128         mod_node_page_state(page_pgdat(page),
2129                         NR_ISOLATED_ANON + page_lru,
2130                         -HPAGE_PMD_NR);
2131         return isolated;
2132
2133 out_fail:
2134         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2135 out_dropref:
2136         ptl = pmd_lock(mm, pmd);
2137         if (pmd_same(*pmd, entry)) {
2138                 entry = pmd_modify(entry, vma->vm_page_prot);
2139                 set_pmd_at(mm, mmun_start, pmd, entry);
2140                 update_mmu_cache_pmd(vma, address, &entry);
2141         }
2142         spin_unlock(ptl);
2143
2144 out_unlock:
2145         unlock_page(page);
2146         put_page(page);
2147         return 0;
2148 }
2149 #endif /* CONFIG_NUMA_BALANCING */
2150
2151 #endif /* CONFIG_NUMA */
2152
2153 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2154 struct migrate_vma {
2155         struct vm_area_struct   *vma;
2156         unsigned long           *dst;
2157         unsigned long           *src;
2158         unsigned long           cpages;
2159         unsigned long           npages;
2160         unsigned long           start;
2161         unsigned long           end;
2162 };
2163
2164 static int migrate_vma_collect_hole(unsigned long start,
2165                                     unsigned long end,
2166                                     struct mm_walk *walk)
2167 {
2168         struct migrate_vma *migrate = walk->private;
2169         unsigned long addr;
2170
2171         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2172                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2173                 migrate->dst[migrate->npages] = 0;
2174                 migrate->npages++;
2175                 migrate->cpages++;
2176         }
2177
2178         return 0;
2179 }
2180
2181 static int migrate_vma_collect_skip(unsigned long start,
2182                                     unsigned long end,
2183                                     struct mm_walk *walk)
2184 {
2185         struct migrate_vma *migrate = walk->private;
2186         unsigned long addr;
2187
2188         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2189                 migrate->dst[migrate->npages] = 0;
2190                 migrate->src[migrate->npages++] = 0;
2191         }
2192
2193         return 0;
2194 }
2195
2196 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2197                                    unsigned long start,
2198                                    unsigned long end,
2199                                    struct mm_walk *walk)
2200 {
2201         struct migrate_vma *migrate = walk->private;
2202         struct vm_area_struct *vma = walk->vma;
2203         struct mm_struct *mm = vma->vm_mm;
2204         unsigned long addr = start, unmapped = 0;
2205         spinlock_t *ptl;
2206         pte_t *ptep;
2207
2208 again:
2209         if (pmd_none(*pmdp))
2210                 return migrate_vma_collect_hole(start, end, walk);
2211
2212         if (pmd_trans_huge(*pmdp)) {
2213                 struct page *page;
2214
2215                 ptl = pmd_lock(mm, pmdp);
2216                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2217                         spin_unlock(ptl);
2218                         goto again;
2219                 }
2220
2221                 page = pmd_page(*pmdp);
2222                 if (is_huge_zero_page(page)) {
2223                         spin_unlock(ptl);
2224                         split_huge_pmd(vma, pmdp, addr);
2225                         if (pmd_trans_unstable(pmdp))
2226                                 return migrate_vma_collect_skip(start, end,
2227                                                                 walk);
2228                 } else {
2229                         int ret;
2230
2231                         get_page(page);
2232                         spin_unlock(ptl);
2233                         if (unlikely(!trylock_page(page)))
2234                                 return migrate_vma_collect_skip(start, end,
2235                                                                 walk);
2236                         ret = split_huge_page(page);
2237                         unlock_page(page);
2238                         put_page(page);
2239                         if (ret)
2240                                 return migrate_vma_collect_skip(start, end,
2241                                                                 walk);
2242                         if (pmd_none(*pmdp))
2243                                 return migrate_vma_collect_hole(start, end,
2244                                                                 walk);
2245                 }
2246         }
2247
2248         if (unlikely(pmd_bad(*pmdp)))
2249                 return migrate_vma_collect_skip(start, end, walk);
2250
2251         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2252         arch_enter_lazy_mmu_mode();
2253
2254         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2255                 unsigned long mpfn, pfn;
2256                 struct page *page;
2257                 swp_entry_t entry;
2258                 pte_t pte;
2259
2260                 pte = *ptep;
2261                 pfn = pte_pfn(pte);
2262
2263                 if (pte_none(pte)) {
2264                         mpfn = MIGRATE_PFN_MIGRATE;
2265                         migrate->cpages++;
2266                         pfn = 0;
2267                         goto next;
2268                 }
2269
2270                 if (!pte_present(pte)) {
2271                         mpfn = pfn = 0;
2272
2273                         /*
2274                          * Only care about unaddressable device page special
2275                          * page table entry. Other special swap entries are not
2276                          * migratable, and we ignore regular swapped page.
2277                          */
2278                         entry = pte_to_swp_entry(pte);
2279                         if (!is_device_private_entry(entry))
2280                                 goto next;
2281
2282                         page = device_private_entry_to_page(entry);
2283                         mpfn = migrate_pfn(page_to_pfn(page))|
2284                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2285                         if (is_write_device_private_entry(entry))
2286                                 mpfn |= MIGRATE_PFN_WRITE;
2287                 } else {
2288                         if (is_zero_pfn(pfn)) {
2289                                 mpfn = MIGRATE_PFN_MIGRATE;
2290                                 migrate->cpages++;
2291                                 pfn = 0;
2292                                 goto next;
2293                         }
2294                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2295                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2296                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2297                 }
2298
2299                 /* FIXME support THP */
2300                 if (!page || !page->mapping || PageTransCompound(page)) {
2301                         mpfn = pfn = 0;
2302                         goto next;
2303                 }
2304                 pfn = page_to_pfn(page);
2305
2306                 /*
2307                  * By getting a reference on the page we pin it and that blocks
2308                  * any kind of migration. Side effect is that it "freezes" the
2309                  * pte.
2310                  *
2311                  * We drop this reference after isolating the page from the lru
2312                  * for non device page (device page are not on the lru and thus
2313                  * can't be dropped from it).
2314                  */
2315                 get_page(page);
2316                 migrate->cpages++;
2317
2318                 /*
2319                  * Optimize for the common case where page is only mapped once
2320                  * in one process. If we can lock the page, then we can safely
2321                  * set up a special migration page table entry now.
2322                  */
2323                 if (trylock_page(page)) {
2324                         pte_t swp_pte;
2325
2326                         mpfn |= MIGRATE_PFN_LOCKED;
2327                         ptep_get_and_clear(mm, addr, ptep);
2328
2329                         /* Setup special migration page table entry */
2330                         entry = make_migration_entry(page, pte_write(pte));
2331                         swp_pte = swp_entry_to_pte(entry);
2332                         if (pte_soft_dirty(pte))
2333                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2334                         set_pte_at(mm, addr, ptep, swp_pte);
2335
2336                         /*
2337                          * This is like regular unmap: we remove the rmap and
2338                          * drop page refcount. Page won't be freed, as we took
2339                          * a reference just above.
2340                          */
2341                         page_remove_rmap(page, false);
2342                         put_page(page);
2343
2344                         if (pte_present(pte))
2345                                 unmapped++;
2346                 }
2347
2348 next:
2349                 migrate->dst[migrate->npages] = 0;
2350                 migrate->src[migrate->npages++] = mpfn;
2351         }
2352         arch_leave_lazy_mmu_mode();
2353         pte_unmap_unlock(ptep - 1, ptl);
2354
2355         /* Only flush the TLB if we actually modified any entries */
2356         if (unmapped)
2357                 flush_tlb_range(walk->vma, start, end);
2358
2359         return 0;
2360 }
2361
2362 /*
2363  * migrate_vma_collect() - collect pages over a range of virtual addresses
2364  * @migrate: migrate struct containing all migration information
2365  *
2366  * This will walk the CPU page table. For each virtual address backed by a
2367  * valid page, it updates the src array and takes a reference on the page, in
2368  * order to pin the page until we lock it and unmap it.
2369  */
2370 static void migrate_vma_collect(struct migrate_vma *migrate)
2371 {
2372         struct mm_walk mm_walk;
2373
2374         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2375         mm_walk.pte_entry = NULL;
2376         mm_walk.pte_hole = migrate_vma_collect_hole;
2377         mm_walk.hugetlb_entry = NULL;
2378         mm_walk.test_walk = NULL;
2379         mm_walk.vma = migrate->vma;
2380         mm_walk.mm = migrate->vma->vm_mm;
2381         mm_walk.private = migrate;
2382
2383         mmu_notifier_invalidate_range_start(mm_walk.mm,
2384                                             migrate->start,
2385                                             migrate->end);
2386         walk_page_range(migrate->start, migrate->end, &mm_walk);
2387         mmu_notifier_invalidate_range_end(mm_walk.mm,
2388                                           migrate->start,
2389                                           migrate->end);
2390
2391         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2392 }
2393
2394 /*
2395  * migrate_vma_check_page() - check if page is pinned or not
2396  * @page: struct page to check
2397  *
2398  * Pinned pages cannot be migrated. This is the same test as in
2399  * migrate_page_move_mapping(), except that here we allow migration of a
2400  * ZONE_DEVICE page.
2401  */
2402 static bool migrate_vma_check_page(struct page *page)
2403 {
2404         /*
2405          * One extra ref because caller holds an extra reference, either from
2406          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2407          * a device page.
2408          */
2409         int extra = 1;
2410
2411         /*
2412          * FIXME support THP (transparent huge page), it is bit more complex to
2413          * check them than regular pages, because they can be mapped with a pmd
2414          * or with a pte (split pte mapping).
2415          */
2416         if (PageCompound(page))
2417                 return false;
2418
2419         /* Page from ZONE_DEVICE have one extra reference */
2420         if (is_zone_device_page(page)) {
2421                 /*
2422                  * Private page can never be pin as they have no valid pte and
2423                  * GUP will fail for those. Yet if there is a pending migration
2424                  * a thread might try to wait on the pte migration entry and
2425                  * will bump the page reference count. Sadly there is no way to
2426                  * differentiate a regular pin from migration wait. Hence to
2427                  * avoid 2 racing thread trying to migrate back to CPU to enter
2428                  * infinite loop (one stoping migration because the other is
2429                  * waiting on pte migration entry). We always return true here.
2430                  *
2431                  * FIXME proper solution is to rework migration_entry_wait() so
2432                  * it does not need to take a reference on page.
2433                  */
2434                 if (is_device_private_page(page))
2435                         return true;
2436
2437                 /*
2438                  * Only allow device public page to be migrated and account for
2439                  * the extra reference count imply by ZONE_DEVICE pages.
2440                  */
2441                 if (!is_device_public_page(page))
2442                         return false;
2443                 extra++;
2444         }
2445
2446         /* For file back page */
2447         if (page_mapping(page))
2448                 extra += 1 + page_has_private(page);
2449
2450         if ((page_count(page) - extra) > page_mapcount(page))
2451                 return false;
2452
2453         return true;
2454 }
2455
2456 /*
2457  * migrate_vma_prepare() - lock pages and isolate them from the lru
2458  * @migrate: migrate struct containing all migration information
2459  *
2460  * This locks pages that have been collected by migrate_vma_collect(). Once each
2461  * page is locked it is isolated from the lru (for non-device pages). Finally,
2462  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2463  * migrated by concurrent kernel threads.
2464  */
2465 static void migrate_vma_prepare(struct migrate_vma *migrate)
2466 {
2467         const unsigned long npages = migrate->npages;
2468         const unsigned long start = migrate->start;
2469         unsigned long addr, i, restore = 0;
2470         bool allow_drain = true;
2471
2472         lru_add_drain();
2473
2474         for (i = 0; (i < npages) && migrate->cpages; i++) {
2475                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2476                 bool remap = true;
2477
2478                 if (!page)
2479                         continue;
2480
2481                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2482                         /*
2483                          * Because we are migrating several pages there can be
2484                          * a deadlock between 2 concurrent migration where each
2485                          * are waiting on each other page lock.
2486                          *
2487                          * Make migrate_vma() a best effort thing and backoff
2488                          * for any page we can not lock right away.
2489                          */
2490                         if (!trylock_page(page)) {
2491                                 migrate->src[i] = 0;
2492                                 migrate->cpages--;
2493                                 put_page(page);
2494                                 continue;
2495                         }
2496                         remap = false;
2497                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2498                 }
2499
2500                 /* ZONE_DEVICE pages are not on LRU */
2501                 if (!is_zone_device_page(page)) {
2502                         if (!PageLRU(page) && allow_drain) {
2503                                 /* Drain CPU's pagevec */
2504                                 lru_add_drain_all();
2505                                 allow_drain = false;
2506                         }
2507
2508                         if (isolate_lru_page(page)) {
2509                                 if (remap) {
2510                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2511                                         migrate->cpages--;
2512                                         restore++;
2513                                 } else {
2514                                         migrate->src[i] = 0;
2515                                         unlock_page(page);
2516                                         migrate->cpages--;
2517                                         put_page(page);
2518                                 }
2519                                 continue;
2520                         }
2521
2522                         /* Drop the reference we took in collect */
2523                         put_page(page);
2524                 }
2525
2526                 if (!migrate_vma_check_page(page)) {
2527                         if (remap) {
2528                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2529                                 migrate->cpages--;
2530                                 restore++;
2531
2532                                 if (!is_zone_device_page(page)) {
2533                                         get_page(page);
2534                                         putback_lru_page(page);
2535                                 }
2536                         } else {
2537                                 migrate->src[i] = 0;
2538                                 unlock_page(page);
2539                                 migrate->cpages--;
2540
2541                                 if (!is_zone_device_page(page))
2542                                         putback_lru_page(page);
2543                                 else
2544                                         put_page(page);
2545                         }
2546                 }
2547         }
2548
2549         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2550                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2551
2552                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2553                         continue;
2554
2555                 remove_migration_pte(page, migrate->vma, addr, page);
2556
2557                 migrate->src[i] = 0;
2558                 unlock_page(page);
2559                 put_page(page);
2560                 restore--;
2561         }
2562 }
2563
2564 /*
2565  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2566  * @migrate: migrate struct containing all migration information
2567  *
2568  * Replace page mapping (CPU page table pte) with a special migration pte entry
2569  * and check again if it has been pinned. Pinned pages are restored because we
2570  * cannot migrate them.
2571  *
2572  * This is the last step before we call the device driver callback to allocate
2573  * destination memory and copy contents of original page over to new page.
2574  */
2575 static void migrate_vma_unmap(struct migrate_vma *migrate)
2576 {
2577         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2578         const unsigned long npages = migrate->npages;
2579         const unsigned long start = migrate->start;
2580         unsigned long addr, i, restore = 0;
2581
2582         for (i = 0; i < npages; i++) {
2583                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2584
2585                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2586                         continue;
2587
2588                 if (page_mapped(page)) {
2589                         try_to_unmap(page, flags);
2590                         if (page_mapped(page))
2591                                 goto restore;
2592                 }
2593
2594                 if (migrate_vma_check_page(page))
2595                         continue;
2596
2597 restore:
2598                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2599                 migrate->cpages--;
2600                 restore++;
2601         }
2602
2603         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2604                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2605
2606                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2607                         continue;
2608
2609                 remove_migration_ptes(page, page, false);
2610
2611                 migrate->src[i] = 0;
2612                 unlock_page(page);
2613                 restore--;
2614
2615                 if (is_zone_device_page(page))
2616                         put_page(page);
2617                 else
2618                         putback_lru_page(page);
2619         }
2620 }
2621
2622 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2623                                     unsigned long addr,
2624                                     struct page *page,
2625                                     unsigned long *src,
2626                                     unsigned long *dst)
2627 {
2628         struct vm_area_struct *vma = migrate->vma;
2629         struct mm_struct *mm = vma->vm_mm;
2630         struct mem_cgroup *memcg;
2631         bool flush = false;
2632         spinlock_t *ptl;
2633         pte_t entry;
2634         pgd_t *pgdp;
2635         p4d_t *p4dp;
2636         pud_t *pudp;
2637         pmd_t *pmdp;
2638         pte_t *ptep;
2639
2640         /* Only allow populating anonymous memory */
2641         if (!vma_is_anonymous(vma))
2642                 goto abort;
2643
2644         pgdp = pgd_offset(mm, addr);
2645         p4dp = p4d_alloc(mm, pgdp, addr);
2646         if (!p4dp)
2647                 goto abort;
2648         pudp = pud_alloc(mm, p4dp, addr);
2649         if (!pudp)
2650                 goto abort;
2651         pmdp = pmd_alloc(mm, pudp, addr);
2652         if (!pmdp)
2653                 goto abort;
2654
2655         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2656                 goto abort;
2657
2658         /*
2659          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2660          * pte_offset_map() on pmds where a huge pmd might be created
2661          * from a different thread.
2662          *
2663          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2664          * parallel threads are excluded by other means.
2665          *
2666          * Here we only have down_read(mmap_sem).
2667          */
2668         if (pte_alloc(mm, pmdp, addr))
2669                 goto abort;
2670
2671         /* See the comment in pte_alloc_one_map() */
2672         if (unlikely(pmd_trans_unstable(pmdp)))
2673                 goto abort;
2674
2675         if (unlikely(anon_vma_prepare(vma)))
2676                 goto abort;
2677         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2678                 goto abort;
2679
2680         /*
2681          * The memory barrier inside __SetPageUptodate makes sure that
2682          * preceding stores to the page contents become visible before
2683          * the set_pte_at() write.
2684          */
2685         __SetPageUptodate(page);
2686
2687         if (is_zone_device_page(page)) {
2688                 if (is_device_private_page(page)) {
2689                         swp_entry_t swp_entry;
2690
2691                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2692                         entry = swp_entry_to_pte(swp_entry);
2693                 } else if (is_device_public_page(page)) {
2694                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2695                         if (vma->vm_flags & VM_WRITE)
2696                                 entry = pte_mkwrite(pte_mkdirty(entry));
2697                         entry = pte_mkdevmap(entry);
2698                 }
2699         } else {
2700                 entry = mk_pte(page, vma->vm_page_prot);
2701                 if (vma->vm_flags & VM_WRITE)
2702                         entry = pte_mkwrite(pte_mkdirty(entry));
2703         }
2704
2705         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2706
2707         if (pte_present(*ptep)) {
2708                 unsigned long pfn = pte_pfn(*ptep);
2709
2710                 if (!is_zero_pfn(pfn)) {
2711                         pte_unmap_unlock(ptep, ptl);
2712                         mem_cgroup_cancel_charge(page, memcg, false);
2713                         goto abort;
2714                 }
2715                 flush = true;
2716         } else if (!pte_none(*ptep)) {
2717                 pte_unmap_unlock(ptep, ptl);
2718                 mem_cgroup_cancel_charge(page, memcg, false);
2719                 goto abort;
2720         }
2721
2722         /*
2723          * Check for usefaultfd but do not deliver the fault. Instead,
2724          * just back off.
2725          */
2726         if (userfaultfd_missing(vma)) {
2727                 pte_unmap_unlock(ptep, ptl);
2728                 mem_cgroup_cancel_charge(page, memcg, false);
2729                 goto abort;
2730         }
2731
2732         inc_mm_counter(mm, MM_ANONPAGES);
2733         page_add_new_anon_rmap(page, vma, addr, false);
2734         mem_cgroup_commit_charge(page, memcg, false, false);
2735         if (!is_zone_device_page(page))
2736                 lru_cache_add_active_or_unevictable(page, vma);
2737         get_page(page);
2738
2739         if (flush) {
2740                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2741                 ptep_clear_flush_notify(vma, addr, ptep);
2742                 set_pte_at_notify(mm, addr, ptep, entry);
2743                 update_mmu_cache(vma, addr, ptep);
2744         } else {
2745                 /* No need to invalidate - it was non-present before */
2746                 set_pte_at(mm, addr, ptep, entry);
2747                 update_mmu_cache(vma, addr, ptep);
2748         }
2749
2750         pte_unmap_unlock(ptep, ptl);
2751         *src = MIGRATE_PFN_MIGRATE;
2752         return;
2753
2754 abort:
2755         *src &= ~MIGRATE_PFN_MIGRATE;
2756 }
2757
2758 /*
2759  * migrate_vma_pages() - migrate meta-data from src page to dst page
2760  * @migrate: migrate struct containing all migration information
2761  *
2762  * This migrates struct page meta-data from source struct page to destination
2763  * struct page. This effectively finishes the migration from source page to the
2764  * destination page.
2765  */
2766 static void migrate_vma_pages(struct migrate_vma *migrate)
2767 {
2768         const unsigned long npages = migrate->npages;
2769         const unsigned long start = migrate->start;
2770         struct vm_area_struct *vma = migrate->vma;
2771         struct mm_struct *mm = vma->vm_mm;
2772         unsigned long addr, i, mmu_start;
2773         bool notified = false;
2774
2775         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2776                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2777                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2778                 struct address_space *mapping;
2779                 int r;
2780
2781                 if (!newpage) {
2782                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2783                         continue;
2784                 }
2785
2786                 if (!page) {
2787                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2788                                 continue;
2789                         }
2790                         if (!notified) {
2791                                 mmu_start = addr;
2792                                 notified = true;
2793                                 mmu_notifier_invalidate_range_start(mm,
2794                                                                 mmu_start,
2795                                                                 migrate->end);
2796                         }
2797                         migrate_vma_insert_page(migrate, addr, newpage,
2798                                                 &migrate->src[i],
2799                                                 &migrate->dst[i]);
2800                         continue;
2801                 }
2802
2803                 mapping = page_mapping(page);
2804
2805                 if (is_zone_device_page(newpage)) {
2806                         if (is_device_private_page(newpage)) {
2807                                 /*
2808                                  * For now only support private anonymous when
2809                                  * migrating to un-addressable device memory.
2810                                  */
2811                                 if (mapping) {
2812                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2813                                         continue;
2814                                 }
2815                         } else if (!is_device_public_page(newpage)) {
2816                                 /*
2817                                  * Other types of ZONE_DEVICE page are not
2818                                  * supported.
2819                                  */
2820                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2821                                 continue;
2822                         }
2823                 }
2824
2825                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2826                 if (r != MIGRATEPAGE_SUCCESS)
2827                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2828         }
2829
2830         if (notified)
2831                 mmu_notifier_invalidate_range_end(mm, mmu_start,
2832                                                   migrate->end);
2833 }
2834
2835 /*
2836  * migrate_vma_finalize() - restore CPU page table entry
2837  * @migrate: migrate struct containing all migration information
2838  *
2839  * This replaces the special migration pte entry with either a mapping to the
2840  * new page if migration was successful for that page, or to the original page
2841  * otherwise.
2842  *
2843  * This also unlocks the pages and puts them back on the lru, or drops the extra
2844  * refcount, for device pages.
2845  */
2846 static void migrate_vma_finalize(struct migrate_vma *migrate)
2847 {
2848         const unsigned long npages = migrate->npages;
2849         unsigned long i;
2850
2851         for (i = 0; i < npages; i++) {
2852                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2853                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2854
2855                 if (!page) {
2856                         if (newpage) {
2857                                 unlock_page(newpage);
2858                                 put_page(newpage);
2859                         }
2860                         continue;
2861                 }
2862
2863                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2864                         if (newpage) {
2865                                 unlock_page(newpage);
2866                                 put_page(newpage);
2867                         }
2868                         newpage = page;
2869                 }
2870
2871                 remove_migration_ptes(page, newpage, false);
2872                 unlock_page(page);
2873                 migrate->cpages--;
2874
2875                 if (is_zone_device_page(page))
2876                         put_page(page);
2877                 else
2878                         putback_lru_page(page);
2879
2880                 if (newpage != page) {
2881                         unlock_page(newpage);
2882                         if (is_zone_device_page(newpage))
2883                                 put_page(newpage);
2884                         else
2885                                 putback_lru_page(newpage);
2886                 }
2887         }
2888 }
2889
2890 /*
2891  * migrate_vma() - migrate a range of memory inside vma
2892  *
2893  * @ops: migration callback for allocating destination memory and copying
2894  * @vma: virtual memory area containing the range to be migrated
2895  * @start: start address of the range to migrate (inclusive)
2896  * @end: end address of the range to migrate (exclusive)
2897  * @src: array of hmm_pfn_t containing source pfns
2898  * @dst: array of hmm_pfn_t containing destination pfns
2899  * @private: pointer passed back to each of the callback
2900  * Returns: 0 on success, error code otherwise
2901  *
2902  * This function tries to migrate a range of memory virtual address range, using
2903  * callbacks to allocate and copy memory from source to destination. First it
2904  * collects all the pages backing each virtual address in the range, saving this
2905  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2906  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2907  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2908  * in the corresponding src array entry. It then restores any pages that are
2909  * pinned, by remapping and unlocking those pages.
2910  *
2911  * At this point it calls the alloc_and_copy() callback. For documentation on
2912  * what is expected from that callback, see struct migrate_vma_ops comments in
2913  * include/linux/migrate.h
2914  *
2915  * After the alloc_and_copy() callback, this function goes over each entry in
2916  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2917  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2918  * then the function tries to migrate struct page information from the source
2919  * struct page to the destination struct page. If it fails to migrate the struct
2920  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2921  * array.
2922  *
2923  * At this point all successfully migrated pages have an entry in the src
2924  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2925  * array entry with MIGRATE_PFN_VALID flag set.
2926  *
2927  * It then calls the finalize_and_map() callback. See comments for "struct
2928  * migrate_vma_ops", in include/linux/migrate.h for details about
2929  * finalize_and_map() behavior.
2930  *
2931  * After the finalize_and_map() callback, for successfully migrated pages, this
2932  * function updates the CPU page table to point to new pages, otherwise it
2933  * restores the CPU page table to point to the original source pages.
2934  *
2935  * Function returns 0 after the above steps, even if no pages were migrated
2936  * (The function only returns an error if any of the arguments are invalid.)
2937  *
2938  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2939  * unsigned long entries.
2940  */
2941 int migrate_vma(const struct migrate_vma_ops *ops,
2942                 struct vm_area_struct *vma,
2943                 unsigned long start,
2944                 unsigned long end,
2945                 unsigned long *src,
2946                 unsigned long *dst,
2947                 void *private)
2948 {
2949         struct migrate_vma migrate;
2950
2951         /* Sanity check the arguments */
2952         start &= PAGE_MASK;
2953         end &= PAGE_MASK;
2954         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2955                 return -EINVAL;
2956         if (start < vma->vm_start || start >= vma->vm_end)
2957                 return -EINVAL;
2958         if (end <= vma->vm_start || end > vma->vm_end)
2959                 return -EINVAL;
2960         if (!ops || !src || !dst || start >= end)
2961                 return -EINVAL;
2962
2963         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2964         migrate.src = src;
2965         migrate.dst = dst;
2966         migrate.start = start;
2967         migrate.npages = 0;
2968         migrate.cpages = 0;
2969         migrate.end = end;
2970         migrate.vma = vma;
2971
2972         /* Collect, and try to unmap source pages */
2973         migrate_vma_collect(&migrate);
2974         if (!migrate.cpages)
2975                 return 0;
2976
2977         /* Lock and isolate page */
2978         migrate_vma_prepare(&migrate);
2979         if (!migrate.cpages)
2980                 return 0;
2981
2982         /* Unmap pages */
2983         migrate_vma_unmap(&migrate);
2984         if (!migrate.cpages)
2985                 return 0;
2986
2987         /*
2988          * At this point pages are locked and unmapped, and thus they have
2989          * stable content and can safely be copied to destination memory that
2990          * is allocated by the callback.
2991          *
2992          * Note that migration can fail in migrate_vma_struct_page() for each
2993          * individual page.
2994          */
2995         ops->alloc_and_copy(vma, src, dst, start, end, private);
2996
2997         /* This does the real migration of struct page */
2998         migrate_vma_pages(&migrate);
2999
3000         ops->finalize_and_map(vma, src, dst, start, end, private);
3001
3002         /* Unlock and remap pages */
3003         migrate_vma_finalize(&migrate);
3004
3005         return 0;
3006 }
3007 EXPORT_SYMBOL(migrate_vma);
3008 #endif /* defined(MIGRATE_VMA_HELPER) */