GNU Linux-libre 4.14.290-gnu1
[releases.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54
55 #include "internal.h"
56
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags)       (0)
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71
72 static bool ignore_rlimit_data;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74
75 static void unmap_region(struct mm_struct *mm,
76                 struct vm_area_struct *vma, struct vm_area_struct *prev,
77                 unsigned long start, unsigned long end);
78
79 /* description of effects of mapping type and prot in current implementation.
80  * this is due to the limited x86 page protection hardware.  The expected
81  * behavior is in parens:
82  *
83  * map_type     prot
84  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
85  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
86  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
87  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
88  *
89  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  */
93 pgprot_t protection_map[16] __ro_after_init = {
94         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
95         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
96 };
97
98 pgprot_t vm_get_page_prot(unsigned long vm_flags)
99 {
100         return __pgprot(pgprot_val(protection_map[vm_flags &
101                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
102                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
103 }
104 EXPORT_SYMBOL(vm_get_page_prot);
105
106 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
107 {
108         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
109 }
110
111 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
112 void vma_set_page_prot(struct vm_area_struct *vma)
113 {
114         unsigned long vm_flags = vma->vm_flags;
115         pgprot_t vm_page_prot;
116
117         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
118         if (vma_wants_writenotify(vma, vm_page_prot)) {
119                 vm_flags &= ~VM_SHARED;
120                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
121         }
122         /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
123         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
124 }
125
126 /*
127  * Requires inode->i_mapping->i_mmap_rwsem
128  */
129 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
130                 struct file *file, struct address_space *mapping)
131 {
132         if (vma->vm_flags & VM_DENYWRITE)
133                 atomic_inc(&file_inode(file)->i_writecount);
134         if (vma->vm_flags & VM_SHARED)
135                 mapping_unmap_writable(mapping);
136
137         flush_dcache_mmap_lock(mapping);
138         vma_interval_tree_remove(vma, &mapping->i_mmap);
139         flush_dcache_mmap_unlock(mapping);
140 }
141
142 /*
143  * Unlink a file-based vm structure from its interval tree, to hide
144  * vma from rmap and vmtruncate before freeing its page tables.
145  */
146 void unlink_file_vma(struct vm_area_struct *vma)
147 {
148         struct file *file = vma->vm_file;
149
150         if (file) {
151                 struct address_space *mapping = file->f_mapping;
152                 i_mmap_lock_write(mapping);
153                 __remove_shared_vm_struct(vma, file, mapping);
154                 i_mmap_unlock_write(mapping);
155         }
156 }
157
158 /*
159  * Close a vm structure and free it, returning the next.
160  */
161 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
162 {
163         struct vm_area_struct *next = vma->vm_next;
164
165         might_sleep();
166         if (vma->vm_ops && vma->vm_ops->close)
167                 vma->vm_ops->close(vma);
168         if (vma->vm_file)
169                 fput(vma->vm_file);
170         mpol_put(vma_policy(vma));
171         kmem_cache_free(vm_area_cachep, vma);
172         return next;
173 }
174
175 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
176                 struct list_head *uf);
177 SYSCALL_DEFINE1(brk, unsigned long, brk)
178 {
179         unsigned long retval;
180         unsigned long newbrk, oldbrk;
181         struct mm_struct *mm = current->mm;
182         struct vm_area_struct *next;
183         unsigned long min_brk;
184         bool populate;
185         LIST_HEAD(uf);
186
187         if (down_write_killable(&mm->mmap_sem))
188                 return -EINTR;
189
190 #ifdef CONFIG_COMPAT_BRK
191         /*
192          * CONFIG_COMPAT_BRK can still be overridden by setting
193          * randomize_va_space to 2, which will still cause mm->start_brk
194          * to be arbitrarily shifted
195          */
196         if (current->brk_randomized)
197                 min_brk = mm->start_brk;
198         else
199                 min_brk = mm->end_data;
200 #else
201         min_brk = mm->start_brk;
202 #endif
203         if (brk < min_brk)
204                 goto out;
205
206         /*
207          * Check against rlimit here. If this check is done later after the test
208          * of oldbrk with newbrk then it can escape the test and let the data
209          * segment grow beyond its set limit the in case where the limit is
210          * not page aligned -Ram Gupta
211          */
212         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
213                               mm->end_data, mm->start_data))
214                 goto out;
215
216         newbrk = PAGE_ALIGN(brk);
217         oldbrk = PAGE_ALIGN(mm->brk);
218         if (oldbrk == newbrk)
219                 goto set_brk;
220
221         /* Always allow shrinking brk. */
222         if (brk <= mm->brk) {
223                 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
224                         goto set_brk;
225                 goto out;
226         }
227
228         /* Check against existing mmap mappings. */
229         next = find_vma(mm, oldbrk);
230         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
231                 goto out;
232
233         /* Ok, looks good - let it rip. */
234         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
235                 goto out;
236
237 set_brk:
238         mm->brk = brk;
239         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
240         up_write(&mm->mmap_sem);
241         userfaultfd_unmap_complete(mm, &uf);
242         if (populate)
243                 mm_populate(oldbrk, newbrk - oldbrk);
244         return brk;
245
246 out:
247         retval = mm->brk;
248         up_write(&mm->mmap_sem);
249         return retval;
250 }
251
252 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
253 {
254         unsigned long max, prev_end, subtree_gap;
255
256         /*
257          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
258          * allow two stack_guard_gaps between them here, and when choosing
259          * an unmapped area; whereas when expanding we only require one.
260          * That's a little inconsistent, but keeps the code here simpler.
261          */
262         max = vm_start_gap(vma);
263         if (vma->vm_prev) {
264                 prev_end = vm_end_gap(vma->vm_prev);
265                 if (max > prev_end)
266                         max -= prev_end;
267                 else
268                         max = 0;
269         }
270         if (vma->vm_rb.rb_left) {
271                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
272                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
273                 if (subtree_gap > max)
274                         max = subtree_gap;
275         }
276         if (vma->vm_rb.rb_right) {
277                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
278                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
279                 if (subtree_gap > max)
280                         max = subtree_gap;
281         }
282         return max;
283 }
284
285 #ifdef CONFIG_DEBUG_VM_RB
286 static int browse_rb(struct mm_struct *mm)
287 {
288         struct rb_root *root = &mm->mm_rb;
289         int i = 0, j, bug = 0;
290         struct rb_node *nd, *pn = NULL;
291         unsigned long prev = 0, pend = 0;
292
293         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
294                 struct vm_area_struct *vma;
295                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
296                 if (vma->vm_start < prev) {
297                         pr_emerg("vm_start %lx < prev %lx\n",
298                                   vma->vm_start, prev);
299                         bug = 1;
300                 }
301                 if (vma->vm_start < pend) {
302                         pr_emerg("vm_start %lx < pend %lx\n",
303                                   vma->vm_start, pend);
304                         bug = 1;
305                 }
306                 if (vma->vm_start > vma->vm_end) {
307                         pr_emerg("vm_start %lx > vm_end %lx\n",
308                                   vma->vm_start, vma->vm_end);
309                         bug = 1;
310                 }
311                 spin_lock(&mm->page_table_lock);
312                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
313                         pr_emerg("free gap %lx, correct %lx\n",
314                                vma->rb_subtree_gap,
315                                vma_compute_subtree_gap(vma));
316                         bug = 1;
317                 }
318                 spin_unlock(&mm->page_table_lock);
319                 i++;
320                 pn = nd;
321                 prev = vma->vm_start;
322                 pend = vma->vm_end;
323         }
324         j = 0;
325         for (nd = pn; nd; nd = rb_prev(nd))
326                 j++;
327         if (i != j) {
328                 pr_emerg("backwards %d, forwards %d\n", j, i);
329                 bug = 1;
330         }
331         return bug ? -1 : i;
332 }
333
334 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
335 {
336         struct rb_node *nd;
337
338         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
339                 struct vm_area_struct *vma;
340                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
341                 VM_BUG_ON_VMA(vma != ignore &&
342                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
343                         vma);
344         }
345 }
346
347 static void validate_mm(struct mm_struct *mm)
348 {
349         int bug = 0;
350         int i = 0;
351         unsigned long highest_address = 0;
352         struct vm_area_struct *vma = mm->mmap;
353
354         while (vma) {
355                 struct anon_vma *anon_vma = vma->anon_vma;
356                 struct anon_vma_chain *avc;
357
358                 if (anon_vma) {
359                         anon_vma_lock_read(anon_vma);
360                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
361                                 anon_vma_interval_tree_verify(avc);
362                         anon_vma_unlock_read(anon_vma);
363                 }
364
365                 highest_address = vm_end_gap(vma);
366                 vma = vma->vm_next;
367                 i++;
368         }
369         if (i != mm->map_count) {
370                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
371                 bug = 1;
372         }
373         if (highest_address != mm->highest_vm_end) {
374                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
375                           mm->highest_vm_end, highest_address);
376                 bug = 1;
377         }
378         i = browse_rb(mm);
379         if (i != mm->map_count) {
380                 if (i != -1)
381                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
382                 bug = 1;
383         }
384         VM_BUG_ON_MM(bug, mm);
385 }
386 #else
387 #define validate_mm_rb(root, ignore) do { } while (0)
388 #define validate_mm(mm) do { } while (0)
389 #endif
390
391 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
392                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
393
394 /*
395  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
396  * vma->vm_prev->vm_end values changed, without modifying the vma's position
397  * in the rbtree.
398  */
399 static void vma_gap_update(struct vm_area_struct *vma)
400 {
401         /*
402          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
403          * function that does exacltly what we want.
404          */
405         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
406 }
407
408 static inline void vma_rb_insert(struct vm_area_struct *vma,
409                                  struct rb_root *root)
410 {
411         /* All rb_subtree_gap values must be consistent prior to insertion */
412         validate_mm_rb(root, NULL);
413
414         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
415 }
416
417 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
418 {
419         /*
420          * Note rb_erase_augmented is a fairly large inline function,
421          * so make sure we instantiate it only once with our desired
422          * augmented rbtree callbacks.
423          */
424         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
425 }
426
427 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
428                                                 struct rb_root *root,
429                                                 struct vm_area_struct *ignore)
430 {
431         /*
432          * All rb_subtree_gap values must be consistent prior to erase,
433          * with the possible exception of the "next" vma being erased if
434          * next->vm_start was reduced.
435          */
436         validate_mm_rb(root, ignore);
437
438         __vma_rb_erase(vma, root);
439 }
440
441 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
442                                          struct rb_root *root)
443 {
444         /*
445          * All rb_subtree_gap values must be consistent prior to erase,
446          * with the possible exception of the vma being erased.
447          */
448         validate_mm_rb(root, vma);
449
450         __vma_rb_erase(vma, root);
451 }
452
453 /*
454  * vma has some anon_vma assigned, and is already inserted on that
455  * anon_vma's interval trees.
456  *
457  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
458  * vma must be removed from the anon_vma's interval trees using
459  * anon_vma_interval_tree_pre_update_vma().
460  *
461  * After the update, the vma will be reinserted using
462  * anon_vma_interval_tree_post_update_vma().
463  *
464  * The entire update must be protected by exclusive mmap_sem and by
465  * the root anon_vma's mutex.
466  */
467 static inline void
468 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
469 {
470         struct anon_vma_chain *avc;
471
472         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
473                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
474 }
475
476 static inline void
477 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
478 {
479         struct anon_vma_chain *avc;
480
481         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
482                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
483 }
484
485 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
486                 unsigned long end, struct vm_area_struct **pprev,
487                 struct rb_node ***rb_link, struct rb_node **rb_parent)
488 {
489         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
490
491         __rb_link = &mm->mm_rb.rb_node;
492         rb_prev = __rb_parent = NULL;
493
494         while (*__rb_link) {
495                 struct vm_area_struct *vma_tmp;
496
497                 __rb_parent = *__rb_link;
498                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
499
500                 if (vma_tmp->vm_end > addr) {
501                         /* Fail if an existing vma overlaps the area */
502                         if (vma_tmp->vm_start < end)
503                                 return -ENOMEM;
504                         __rb_link = &__rb_parent->rb_left;
505                 } else {
506                         rb_prev = __rb_parent;
507                         __rb_link = &__rb_parent->rb_right;
508                 }
509         }
510
511         *pprev = NULL;
512         if (rb_prev)
513                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
514         *rb_link = __rb_link;
515         *rb_parent = __rb_parent;
516         return 0;
517 }
518
519 static unsigned long count_vma_pages_range(struct mm_struct *mm,
520                 unsigned long addr, unsigned long end)
521 {
522         unsigned long nr_pages = 0;
523         struct vm_area_struct *vma;
524
525         /* Find first overlaping mapping */
526         vma = find_vma_intersection(mm, addr, end);
527         if (!vma)
528                 return 0;
529
530         nr_pages = (min(end, vma->vm_end) -
531                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
532
533         /* Iterate over the rest of the overlaps */
534         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
535                 unsigned long overlap_len;
536
537                 if (vma->vm_start > end)
538                         break;
539
540                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
541                 nr_pages += overlap_len >> PAGE_SHIFT;
542         }
543
544         return nr_pages;
545 }
546
547 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
548                 struct rb_node **rb_link, struct rb_node *rb_parent)
549 {
550         /* Update tracking information for the gap following the new vma. */
551         if (vma->vm_next)
552                 vma_gap_update(vma->vm_next);
553         else
554                 mm->highest_vm_end = vm_end_gap(vma);
555
556         /*
557          * vma->vm_prev wasn't known when we followed the rbtree to find the
558          * correct insertion point for that vma. As a result, we could not
559          * update the vma vm_rb parents rb_subtree_gap values on the way down.
560          * So, we first insert the vma with a zero rb_subtree_gap value
561          * (to be consistent with what we did on the way down), and then
562          * immediately update the gap to the correct value. Finally we
563          * rebalance the rbtree after all augmented values have been set.
564          */
565         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
566         vma->rb_subtree_gap = 0;
567         vma_gap_update(vma);
568         vma_rb_insert(vma, &mm->mm_rb);
569 }
570
571 static void __vma_link_file(struct vm_area_struct *vma)
572 {
573         struct file *file;
574
575         file = vma->vm_file;
576         if (file) {
577                 struct address_space *mapping = file->f_mapping;
578
579                 if (vma->vm_flags & VM_DENYWRITE)
580                         atomic_dec(&file_inode(file)->i_writecount);
581                 if (vma->vm_flags & VM_SHARED)
582                         atomic_inc(&mapping->i_mmap_writable);
583
584                 flush_dcache_mmap_lock(mapping);
585                 vma_interval_tree_insert(vma, &mapping->i_mmap);
586                 flush_dcache_mmap_unlock(mapping);
587         }
588 }
589
590 static void
591 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
592         struct vm_area_struct *prev, struct rb_node **rb_link,
593         struct rb_node *rb_parent)
594 {
595         __vma_link_list(mm, vma, prev, rb_parent);
596         __vma_link_rb(mm, vma, rb_link, rb_parent);
597 }
598
599 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
600                         struct vm_area_struct *prev, struct rb_node **rb_link,
601                         struct rb_node *rb_parent)
602 {
603         struct address_space *mapping = NULL;
604
605         if (vma->vm_file) {
606                 mapping = vma->vm_file->f_mapping;
607                 i_mmap_lock_write(mapping);
608         }
609
610         __vma_link(mm, vma, prev, rb_link, rb_parent);
611         __vma_link_file(vma);
612
613         if (mapping)
614                 i_mmap_unlock_write(mapping);
615
616         mm->map_count++;
617         validate_mm(mm);
618 }
619
620 /*
621  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
622  * mm's list and rbtree.  It has already been inserted into the interval tree.
623  */
624 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
625 {
626         struct vm_area_struct *prev;
627         struct rb_node **rb_link, *rb_parent;
628
629         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
630                            &prev, &rb_link, &rb_parent))
631                 BUG();
632         __vma_link(mm, vma, prev, rb_link, rb_parent);
633         mm->map_count++;
634 }
635
636 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
637                                                 struct vm_area_struct *vma,
638                                                 struct vm_area_struct *prev,
639                                                 bool has_prev,
640                                                 struct vm_area_struct *ignore)
641 {
642         struct vm_area_struct *next;
643
644         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
645         next = vma->vm_next;
646         if (has_prev)
647                 prev->vm_next = next;
648         else {
649                 prev = vma->vm_prev;
650                 if (prev)
651                         prev->vm_next = next;
652                 else
653                         mm->mmap = next;
654         }
655         if (next)
656                 next->vm_prev = prev;
657
658         /* Kill the cache */
659         vmacache_invalidate(mm);
660 }
661
662 static inline void __vma_unlink_prev(struct mm_struct *mm,
663                                      struct vm_area_struct *vma,
664                                      struct vm_area_struct *prev)
665 {
666         __vma_unlink_common(mm, vma, prev, true, vma);
667 }
668
669 /*
670  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
671  * is already present in an i_mmap tree without adjusting the tree.
672  * The following helper function should be used when such adjustments
673  * are necessary.  The "insert" vma (if any) is to be inserted
674  * before we drop the necessary locks.
675  */
676 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
677         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
678         struct vm_area_struct *expand)
679 {
680         struct mm_struct *mm = vma->vm_mm;
681         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
682         struct address_space *mapping = NULL;
683         struct rb_root_cached *root = NULL;
684         struct anon_vma *anon_vma = NULL;
685         struct file *file = vma->vm_file;
686         bool start_changed = false, end_changed = false;
687         long adjust_next = 0;
688         int remove_next = 0;
689
690         if (next && !insert) {
691                 struct vm_area_struct *exporter = NULL, *importer = NULL;
692
693                 if (end >= next->vm_end) {
694                         /*
695                          * vma expands, overlapping all the next, and
696                          * perhaps the one after too (mprotect case 6).
697                          * The only other cases that gets here are
698                          * case 1, case 7 and case 8.
699                          */
700                         if (next == expand) {
701                                 /*
702                                  * The only case where we don't expand "vma"
703                                  * and we expand "next" instead is case 8.
704                                  */
705                                 VM_WARN_ON(end != next->vm_end);
706                                 /*
707                                  * remove_next == 3 means we're
708                                  * removing "vma" and that to do so we
709                                  * swapped "vma" and "next".
710                                  */
711                                 remove_next = 3;
712                                 VM_WARN_ON(file != next->vm_file);
713                                 swap(vma, next);
714                         } else {
715                                 VM_WARN_ON(expand != vma);
716                                 /*
717                                  * case 1, 6, 7, remove_next == 2 is case 6,
718                                  * remove_next == 1 is case 1 or 7.
719                                  */
720                                 remove_next = 1 + (end > next->vm_end);
721                                 VM_WARN_ON(remove_next == 2 &&
722                                            end != next->vm_next->vm_end);
723                                 VM_WARN_ON(remove_next == 1 &&
724                                            end != next->vm_end);
725                                 /* trim end to next, for case 6 first pass */
726                                 end = next->vm_end;
727                         }
728
729                         exporter = next;
730                         importer = vma;
731
732                         /*
733                          * If next doesn't have anon_vma, import from vma after
734                          * next, if the vma overlaps with it.
735                          */
736                         if (remove_next == 2 && !next->anon_vma)
737                                 exporter = next->vm_next;
738
739                 } else if (end > next->vm_start) {
740                         /*
741                          * vma expands, overlapping part of the next:
742                          * mprotect case 5 shifting the boundary up.
743                          */
744                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
745                         exporter = next;
746                         importer = vma;
747                         VM_WARN_ON(expand != importer);
748                 } else if (end < vma->vm_end) {
749                         /*
750                          * vma shrinks, and !insert tells it's not
751                          * split_vma inserting another: so it must be
752                          * mprotect case 4 shifting the boundary down.
753                          */
754                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
755                         exporter = vma;
756                         importer = next;
757                         VM_WARN_ON(expand != importer);
758                 }
759
760                 /*
761                  * Easily overlooked: when mprotect shifts the boundary,
762                  * make sure the expanding vma has anon_vma set if the
763                  * shrinking vma had, to cover any anon pages imported.
764                  */
765                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
766                         int error;
767
768                         importer->anon_vma = exporter->anon_vma;
769                         error = anon_vma_clone(importer, exporter);
770                         if (error)
771                                 return error;
772                 }
773         }
774 again:
775         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
776
777         if (file) {
778                 mapping = file->f_mapping;
779                 root = &mapping->i_mmap;
780                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
781
782                 if (adjust_next)
783                         uprobe_munmap(next, next->vm_start, next->vm_end);
784
785                 i_mmap_lock_write(mapping);
786                 if (insert) {
787                         /*
788                          * Put into interval tree now, so instantiated pages
789                          * are visible to arm/parisc __flush_dcache_page
790                          * throughout; but we cannot insert into address
791                          * space until vma start or end is updated.
792                          */
793                         __vma_link_file(insert);
794                 }
795         }
796
797         anon_vma = vma->anon_vma;
798         if (!anon_vma && adjust_next)
799                 anon_vma = next->anon_vma;
800         if (anon_vma) {
801                 VM_WARN_ON(adjust_next && next->anon_vma &&
802                            anon_vma != next->anon_vma);
803                 anon_vma_lock_write(anon_vma);
804                 anon_vma_interval_tree_pre_update_vma(vma);
805                 if (adjust_next)
806                         anon_vma_interval_tree_pre_update_vma(next);
807         }
808
809         if (root) {
810                 flush_dcache_mmap_lock(mapping);
811                 vma_interval_tree_remove(vma, root);
812                 if (adjust_next)
813                         vma_interval_tree_remove(next, root);
814         }
815
816         if (start != vma->vm_start) {
817                 vma->vm_start = start;
818                 start_changed = true;
819         }
820         if (end != vma->vm_end) {
821                 vma->vm_end = end;
822                 end_changed = true;
823         }
824         vma->vm_pgoff = pgoff;
825         if (adjust_next) {
826                 next->vm_start += adjust_next << PAGE_SHIFT;
827                 next->vm_pgoff += adjust_next;
828         }
829
830         if (root) {
831                 if (adjust_next)
832                         vma_interval_tree_insert(next, root);
833                 vma_interval_tree_insert(vma, root);
834                 flush_dcache_mmap_unlock(mapping);
835         }
836
837         if (remove_next) {
838                 /*
839                  * vma_merge has merged next into vma, and needs
840                  * us to remove next before dropping the locks.
841                  */
842                 if (remove_next != 3)
843                         __vma_unlink_prev(mm, next, vma);
844                 else
845                         /*
846                          * vma is not before next if they've been
847                          * swapped.
848                          *
849                          * pre-swap() next->vm_start was reduced so
850                          * tell validate_mm_rb to ignore pre-swap()
851                          * "next" (which is stored in post-swap()
852                          * "vma").
853                          */
854                         __vma_unlink_common(mm, next, NULL, false, vma);
855                 if (file)
856                         __remove_shared_vm_struct(next, file, mapping);
857         } else if (insert) {
858                 /*
859                  * split_vma has split insert from vma, and needs
860                  * us to insert it before dropping the locks
861                  * (it may either follow vma or precede it).
862                  */
863                 __insert_vm_struct(mm, insert);
864         } else {
865                 if (start_changed)
866                         vma_gap_update(vma);
867                 if (end_changed) {
868                         if (!next)
869                                 mm->highest_vm_end = vm_end_gap(vma);
870                         else if (!adjust_next)
871                                 vma_gap_update(next);
872                 }
873         }
874
875         if (anon_vma) {
876                 anon_vma_interval_tree_post_update_vma(vma);
877                 if (adjust_next)
878                         anon_vma_interval_tree_post_update_vma(next);
879                 anon_vma_unlock_write(anon_vma);
880         }
881         if (mapping)
882                 i_mmap_unlock_write(mapping);
883
884         if (root) {
885                 uprobe_mmap(vma);
886
887                 if (adjust_next)
888                         uprobe_mmap(next);
889         }
890
891         if (remove_next) {
892                 if (file) {
893                         uprobe_munmap(next, next->vm_start, next->vm_end);
894                         fput(file);
895                 }
896                 if (next->anon_vma)
897                         anon_vma_merge(vma, next);
898                 mm->map_count--;
899                 mpol_put(vma_policy(next));
900                 kmem_cache_free(vm_area_cachep, next);
901                 /*
902                  * In mprotect's case 6 (see comments on vma_merge),
903                  * we must remove another next too. It would clutter
904                  * up the code too much to do both in one go.
905                  */
906                 if (remove_next != 3) {
907                         /*
908                          * If "next" was removed and vma->vm_end was
909                          * expanded (up) over it, in turn
910                          * "next->vm_prev->vm_end" changed and the
911                          * "vma->vm_next" gap must be updated.
912                          */
913                         next = vma->vm_next;
914                 } else {
915                         /*
916                          * For the scope of the comment "next" and
917                          * "vma" considered pre-swap(): if "vma" was
918                          * removed, next->vm_start was expanded (down)
919                          * over it and the "next" gap must be updated.
920                          * Because of the swap() the post-swap() "vma"
921                          * actually points to pre-swap() "next"
922                          * (post-swap() "next" as opposed is now a
923                          * dangling pointer).
924                          */
925                         next = vma;
926                 }
927                 if (remove_next == 2) {
928                         remove_next = 1;
929                         end = next->vm_end;
930                         goto again;
931                 }
932                 else if (next)
933                         vma_gap_update(next);
934                 else {
935                         /*
936                          * If remove_next == 2 we obviously can't
937                          * reach this path.
938                          *
939                          * If remove_next == 3 we can't reach this
940                          * path because pre-swap() next is always not
941                          * NULL. pre-swap() "next" is not being
942                          * removed and its next->vm_end is not altered
943                          * (and furthermore "end" already matches
944                          * next->vm_end in remove_next == 3).
945                          *
946                          * We reach this only in the remove_next == 1
947                          * case if the "next" vma that was removed was
948                          * the highest vma of the mm. However in such
949                          * case next->vm_end == "end" and the extended
950                          * "vma" has vma->vm_end == next->vm_end so
951                          * mm->highest_vm_end doesn't need any update
952                          * in remove_next == 1 case.
953                          */
954                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
955                 }
956         }
957         if (insert && file)
958                 uprobe_mmap(insert);
959
960         validate_mm(mm);
961
962         return 0;
963 }
964
965 /*
966  * If the vma has a ->close operation then the driver probably needs to release
967  * per-vma resources, so we don't attempt to merge those.
968  */
969 static inline int is_mergeable_vma(struct vm_area_struct *vma,
970                                 struct file *file, unsigned long vm_flags,
971                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
972 {
973         /*
974          * VM_SOFTDIRTY should not prevent from VMA merging, if we
975          * match the flags but dirty bit -- the caller should mark
976          * merged VMA as dirty. If dirty bit won't be excluded from
977          * comparison, we increase pressue on the memory system forcing
978          * the kernel to generate new VMAs when old one could be
979          * extended instead.
980          */
981         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
982                 return 0;
983         if (vma->vm_file != file)
984                 return 0;
985         if (vma->vm_ops && vma->vm_ops->close)
986                 return 0;
987         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
988                 return 0;
989         return 1;
990 }
991
992 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
993                                         struct anon_vma *anon_vma2,
994                                         struct vm_area_struct *vma)
995 {
996         /*
997          * The list_is_singular() test is to avoid merging VMA cloned from
998          * parents. This can improve scalability caused by anon_vma lock.
999          */
1000         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1001                 list_is_singular(&vma->anon_vma_chain)))
1002                 return 1;
1003         return anon_vma1 == anon_vma2;
1004 }
1005
1006 /*
1007  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1008  * in front of (at a lower virtual address and file offset than) the vma.
1009  *
1010  * We cannot merge two vmas if they have differently assigned (non-NULL)
1011  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1012  *
1013  * We don't check here for the merged mmap wrapping around the end of pagecache
1014  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1015  * wrap, nor mmaps which cover the final page at index -1UL.
1016  */
1017 static int
1018 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1019                      struct anon_vma *anon_vma, struct file *file,
1020                      pgoff_t vm_pgoff,
1021                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1022 {
1023         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1024             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1025                 if (vma->vm_pgoff == vm_pgoff)
1026                         return 1;
1027         }
1028         return 0;
1029 }
1030
1031 /*
1032  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1033  * beyond (at a higher virtual address and file offset than) the vma.
1034  *
1035  * We cannot merge two vmas if they have differently assigned (non-NULL)
1036  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1037  */
1038 static int
1039 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1040                     struct anon_vma *anon_vma, struct file *file,
1041                     pgoff_t vm_pgoff,
1042                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1043 {
1044         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1045             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1046                 pgoff_t vm_pglen;
1047                 vm_pglen = vma_pages(vma);
1048                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1049                         return 1;
1050         }
1051         return 0;
1052 }
1053
1054 /*
1055  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1056  * whether that can be merged with its predecessor or its successor.
1057  * Or both (it neatly fills a hole).
1058  *
1059  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1060  * certain not to be mapped by the time vma_merge is called; but when
1061  * called for mprotect, it is certain to be already mapped (either at
1062  * an offset within prev, or at the start of next), and the flags of
1063  * this area are about to be changed to vm_flags - and the no-change
1064  * case has already been eliminated.
1065  *
1066  * The following mprotect cases have to be considered, where AAAA is
1067  * the area passed down from mprotect_fixup, never extending beyond one
1068  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1069  *
1070  *     AAAA             AAAA                AAAA          AAAA
1071  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1072  *    cannot merge    might become    might become    might become
1073  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1074  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1075  *    mremap move:                                    PPPPXXXXXXXX 8
1076  *        AAAA
1077  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1078  *    might become    case 1 below    case 2 below    case 3 below
1079  *
1080  * It is important for case 8 that the the vma NNNN overlapping the
1081  * region AAAA is never going to extended over XXXX. Instead XXXX must
1082  * be extended in region AAAA and NNNN must be removed. This way in
1083  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1084  * rmap_locks, the properties of the merged vma will be already
1085  * correct for the whole merged range. Some of those properties like
1086  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1087  * be correct for the whole merged range immediately after the
1088  * rmap_locks are released. Otherwise if XXXX would be removed and
1089  * NNNN would be extended over the XXXX range, remove_migration_ptes
1090  * or other rmap walkers (if working on addresses beyond the "end"
1091  * parameter) may establish ptes with the wrong permissions of NNNN
1092  * instead of the right permissions of XXXX.
1093  */
1094 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1095                         struct vm_area_struct *prev, unsigned long addr,
1096                         unsigned long end, unsigned long vm_flags,
1097                         struct anon_vma *anon_vma, struct file *file,
1098                         pgoff_t pgoff, struct mempolicy *policy,
1099                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1100 {
1101         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1102         struct vm_area_struct *area, *next;
1103         int err;
1104
1105         /*
1106          * We later require that vma->vm_flags == vm_flags,
1107          * so this tests vma->vm_flags & VM_SPECIAL, too.
1108          */
1109         if (vm_flags & VM_SPECIAL)
1110                 return NULL;
1111
1112         if (prev)
1113                 next = prev->vm_next;
1114         else
1115                 next = mm->mmap;
1116         area = next;
1117         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1118                 next = next->vm_next;
1119
1120         /* verify some invariant that must be enforced by the caller */
1121         VM_WARN_ON(prev && addr <= prev->vm_start);
1122         VM_WARN_ON(area && end > area->vm_end);
1123         VM_WARN_ON(addr >= end);
1124
1125         /*
1126          * Can it merge with the predecessor?
1127          */
1128         if (prev && prev->vm_end == addr &&
1129                         mpol_equal(vma_policy(prev), policy) &&
1130                         can_vma_merge_after(prev, vm_flags,
1131                                             anon_vma, file, pgoff,
1132                                             vm_userfaultfd_ctx)) {
1133                 /*
1134                  * OK, it can.  Can we now merge in the successor as well?
1135                  */
1136                 if (next && end == next->vm_start &&
1137                                 mpol_equal(policy, vma_policy(next)) &&
1138                                 can_vma_merge_before(next, vm_flags,
1139                                                      anon_vma, file,
1140                                                      pgoff+pglen,
1141                                                      vm_userfaultfd_ctx) &&
1142                                 is_mergeable_anon_vma(prev->anon_vma,
1143                                                       next->anon_vma, NULL)) {
1144                                                         /* cases 1, 6 */
1145                         err = __vma_adjust(prev, prev->vm_start,
1146                                          next->vm_end, prev->vm_pgoff, NULL,
1147                                          prev);
1148                 } else                                  /* cases 2, 5, 7 */
1149                         err = __vma_adjust(prev, prev->vm_start,
1150                                          end, prev->vm_pgoff, NULL, prev);
1151                 if (err)
1152                         return NULL;
1153                 khugepaged_enter_vma_merge(prev, vm_flags);
1154                 return prev;
1155         }
1156
1157         /*
1158          * Can this new request be merged in front of next?
1159          */
1160         if (next && end == next->vm_start &&
1161                         mpol_equal(policy, vma_policy(next)) &&
1162                         can_vma_merge_before(next, vm_flags,
1163                                              anon_vma, file, pgoff+pglen,
1164                                              vm_userfaultfd_ctx)) {
1165                 if (prev && addr < prev->vm_end)        /* case 4 */
1166                         err = __vma_adjust(prev, prev->vm_start,
1167                                          addr, prev->vm_pgoff, NULL, next);
1168                 else {                                  /* cases 3, 8 */
1169                         err = __vma_adjust(area, addr, next->vm_end,
1170                                          next->vm_pgoff - pglen, NULL, next);
1171                         /*
1172                          * In case 3 area is already equal to next and
1173                          * this is a noop, but in case 8 "area" has
1174                          * been removed and next was expanded over it.
1175                          */
1176                         area = next;
1177                 }
1178                 if (err)
1179                         return NULL;
1180                 khugepaged_enter_vma_merge(area, vm_flags);
1181                 return area;
1182         }
1183
1184         return NULL;
1185 }
1186
1187 /*
1188  * Rough compatbility check to quickly see if it's even worth looking
1189  * at sharing an anon_vma.
1190  *
1191  * They need to have the same vm_file, and the flags can only differ
1192  * in things that mprotect may change.
1193  *
1194  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1195  * we can merge the two vma's. For example, we refuse to merge a vma if
1196  * there is a vm_ops->close() function, because that indicates that the
1197  * driver is doing some kind of reference counting. But that doesn't
1198  * really matter for the anon_vma sharing case.
1199  */
1200 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1201 {
1202         return a->vm_end == b->vm_start &&
1203                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1204                 a->vm_file == b->vm_file &&
1205                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1206                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1207 }
1208
1209 /*
1210  * Do some basic sanity checking to see if we can re-use the anon_vma
1211  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1212  * the same as 'old', the other will be the new one that is trying
1213  * to share the anon_vma.
1214  *
1215  * NOTE! This runs with mm_sem held for reading, so it is possible that
1216  * the anon_vma of 'old' is concurrently in the process of being set up
1217  * by another page fault trying to merge _that_. But that's ok: if it
1218  * is being set up, that automatically means that it will be a singleton
1219  * acceptable for merging, so we can do all of this optimistically. But
1220  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1221  *
1222  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1223  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1224  * is to return an anon_vma that is "complex" due to having gone through
1225  * a fork).
1226  *
1227  * We also make sure that the two vma's are compatible (adjacent,
1228  * and with the same memory policies). That's all stable, even with just
1229  * a read lock on the mm_sem.
1230  */
1231 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1232 {
1233         if (anon_vma_compatible(a, b)) {
1234                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1235
1236                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1237                         return anon_vma;
1238         }
1239         return NULL;
1240 }
1241
1242 /*
1243  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1244  * neighbouring vmas for a suitable anon_vma, before it goes off
1245  * to allocate a new anon_vma.  It checks because a repetitive
1246  * sequence of mprotects and faults may otherwise lead to distinct
1247  * anon_vmas being allocated, preventing vma merge in subsequent
1248  * mprotect.
1249  */
1250 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1251 {
1252         struct anon_vma *anon_vma;
1253         struct vm_area_struct *near;
1254
1255         near = vma->vm_next;
1256         if (!near)
1257                 goto try_prev;
1258
1259         anon_vma = reusable_anon_vma(near, vma, near);
1260         if (anon_vma)
1261                 return anon_vma;
1262 try_prev:
1263         near = vma->vm_prev;
1264         if (!near)
1265                 goto none;
1266
1267         anon_vma = reusable_anon_vma(near, near, vma);
1268         if (anon_vma)
1269                 return anon_vma;
1270 none:
1271         /*
1272          * There's no absolute need to look only at touching neighbours:
1273          * we could search further afield for "compatible" anon_vmas.
1274          * But it would probably just be a waste of time searching,
1275          * or lead to too many vmas hanging off the same anon_vma.
1276          * We're trying to allow mprotect remerging later on,
1277          * not trying to minimize memory used for anon_vmas.
1278          */
1279         return NULL;
1280 }
1281
1282 /*
1283  * If a hint addr is less than mmap_min_addr change hint to be as
1284  * low as possible but still greater than mmap_min_addr
1285  */
1286 static inline unsigned long round_hint_to_min(unsigned long hint)
1287 {
1288         hint &= PAGE_MASK;
1289         if (((void *)hint != NULL) &&
1290             (hint < mmap_min_addr))
1291                 return PAGE_ALIGN(mmap_min_addr);
1292         return hint;
1293 }
1294
1295 static inline int mlock_future_check(struct mm_struct *mm,
1296                                      unsigned long flags,
1297                                      unsigned long len)
1298 {
1299         unsigned long locked, lock_limit;
1300
1301         /*  mlock MCL_FUTURE? */
1302         if (flags & VM_LOCKED) {
1303                 locked = len >> PAGE_SHIFT;
1304                 locked += mm->locked_vm;
1305                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1306                 lock_limit >>= PAGE_SHIFT;
1307                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1308                         return -EAGAIN;
1309         }
1310         return 0;
1311 }
1312
1313 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1314 {
1315         if (S_ISREG(inode->i_mode))
1316                 return MAX_LFS_FILESIZE;
1317
1318         if (S_ISBLK(inode->i_mode))
1319                 return MAX_LFS_FILESIZE;
1320
1321         /* Special "we do even unsigned file positions" case */
1322         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1323                 return 0;
1324
1325         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1326         return ULONG_MAX;
1327 }
1328
1329 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1330                                 unsigned long pgoff, unsigned long len)
1331 {
1332         u64 maxsize = file_mmap_size_max(file, inode);
1333
1334         if (maxsize && len > maxsize)
1335                 return false;
1336         maxsize -= len;
1337         if (pgoff > maxsize >> PAGE_SHIFT)
1338                 return false;
1339         return true;
1340 }
1341
1342 /*
1343  * The caller must hold down_write(&current->mm->mmap_sem).
1344  */
1345 unsigned long do_mmap(struct file *file, unsigned long addr,
1346                         unsigned long len, unsigned long prot,
1347                         unsigned long flags, vm_flags_t vm_flags,
1348                         unsigned long pgoff, unsigned long *populate,
1349                         struct list_head *uf)
1350 {
1351         struct mm_struct *mm = current->mm;
1352         int pkey = 0;
1353
1354         *populate = 0;
1355
1356         if (!len)
1357                 return -EINVAL;
1358
1359         /*
1360          * Does the application expect PROT_READ to imply PROT_EXEC?
1361          *
1362          * (the exception is when the underlying filesystem is noexec
1363          *  mounted, in which case we dont add PROT_EXEC.)
1364          */
1365         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1366                 if (!(file && path_noexec(&file->f_path)))
1367                         prot |= PROT_EXEC;
1368
1369         if (!(flags & MAP_FIXED))
1370                 addr = round_hint_to_min(addr);
1371
1372         /* Careful about overflows.. */
1373         len = PAGE_ALIGN(len);
1374         if (!len)
1375                 return -ENOMEM;
1376
1377         /* offset overflow? */
1378         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1379                 return -EOVERFLOW;
1380
1381         /* Too many mappings? */
1382         if (mm->map_count > sysctl_max_map_count)
1383                 return -ENOMEM;
1384
1385         /* Obtain the address to map to. we verify (or select) it and ensure
1386          * that it represents a valid section of the address space.
1387          */
1388         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1389         if (offset_in_page(addr))
1390                 return addr;
1391
1392         if (prot == PROT_EXEC) {
1393                 pkey = execute_only_pkey(mm);
1394                 if (pkey < 0)
1395                         pkey = 0;
1396         }
1397
1398         /* Do simple checking here so the lower-level routines won't have
1399          * to. we assume access permissions have been handled by the open
1400          * of the memory object, so we don't do any here.
1401          */
1402         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1403                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1404
1405         if (flags & MAP_LOCKED)
1406                 if (!can_do_mlock())
1407                         return -EPERM;
1408
1409         if (mlock_future_check(mm, vm_flags, len))
1410                 return -EAGAIN;
1411
1412         if (file) {
1413                 struct inode *inode = file_inode(file);
1414
1415                 if (!file_mmap_ok(file, inode, pgoff, len))
1416                         return -EOVERFLOW;
1417
1418                 switch (flags & MAP_TYPE) {
1419                 case MAP_SHARED:
1420                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1421                                 return -EACCES;
1422
1423                         /*
1424                          * Make sure we don't allow writing to an append-only
1425                          * file..
1426                          */
1427                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1428                                 return -EACCES;
1429
1430                         /*
1431                          * Make sure there are no mandatory locks on the file.
1432                          */
1433                         if (locks_verify_locked(file))
1434                                 return -EAGAIN;
1435
1436                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1437                         if (!(file->f_mode & FMODE_WRITE))
1438                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1439
1440                         /* fall through */
1441                 case MAP_PRIVATE:
1442                         if (!(file->f_mode & FMODE_READ))
1443                                 return -EACCES;
1444                         if (path_noexec(&file->f_path)) {
1445                                 if (vm_flags & VM_EXEC)
1446                                         return -EPERM;
1447                                 vm_flags &= ~VM_MAYEXEC;
1448                         }
1449
1450                         if (!file->f_op->mmap)
1451                                 return -ENODEV;
1452                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1453                                 return -EINVAL;
1454                         break;
1455
1456                 default:
1457                         return -EINVAL;
1458                 }
1459         } else {
1460                 switch (flags & MAP_TYPE) {
1461                 case MAP_SHARED:
1462                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1463                                 return -EINVAL;
1464                         /*
1465                          * Ignore pgoff.
1466                          */
1467                         pgoff = 0;
1468                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1469                         break;
1470                 case MAP_PRIVATE:
1471                         /*
1472                          * Set pgoff according to addr for anon_vma.
1473                          */
1474                         pgoff = addr >> PAGE_SHIFT;
1475                         break;
1476                 default:
1477                         return -EINVAL;
1478                 }
1479         }
1480
1481         /*
1482          * Set 'VM_NORESERVE' if we should not account for the
1483          * memory use of this mapping.
1484          */
1485         if (flags & MAP_NORESERVE) {
1486                 /* We honor MAP_NORESERVE if allowed to overcommit */
1487                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1488                         vm_flags |= VM_NORESERVE;
1489
1490                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1491                 if (file && is_file_hugepages(file))
1492                         vm_flags |= VM_NORESERVE;
1493         }
1494
1495         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1496         if (!IS_ERR_VALUE(addr) &&
1497             ((vm_flags & VM_LOCKED) ||
1498              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1499                 *populate = len;
1500         return addr;
1501 }
1502
1503 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1504                 unsigned long, prot, unsigned long, flags,
1505                 unsigned long, fd, unsigned long, pgoff)
1506 {
1507         struct file *file = NULL;
1508         unsigned long retval;
1509
1510         if (!(flags & MAP_ANONYMOUS)) {
1511                 audit_mmap_fd(fd, flags);
1512                 file = fget(fd);
1513                 if (!file)
1514                         return -EBADF;
1515                 if (is_file_hugepages(file))
1516                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1517                 retval = -EINVAL;
1518                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1519                         goto out_fput;
1520         } else if (flags & MAP_HUGETLB) {
1521                 struct user_struct *user = NULL;
1522                 struct hstate *hs;
1523
1524                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1525                 if (!hs)
1526                         return -EINVAL;
1527
1528                 len = ALIGN(len, huge_page_size(hs));
1529                 /*
1530                  * VM_NORESERVE is used because the reservations will be
1531                  * taken when vm_ops->mmap() is called
1532                  * A dummy user value is used because we are not locking
1533                  * memory so no accounting is necessary
1534                  */
1535                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1536                                 VM_NORESERVE,
1537                                 &user, HUGETLB_ANONHUGE_INODE,
1538                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1539                 if (IS_ERR(file))
1540                         return PTR_ERR(file);
1541         }
1542
1543         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1544
1545         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1546 out_fput:
1547         if (file)
1548                 fput(file);
1549         return retval;
1550 }
1551
1552 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1553 struct mmap_arg_struct {
1554         unsigned long addr;
1555         unsigned long len;
1556         unsigned long prot;
1557         unsigned long flags;
1558         unsigned long fd;
1559         unsigned long offset;
1560 };
1561
1562 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1563 {
1564         struct mmap_arg_struct a;
1565
1566         if (copy_from_user(&a, arg, sizeof(a)))
1567                 return -EFAULT;
1568         if (offset_in_page(a.offset))
1569                 return -EINVAL;
1570
1571         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1572                               a.offset >> PAGE_SHIFT);
1573 }
1574 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1575
1576 /*
1577  * Some shared mappigns will want the pages marked read-only
1578  * to track write events. If so, we'll downgrade vm_page_prot
1579  * to the private version (using protection_map[] without the
1580  * VM_SHARED bit).
1581  */
1582 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1583 {
1584         vm_flags_t vm_flags = vma->vm_flags;
1585         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1586
1587         /* If it was private or non-writable, the write bit is already clear */
1588         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1589                 return 0;
1590
1591         /* The backer wishes to know when pages are first written to? */
1592         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1593                 return 1;
1594
1595         /* The open routine did something to the protections that pgprot_modify
1596          * won't preserve? */
1597         if (pgprot_val(vm_page_prot) !=
1598             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1599                 return 0;
1600
1601         /* Do we need to track softdirty? */
1602         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1603                 return 1;
1604
1605         /* Specialty mapping? */
1606         if (vm_flags & VM_PFNMAP)
1607                 return 0;
1608
1609         /* Can the mapping track the dirty pages? */
1610         return vma->vm_file && vma->vm_file->f_mapping &&
1611                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1612 }
1613
1614 /*
1615  * We account for memory if it's a private writeable mapping,
1616  * not hugepages and VM_NORESERVE wasn't set.
1617  */
1618 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1619 {
1620         /*
1621          * hugetlb has its own accounting separate from the core VM
1622          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1623          */
1624         if (file && is_file_hugepages(file))
1625                 return 0;
1626
1627         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1628 }
1629
1630 unsigned long mmap_region(struct file *file, unsigned long addr,
1631                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1632                 struct list_head *uf)
1633 {
1634         struct mm_struct *mm = current->mm;
1635         struct vm_area_struct *vma, *prev;
1636         int error;
1637         struct rb_node **rb_link, *rb_parent;
1638         unsigned long charged = 0;
1639
1640         /* Check against address space limit. */
1641         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1642                 unsigned long nr_pages;
1643
1644                 /*
1645                  * MAP_FIXED may remove pages of mappings that intersects with
1646                  * requested mapping. Account for the pages it would unmap.
1647                  */
1648                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1649
1650                 if (!may_expand_vm(mm, vm_flags,
1651                                         (len >> PAGE_SHIFT) - nr_pages))
1652                         return -ENOMEM;
1653         }
1654
1655         /* Clear old maps */
1656         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1657                               &rb_parent)) {
1658                 if (do_munmap(mm, addr, len, uf))
1659                         return -ENOMEM;
1660         }
1661
1662         /*
1663          * Private writable mapping: check memory availability
1664          */
1665         if (accountable_mapping(file, vm_flags)) {
1666                 charged = len >> PAGE_SHIFT;
1667                 if (security_vm_enough_memory_mm(mm, charged))
1668                         return -ENOMEM;
1669                 vm_flags |= VM_ACCOUNT;
1670         }
1671
1672         /*
1673          * Can we just expand an old mapping?
1674          */
1675         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1676                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1677         if (vma)
1678                 goto out;
1679
1680         /*
1681          * Determine the object being mapped and call the appropriate
1682          * specific mapper. the address has already been validated, but
1683          * not unmapped, but the maps are removed from the list.
1684          */
1685         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1686         if (!vma) {
1687                 error = -ENOMEM;
1688                 goto unacct_error;
1689         }
1690
1691         vma->vm_mm = mm;
1692         vma->vm_start = addr;
1693         vma->vm_end = addr + len;
1694         vma->vm_flags = vm_flags;
1695         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1696         vma->vm_pgoff = pgoff;
1697         INIT_LIST_HEAD(&vma->anon_vma_chain);
1698
1699         if (file) {
1700                 if (vm_flags & VM_DENYWRITE) {
1701                         error = deny_write_access(file);
1702                         if (error)
1703                                 goto free_vma;
1704                 }
1705                 if (vm_flags & VM_SHARED) {
1706                         error = mapping_map_writable(file->f_mapping);
1707                         if (error)
1708                                 goto allow_write_and_free_vma;
1709                 }
1710
1711                 /* ->mmap() can change vma->vm_file, but must guarantee that
1712                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1713                  * and map writably if VM_SHARED is set. This usually means the
1714                  * new file must not have been exposed to user-space, yet.
1715                  */
1716                 vma->vm_file = get_file(file);
1717                 error = call_mmap(file, vma);
1718                 if (error)
1719                         goto unmap_and_free_vma;
1720
1721                 /* Can addr have changed??
1722                  *
1723                  * Answer: Yes, several device drivers can do it in their
1724                  *         f_op->mmap method. -DaveM
1725                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1726                  *      be updated for vma_link()
1727                  */
1728                 WARN_ON_ONCE(addr != vma->vm_start);
1729
1730                 addr = vma->vm_start;
1731                 vm_flags = vma->vm_flags;
1732         } else if (vm_flags & VM_SHARED) {
1733                 error = shmem_zero_setup(vma);
1734                 if (error)
1735                         goto free_vma;
1736         }
1737
1738         vma_link(mm, vma, prev, rb_link, rb_parent);
1739         /* Once vma denies write, undo our temporary denial count */
1740         if (file) {
1741                 if (vm_flags & VM_SHARED)
1742                         mapping_unmap_writable(file->f_mapping);
1743                 if (vm_flags & VM_DENYWRITE)
1744                         allow_write_access(file);
1745         }
1746         file = vma->vm_file;
1747 out:
1748         perf_event_mmap(vma);
1749
1750         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1751         if (vm_flags & VM_LOCKED) {
1752                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1753                                         vma == get_gate_vma(current->mm)))
1754                         mm->locked_vm += (len >> PAGE_SHIFT);
1755                 else
1756                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1757         }
1758
1759         if (file)
1760                 uprobe_mmap(vma);
1761
1762         /*
1763          * New (or expanded) vma always get soft dirty status.
1764          * Otherwise user-space soft-dirty page tracker won't
1765          * be able to distinguish situation when vma area unmapped,
1766          * then new mapped in-place (which must be aimed as
1767          * a completely new data area).
1768          */
1769         vma->vm_flags |= VM_SOFTDIRTY;
1770
1771         vma_set_page_prot(vma);
1772
1773         return addr;
1774
1775 unmap_and_free_vma:
1776         vma->vm_file = NULL;
1777         fput(file);
1778
1779         /* Undo any partial mapping done by a device driver. */
1780         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1781         charged = 0;
1782         if (vm_flags & VM_SHARED)
1783                 mapping_unmap_writable(file->f_mapping);
1784 allow_write_and_free_vma:
1785         if (vm_flags & VM_DENYWRITE)
1786                 allow_write_access(file);
1787 free_vma:
1788         kmem_cache_free(vm_area_cachep, vma);
1789 unacct_error:
1790         if (charged)
1791                 vm_unacct_memory(charged);
1792         return error;
1793 }
1794
1795 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1796 {
1797         /*
1798          * We implement the search by looking for an rbtree node that
1799          * immediately follows a suitable gap. That is,
1800          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1801          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1802          * - gap_end - gap_start >= length
1803          */
1804
1805         struct mm_struct *mm = current->mm;
1806         struct vm_area_struct *vma;
1807         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1808
1809         /* Adjust search length to account for worst case alignment overhead */
1810         length = info->length + info->align_mask;
1811         if (length < info->length)
1812                 return -ENOMEM;
1813
1814         /* Adjust search limits by the desired length */
1815         if (info->high_limit < length)
1816                 return -ENOMEM;
1817         high_limit = info->high_limit - length;
1818
1819         if (info->low_limit > high_limit)
1820                 return -ENOMEM;
1821         low_limit = info->low_limit + length;
1822
1823         /* Check if rbtree root looks promising */
1824         if (RB_EMPTY_ROOT(&mm->mm_rb))
1825                 goto check_highest;
1826         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1827         if (vma->rb_subtree_gap < length)
1828                 goto check_highest;
1829
1830         while (true) {
1831                 /* Visit left subtree if it looks promising */
1832                 gap_end = vm_start_gap(vma);
1833                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1834                         struct vm_area_struct *left =
1835                                 rb_entry(vma->vm_rb.rb_left,
1836                                          struct vm_area_struct, vm_rb);
1837                         if (left->rb_subtree_gap >= length) {
1838                                 vma = left;
1839                                 continue;
1840                         }
1841                 }
1842
1843                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1844 check_current:
1845                 /* Check if current node has a suitable gap */
1846                 if (gap_start > high_limit)
1847                         return -ENOMEM;
1848                 if (gap_end >= low_limit &&
1849                     gap_end > gap_start && gap_end - gap_start >= length)
1850                         goto found;
1851
1852                 /* Visit right subtree if it looks promising */
1853                 if (vma->vm_rb.rb_right) {
1854                         struct vm_area_struct *right =
1855                                 rb_entry(vma->vm_rb.rb_right,
1856                                          struct vm_area_struct, vm_rb);
1857                         if (right->rb_subtree_gap >= length) {
1858                                 vma = right;
1859                                 continue;
1860                         }
1861                 }
1862
1863                 /* Go back up the rbtree to find next candidate node */
1864                 while (true) {
1865                         struct rb_node *prev = &vma->vm_rb;
1866                         if (!rb_parent(prev))
1867                                 goto check_highest;
1868                         vma = rb_entry(rb_parent(prev),
1869                                        struct vm_area_struct, vm_rb);
1870                         if (prev == vma->vm_rb.rb_left) {
1871                                 gap_start = vm_end_gap(vma->vm_prev);
1872                                 gap_end = vm_start_gap(vma);
1873                                 goto check_current;
1874                         }
1875                 }
1876         }
1877
1878 check_highest:
1879         /* Check highest gap, which does not precede any rbtree node */
1880         gap_start = mm->highest_vm_end;
1881         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1882         if (gap_start > high_limit)
1883                 return -ENOMEM;
1884
1885 found:
1886         /* We found a suitable gap. Clip it with the original low_limit. */
1887         if (gap_start < info->low_limit)
1888                 gap_start = info->low_limit;
1889
1890         /* Adjust gap address to the desired alignment */
1891         gap_start += (info->align_offset - gap_start) & info->align_mask;
1892
1893         VM_BUG_ON(gap_start + info->length > info->high_limit);
1894         VM_BUG_ON(gap_start + info->length > gap_end);
1895         return gap_start;
1896 }
1897
1898 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1899 {
1900         struct mm_struct *mm = current->mm;
1901         struct vm_area_struct *vma;
1902         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1903
1904         /* Adjust search length to account for worst case alignment overhead */
1905         length = info->length + info->align_mask;
1906         if (length < info->length)
1907                 return -ENOMEM;
1908
1909         /*
1910          * Adjust search limits by the desired length.
1911          * See implementation comment at top of unmapped_area().
1912          */
1913         gap_end = info->high_limit;
1914         if (gap_end < length)
1915                 return -ENOMEM;
1916         high_limit = gap_end - length;
1917
1918         if (info->low_limit > high_limit)
1919                 return -ENOMEM;
1920         low_limit = info->low_limit + length;
1921
1922         /* Check highest gap, which does not precede any rbtree node */
1923         gap_start = mm->highest_vm_end;
1924         if (gap_start <= high_limit)
1925                 goto found_highest;
1926
1927         /* Check if rbtree root looks promising */
1928         if (RB_EMPTY_ROOT(&mm->mm_rb))
1929                 return -ENOMEM;
1930         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1931         if (vma->rb_subtree_gap < length)
1932                 return -ENOMEM;
1933
1934         while (true) {
1935                 /* Visit right subtree if it looks promising */
1936                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1937                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1938                         struct vm_area_struct *right =
1939                                 rb_entry(vma->vm_rb.rb_right,
1940                                          struct vm_area_struct, vm_rb);
1941                         if (right->rb_subtree_gap >= length) {
1942                                 vma = right;
1943                                 continue;
1944                         }
1945                 }
1946
1947 check_current:
1948                 /* Check if current node has a suitable gap */
1949                 gap_end = vm_start_gap(vma);
1950                 if (gap_end < low_limit)
1951                         return -ENOMEM;
1952                 if (gap_start <= high_limit &&
1953                     gap_end > gap_start && gap_end - gap_start >= length)
1954                         goto found;
1955
1956                 /* Visit left subtree if it looks promising */
1957                 if (vma->vm_rb.rb_left) {
1958                         struct vm_area_struct *left =
1959                                 rb_entry(vma->vm_rb.rb_left,
1960                                          struct vm_area_struct, vm_rb);
1961                         if (left->rb_subtree_gap >= length) {
1962                                 vma = left;
1963                                 continue;
1964                         }
1965                 }
1966
1967                 /* Go back up the rbtree to find next candidate node */
1968                 while (true) {
1969                         struct rb_node *prev = &vma->vm_rb;
1970                         if (!rb_parent(prev))
1971                                 return -ENOMEM;
1972                         vma = rb_entry(rb_parent(prev),
1973                                        struct vm_area_struct, vm_rb);
1974                         if (prev == vma->vm_rb.rb_right) {
1975                                 gap_start = vma->vm_prev ?
1976                                         vm_end_gap(vma->vm_prev) : 0;
1977                                 goto check_current;
1978                         }
1979                 }
1980         }
1981
1982 found:
1983         /* We found a suitable gap. Clip it with the original high_limit. */
1984         if (gap_end > info->high_limit)
1985                 gap_end = info->high_limit;
1986
1987 found_highest:
1988         /* Compute highest gap address at the desired alignment */
1989         gap_end -= info->length;
1990         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1991
1992         VM_BUG_ON(gap_end < info->low_limit);
1993         VM_BUG_ON(gap_end < gap_start);
1994         return gap_end;
1995 }
1996
1997 /* Get an address range which is currently unmapped.
1998  * For shmat() with addr=0.
1999  *
2000  * Ugly calling convention alert:
2001  * Return value with the low bits set means error value,
2002  * ie
2003  *      if (ret & ~PAGE_MASK)
2004  *              error = ret;
2005  *
2006  * This function "knows" that -ENOMEM has the bits set.
2007  */
2008 #ifndef HAVE_ARCH_UNMAPPED_AREA
2009 unsigned long
2010 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2011                 unsigned long len, unsigned long pgoff, unsigned long flags)
2012 {
2013         struct mm_struct *mm = current->mm;
2014         struct vm_area_struct *vma, *prev;
2015         struct vm_unmapped_area_info info;
2016
2017         if (len > TASK_SIZE - mmap_min_addr)
2018                 return -ENOMEM;
2019
2020         if (flags & MAP_FIXED)
2021                 return addr;
2022
2023         if (addr) {
2024                 addr = PAGE_ALIGN(addr);
2025                 vma = find_vma_prev(mm, addr, &prev);
2026                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2027                     (!vma || addr + len <= vm_start_gap(vma)) &&
2028                     (!prev || addr >= vm_end_gap(prev)))
2029                         return addr;
2030         }
2031
2032         info.flags = 0;
2033         info.length = len;
2034         info.low_limit = mm->mmap_base;
2035         info.high_limit = TASK_SIZE;
2036         info.align_mask = 0;
2037         info.align_offset = 0;
2038         return vm_unmapped_area(&info);
2039 }
2040 #endif
2041
2042 /*
2043  * This mmap-allocator allocates new areas top-down from below the
2044  * stack's low limit (the base):
2045  */
2046 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2047 unsigned long
2048 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2049                           const unsigned long len, const unsigned long pgoff,
2050                           const unsigned long flags)
2051 {
2052         struct vm_area_struct *vma, *prev;
2053         struct mm_struct *mm = current->mm;
2054         unsigned long addr = addr0;
2055         struct vm_unmapped_area_info info;
2056
2057         /* requested length too big for entire address space */
2058         if (len > TASK_SIZE - mmap_min_addr)
2059                 return -ENOMEM;
2060
2061         if (flags & MAP_FIXED)
2062                 return addr;
2063
2064         /* requesting a specific address */
2065         if (addr) {
2066                 addr = PAGE_ALIGN(addr);
2067                 vma = find_vma_prev(mm, addr, &prev);
2068                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2069                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2070                                 (!prev || addr >= vm_end_gap(prev)))
2071                         return addr;
2072         }
2073
2074         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2075         info.length = len;
2076         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2077         info.high_limit = mm->mmap_base;
2078         info.align_mask = 0;
2079         info.align_offset = 0;
2080         addr = vm_unmapped_area(&info);
2081
2082         /*
2083          * A failed mmap() very likely causes application failure,
2084          * so fall back to the bottom-up function here. This scenario
2085          * can happen with large stack limits and large mmap()
2086          * allocations.
2087          */
2088         if (offset_in_page(addr)) {
2089                 VM_BUG_ON(addr != -ENOMEM);
2090                 info.flags = 0;
2091                 info.low_limit = TASK_UNMAPPED_BASE;
2092                 info.high_limit = TASK_SIZE;
2093                 addr = vm_unmapped_area(&info);
2094         }
2095
2096         return addr;
2097 }
2098 #endif
2099
2100 unsigned long
2101 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2102                 unsigned long pgoff, unsigned long flags)
2103 {
2104         unsigned long (*get_area)(struct file *, unsigned long,
2105                                   unsigned long, unsigned long, unsigned long);
2106
2107         unsigned long error = arch_mmap_check(addr, len, flags);
2108         if (error)
2109                 return error;
2110
2111         /* Careful about overflows.. */
2112         if (len > TASK_SIZE)
2113                 return -ENOMEM;
2114
2115         get_area = current->mm->get_unmapped_area;
2116         if (file) {
2117                 if (file->f_op->get_unmapped_area)
2118                         get_area = file->f_op->get_unmapped_area;
2119         } else if (flags & MAP_SHARED) {
2120                 /*
2121                  * mmap_region() will call shmem_zero_setup() to create a file,
2122                  * so use shmem's get_unmapped_area in case it can be huge.
2123                  * do_mmap_pgoff() will clear pgoff, so match alignment.
2124                  */
2125                 pgoff = 0;
2126                 get_area = shmem_get_unmapped_area;
2127         }
2128
2129         addr = get_area(file, addr, len, pgoff, flags);
2130         if (IS_ERR_VALUE(addr))
2131                 return addr;
2132
2133         if (addr > TASK_SIZE - len)
2134                 return -ENOMEM;
2135         if (offset_in_page(addr))
2136                 return -EINVAL;
2137
2138         error = security_mmap_addr(addr);
2139         return error ? error : addr;
2140 }
2141
2142 EXPORT_SYMBOL(get_unmapped_area);
2143
2144 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2145 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2146 {
2147         struct rb_node *rb_node;
2148         struct vm_area_struct *vma;
2149
2150         /* Check the cache first. */
2151         vma = vmacache_find(mm, addr);
2152         if (likely(vma))
2153                 return vma;
2154
2155         rb_node = mm->mm_rb.rb_node;
2156
2157         while (rb_node) {
2158                 struct vm_area_struct *tmp;
2159
2160                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2161
2162                 if (tmp->vm_end > addr) {
2163                         vma = tmp;
2164                         if (tmp->vm_start <= addr)
2165                                 break;
2166                         rb_node = rb_node->rb_left;
2167                 } else
2168                         rb_node = rb_node->rb_right;
2169         }
2170
2171         if (vma)
2172                 vmacache_update(addr, vma);
2173         return vma;
2174 }
2175
2176 EXPORT_SYMBOL(find_vma);
2177
2178 /*
2179  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2180  */
2181 struct vm_area_struct *
2182 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2183                         struct vm_area_struct **pprev)
2184 {
2185         struct vm_area_struct *vma;
2186
2187         vma = find_vma(mm, addr);
2188         if (vma) {
2189                 *pprev = vma->vm_prev;
2190         } else {
2191                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2192                 *pprev = NULL;
2193                 while (rb_node) {
2194                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2195                         rb_node = rb_node->rb_right;
2196                 }
2197         }
2198         return vma;
2199 }
2200
2201 /*
2202  * Verify that the stack growth is acceptable and
2203  * update accounting. This is shared with both the
2204  * grow-up and grow-down cases.
2205  */
2206 static int acct_stack_growth(struct vm_area_struct *vma,
2207                              unsigned long size, unsigned long grow)
2208 {
2209         struct mm_struct *mm = vma->vm_mm;
2210         unsigned long new_start;
2211
2212         /* address space limit tests */
2213         if (!may_expand_vm(mm, vma->vm_flags, grow))
2214                 return -ENOMEM;
2215
2216         /* Stack limit test */
2217         if (size > rlimit(RLIMIT_STACK))
2218                 return -ENOMEM;
2219
2220         /* mlock limit tests */
2221         if (vma->vm_flags & VM_LOCKED) {
2222                 unsigned long locked;
2223                 unsigned long limit;
2224                 locked = mm->locked_vm + grow;
2225                 limit = rlimit(RLIMIT_MEMLOCK);
2226                 limit >>= PAGE_SHIFT;
2227                 if (locked > limit && !capable(CAP_IPC_LOCK))
2228                         return -ENOMEM;
2229         }
2230
2231         /* Check to ensure the stack will not grow into a hugetlb-only region */
2232         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2233                         vma->vm_end - size;
2234         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2235                 return -EFAULT;
2236
2237         /*
2238          * Overcommit..  This must be the final test, as it will
2239          * update security statistics.
2240          */
2241         if (security_vm_enough_memory_mm(mm, grow))
2242                 return -ENOMEM;
2243
2244         return 0;
2245 }
2246
2247 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2248 /*
2249  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2250  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2251  */
2252 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2253 {
2254         struct mm_struct *mm = vma->vm_mm;
2255         struct vm_area_struct *next;
2256         unsigned long gap_addr;
2257         int error = 0;
2258
2259         if (!(vma->vm_flags & VM_GROWSUP))
2260                 return -EFAULT;
2261
2262         /* Guard against exceeding limits of the address space. */
2263         address &= PAGE_MASK;
2264         if (address >= (TASK_SIZE & PAGE_MASK))
2265                 return -ENOMEM;
2266         address += PAGE_SIZE;
2267
2268         /* Enforce stack_guard_gap */
2269         gap_addr = address + stack_guard_gap;
2270
2271         /* Guard against overflow */
2272         if (gap_addr < address || gap_addr > TASK_SIZE)
2273                 gap_addr = TASK_SIZE;
2274
2275         next = vma->vm_next;
2276         if (next && next->vm_start < gap_addr &&
2277                         (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2278                 if (!(next->vm_flags & VM_GROWSUP))
2279                         return -ENOMEM;
2280                 /* Check that both stack segments have the same anon_vma? */
2281         }
2282
2283         /* We must make sure the anon_vma is allocated. */
2284         if (unlikely(anon_vma_prepare(vma)))
2285                 return -ENOMEM;
2286
2287         /*
2288          * vma->vm_start/vm_end cannot change under us because the caller
2289          * is required to hold the mmap_sem in read mode.  We need the
2290          * anon_vma lock to serialize against concurrent expand_stacks.
2291          */
2292         anon_vma_lock_write(vma->anon_vma);
2293
2294         /* Somebody else might have raced and expanded it already */
2295         if (address > vma->vm_end) {
2296                 unsigned long size, grow;
2297
2298                 size = address - vma->vm_start;
2299                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2300
2301                 error = -ENOMEM;
2302                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2303                         error = acct_stack_growth(vma, size, grow);
2304                         if (!error) {
2305                                 /*
2306                                  * vma_gap_update() doesn't support concurrent
2307                                  * updates, but we only hold a shared mmap_sem
2308                                  * lock here, so we need to protect against
2309                                  * concurrent vma expansions.
2310                                  * anon_vma_lock_write() doesn't help here, as
2311                                  * we don't guarantee that all growable vmas
2312                                  * in a mm share the same root anon vma.
2313                                  * So, we reuse mm->page_table_lock to guard
2314                                  * against concurrent vma expansions.
2315                                  */
2316                                 spin_lock(&mm->page_table_lock);
2317                                 if (vma->vm_flags & VM_LOCKED)
2318                                         mm->locked_vm += grow;
2319                                 vm_stat_account(mm, vma->vm_flags, grow);
2320                                 anon_vma_interval_tree_pre_update_vma(vma);
2321                                 vma->vm_end = address;
2322                                 anon_vma_interval_tree_post_update_vma(vma);
2323                                 if (vma->vm_next)
2324                                         vma_gap_update(vma->vm_next);
2325                                 else
2326                                         mm->highest_vm_end = vm_end_gap(vma);
2327                                 spin_unlock(&mm->page_table_lock);
2328
2329                                 perf_event_mmap(vma);
2330                         }
2331                 }
2332         }
2333         anon_vma_unlock_write(vma->anon_vma);
2334         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2335         validate_mm(mm);
2336         return error;
2337 }
2338 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2339
2340 /*
2341  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2342  */
2343 int expand_downwards(struct vm_area_struct *vma,
2344                                    unsigned long address)
2345 {
2346         struct mm_struct *mm = vma->vm_mm;
2347         struct vm_area_struct *prev;
2348         int error = 0;
2349
2350         address &= PAGE_MASK;
2351         if (address < mmap_min_addr)
2352                 return -EPERM;
2353
2354         /* Enforce stack_guard_gap */
2355         prev = vma->vm_prev;
2356         /* Check that both stack segments have the same anon_vma? */
2357         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2358                         (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2359                 if (address - prev->vm_end < stack_guard_gap)
2360                         return -ENOMEM;
2361         }
2362
2363         /* We must make sure the anon_vma is allocated. */
2364         if (unlikely(anon_vma_prepare(vma)))
2365                 return -ENOMEM;
2366
2367         /*
2368          * vma->vm_start/vm_end cannot change under us because the caller
2369          * is required to hold the mmap_sem in read mode.  We need the
2370          * anon_vma lock to serialize against concurrent expand_stacks.
2371          */
2372         anon_vma_lock_write(vma->anon_vma);
2373
2374         /* Somebody else might have raced and expanded it already */
2375         if (address < vma->vm_start) {
2376                 unsigned long size, grow;
2377
2378                 size = vma->vm_end - address;
2379                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2380
2381                 error = -ENOMEM;
2382                 if (grow <= vma->vm_pgoff) {
2383                         error = acct_stack_growth(vma, size, grow);
2384                         if (!error) {
2385                                 /*
2386                                  * vma_gap_update() doesn't support concurrent
2387                                  * updates, but we only hold a shared mmap_sem
2388                                  * lock here, so we need to protect against
2389                                  * concurrent vma expansions.
2390                                  * anon_vma_lock_write() doesn't help here, as
2391                                  * we don't guarantee that all growable vmas
2392                                  * in a mm share the same root anon vma.
2393                                  * So, we reuse mm->page_table_lock to guard
2394                                  * against concurrent vma expansions.
2395                                  */
2396                                 spin_lock(&mm->page_table_lock);
2397                                 if (vma->vm_flags & VM_LOCKED)
2398                                         mm->locked_vm += grow;
2399                                 vm_stat_account(mm, vma->vm_flags, grow);
2400                                 anon_vma_interval_tree_pre_update_vma(vma);
2401                                 vma->vm_start = address;
2402                                 vma->vm_pgoff -= grow;
2403                                 anon_vma_interval_tree_post_update_vma(vma);
2404                                 vma_gap_update(vma);
2405                                 spin_unlock(&mm->page_table_lock);
2406
2407                                 perf_event_mmap(vma);
2408                         }
2409                 }
2410         }
2411         anon_vma_unlock_write(vma->anon_vma);
2412         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2413         validate_mm(mm);
2414         return error;
2415 }
2416
2417 /* enforced gap between the expanding stack and other mappings. */
2418 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2419
2420 static int __init cmdline_parse_stack_guard_gap(char *p)
2421 {
2422         unsigned long val;
2423         char *endptr;
2424
2425         val = simple_strtoul(p, &endptr, 10);
2426         if (!*endptr)
2427                 stack_guard_gap = val << PAGE_SHIFT;
2428
2429         return 1;
2430 }
2431 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2432
2433 #ifdef CONFIG_STACK_GROWSUP
2434 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2435 {
2436         return expand_upwards(vma, address);
2437 }
2438
2439 struct vm_area_struct *
2440 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2441 {
2442         struct vm_area_struct *vma, *prev;
2443
2444         addr &= PAGE_MASK;
2445         vma = find_vma_prev(mm, addr, &prev);
2446         if (vma && (vma->vm_start <= addr))
2447                 return vma;
2448         /* don't alter vm_end if the coredump is running */
2449         if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2450                 return NULL;
2451         if (prev->vm_flags & VM_LOCKED)
2452                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2453         return prev;
2454 }
2455 #else
2456 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2457 {
2458         return expand_downwards(vma, address);
2459 }
2460
2461 struct vm_area_struct *
2462 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2463 {
2464         struct vm_area_struct *vma;
2465         unsigned long start;
2466
2467         addr &= PAGE_MASK;
2468         vma = find_vma(mm, addr);
2469         if (!vma)
2470                 return NULL;
2471         if (vma->vm_start <= addr)
2472                 return vma;
2473         if (!(vma->vm_flags & VM_GROWSDOWN))
2474                 return NULL;
2475         /* don't alter vm_start if the coredump is running */
2476         if (!mmget_still_valid(mm))
2477                 return NULL;
2478         start = vma->vm_start;
2479         if (expand_stack(vma, addr))
2480                 return NULL;
2481         if (vma->vm_flags & VM_LOCKED)
2482                 populate_vma_page_range(vma, addr, start, NULL);
2483         return vma;
2484 }
2485 #endif
2486
2487 EXPORT_SYMBOL_GPL(find_extend_vma);
2488
2489 /*
2490  * Ok - we have the memory areas we should free on the vma list,
2491  * so release them, and do the vma updates.
2492  *
2493  * Called with the mm semaphore held.
2494  */
2495 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2496 {
2497         unsigned long nr_accounted = 0;
2498
2499         /* Update high watermark before we lower total_vm */
2500         update_hiwater_vm(mm);
2501         do {
2502                 long nrpages = vma_pages(vma);
2503
2504                 if (vma->vm_flags & VM_ACCOUNT)
2505                         nr_accounted += nrpages;
2506                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2507                 vma = remove_vma(vma);
2508         } while (vma);
2509         vm_unacct_memory(nr_accounted);
2510         validate_mm(mm);
2511 }
2512
2513 /*
2514  * Get rid of page table information in the indicated region.
2515  *
2516  * Called with the mm semaphore held.
2517  */
2518 static void unmap_region(struct mm_struct *mm,
2519                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2520                 unsigned long start, unsigned long end)
2521 {
2522         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2523         struct mmu_gather tlb;
2524
2525         lru_add_drain();
2526         tlb_gather_mmu(&tlb, mm, start, end);
2527         update_hiwater_rss(mm);
2528         unmap_vmas(&tlb, vma, start, end);
2529         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2530                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2531         tlb_finish_mmu(&tlb, start, end);
2532 }
2533
2534 /*
2535  * Create a list of vma's touched by the unmap, removing them from the mm's
2536  * vma list as we go..
2537  */
2538 static void
2539 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2540         struct vm_area_struct *prev, unsigned long end)
2541 {
2542         struct vm_area_struct **insertion_point;
2543         struct vm_area_struct *tail_vma = NULL;
2544
2545         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2546         vma->vm_prev = NULL;
2547         do {
2548                 vma_rb_erase(vma, &mm->mm_rb);
2549                 mm->map_count--;
2550                 tail_vma = vma;
2551                 vma = vma->vm_next;
2552         } while (vma && vma->vm_start < end);
2553         *insertion_point = vma;
2554         if (vma) {
2555                 vma->vm_prev = prev;
2556                 vma_gap_update(vma);
2557         } else
2558                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2559         tail_vma->vm_next = NULL;
2560
2561         /* Kill the cache */
2562         vmacache_invalidate(mm);
2563 }
2564
2565 /*
2566  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2567  * has already been checked or doesn't make sense to fail.
2568  */
2569 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2570                 unsigned long addr, int new_below)
2571 {
2572         struct vm_area_struct *new;
2573         int err;
2574
2575         if (vma->vm_ops && vma->vm_ops->split) {
2576                 err = vma->vm_ops->split(vma, addr);
2577                 if (err)
2578                         return err;
2579         }
2580
2581         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2582         if (!new)
2583                 return -ENOMEM;
2584
2585         /* most fields are the same, copy all, and then fixup */
2586         *new = *vma;
2587
2588         INIT_LIST_HEAD(&new->anon_vma_chain);
2589
2590         if (new_below)
2591                 new->vm_end = addr;
2592         else {
2593                 new->vm_start = addr;
2594                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2595         }
2596
2597         err = vma_dup_policy(vma, new);
2598         if (err)
2599                 goto out_free_vma;
2600
2601         err = anon_vma_clone(new, vma);
2602         if (err)
2603                 goto out_free_mpol;
2604
2605         if (new->vm_file)
2606                 get_file(new->vm_file);
2607
2608         if (new->vm_ops && new->vm_ops->open)
2609                 new->vm_ops->open(new);
2610
2611         if (new_below)
2612                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2613                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2614         else
2615                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2616
2617         /* Success. */
2618         if (!err)
2619                 return 0;
2620
2621         /* Clean everything up if vma_adjust failed. */
2622         if (new->vm_ops && new->vm_ops->close)
2623                 new->vm_ops->close(new);
2624         if (new->vm_file)
2625                 fput(new->vm_file);
2626         unlink_anon_vmas(new);
2627  out_free_mpol:
2628         mpol_put(vma_policy(new));
2629  out_free_vma:
2630         kmem_cache_free(vm_area_cachep, new);
2631         return err;
2632 }
2633
2634 /*
2635  * Split a vma into two pieces at address 'addr', a new vma is allocated
2636  * either for the first part or the tail.
2637  */
2638 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2639               unsigned long addr, int new_below)
2640 {
2641         if (mm->map_count >= sysctl_max_map_count)
2642                 return -ENOMEM;
2643
2644         return __split_vma(mm, vma, addr, new_below);
2645 }
2646
2647 /* Munmap is split into 2 main parts -- this part which finds
2648  * what needs doing, and the areas themselves, which do the
2649  * work.  This now handles partial unmappings.
2650  * Jeremy Fitzhardinge <jeremy@goop.org>
2651  */
2652 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2653               struct list_head *uf)
2654 {
2655         unsigned long end;
2656         struct vm_area_struct *vma, *prev, *last;
2657
2658         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2659                 return -EINVAL;
2660
2661         len = PAGE_ALIGN(len);
2662         if (len == 0)
2663                 return -EINVAL;
2664
2665         /* Find the first overlapping VMA */
2666         vma = find_vma(mm, start);
2667         if (!vma)
2668                 return 0;
2669         prev = vma->vm_prev;
2670         /* we have  start < vma->vm_end  */
2671
2672         /* if it doesn't overlap, we have nothing.. */
2673         end = start + len;
2674         if (vma->vm_start >= end)
2675                 return 0;
2676
2677         /*
2678          * If we need to split any vma, do it now to save pain later.
2679          *
2680          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2681          * unmapped vm_area_struct will remain in use: so lower split_vma
2682          * places tmp vma above, and higher split_vma places tmp vma below.
2683          */
2684         if (start > vma->vm_start) {
2685                 int error;
2686
2687                 /*
2688                  * Make sure that map_count on return from munmap() will
2689                  * not exceed its limit; but let map_count go just above
2690                  * its limit temporarily, to help free resources as expected.
2691                  */
2692                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2693                         return -ENOMEM;
2694
2695                 error = __split_vma(mm, vma, start, 0);
2696                 if (error)
2697                         return error;
2698                 prev = vma;
2699         }
2700
2701         /* Does it split the last one? */
2702         last = find_vma(mm, end);
2703         if (last && end > last->vm_start) {
2704                 int error = __split_vma(mm, last, end, 1);
2705                 if (error)
2706                         return error;
2707         }
2708         vma = prev ? prev->vm_next : mm->mmap;
2709
2710         if (unlikely(uf)) {
2711                 /*
2712                  * If userfaultfd_unmap_prep returns an error the vmas
2713                  * will remain splitted, but userland will get a
2714                  * highly unexpected error anyway. This is no
2715                  * different than the case where the first of the two
2716                  * __split_vma fails, but we don't undo the first
2717                  * split, despite we could. This is unlikely enough
2718                  * failure that it's not worth optimizing it for.
2719                  */
2720                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2721                 if (error)
2722                         return error;
2723         }
2724
2725         /*
2726          * unlock any mlock()ed ranges before detaching vmas
2727          */
2728         if (mm->locked_vm) {
2729                 struct vm_area_struct *tmp = vma;
2730                 while (tmp && tmp->vm_start < end) {
2731                         if (tmp->vm_flags & VM_LOCKED) {
2732                                 mm->locked_vm -= vma_pages(tmp);
2733                                 munlock_vma_pages_all(tmp);
2734                         }
2735                         tmp = tmp->vm_next;
2736                 }
2737         }
2738
2739         /*
2740          * Remove the vma's, and unmap the actual pages
2741          */
2742         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2743         unmap_region(mm, vma, prev, start, end);
2744
2745         arch_unmap(mm, vma, start, end);
2746
2747         /* Fix up all other VM information */
2748         remove_vma_list(mm, vma);
2749
2750         return 0;
2751 }
2752
2753 int vm_munmap(unsigned long start, size_t len)
2754 {
2755         int ret;
2756         struct mm_struct *mm = current->mm;
2757         LIST_HEAD(uf);
2758
2759         if (down_write_killable(&mm->mmap_sem))
2760                 return -EINTR;
2761
2762         ret = do_munmap(mm, start, len, &uf);
2763         up_write(&mm->mmap_sem);
2764         userfaultfd_unmap_complete(mm, &uf);
2765         return ret;
2766 }
2767 EXPORT_SYMBOL(vm_munmap);
2768
2769 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2770 {
2771         profile_munmap(addr);
2772         return vm_munmap(addr, len);
2773 }
2774
2775
2776 /*
2777  * Emulation of deprecated remap_file_pages() syscall.
2778  */
2779 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2780                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2781 {
2782
2783         struct mm_struct *mm = current->mm;
2784         struct vm_area_struct *vma;
2785         unsigned long populate = 0;
2786         unsigned long ret = -EINVAL;
2787         struct file *file;
2788
2789         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2790                      current->comm, current->pid);
2791
2792         if (prot)
2793                 return ret;
2794         start = start & PAGE_MASK;
2795         size = size & PAGE_MASK;
2796
2797         if (start + size <= start)
2798                 return ret;
2799
2800         /* Does pgoff wrap? */
2801         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2802                 return ret;
2803
2804         if (down_write_killable(&mm->mmap_sem))
2805                 return -EINTR;
2806
2807         vma = find_vma(mm, start);
2808
2809         if (!vma || !(vma->vm_flags & VM_SHARED))
2810                 goto out;
2811
2812         if (start < vma->vm_start)
2813                 goto out;
2814
2815         if (start + size > vma->vm_end) {
2816                 struct vm_area_struct *next;
2817
2818                 for (next = vma->vm_next; next; next = next->vm_next) {
2819                         /* hole between vmas ? */
2820                         if (next->vm_start != next->vm_prev->vm_end)
2821                                 goto out;
2822
2823                         if (next->vm_file != vma->vm_file)
2824                                 goto out;
2825
2826                         if (next->vm_flags != vma->vm_flags)
2827                                 goto out;
2828
2829                         if (start + size <= next->vm_end)
2830                                 break;
2831                 }
2832
2833                 if (!next)
2834                         goto out;
2835         }
2836
2837         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2838         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2839         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2840
2841         flags &= MAP_NONBLOCK;
2842         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2843         if (vma->vm_flags & VM_LOCKED) {
2844                 struct vm_area_struct *tmp;
2845                 flags |= MAP_LOCKED;
2846
2847                 /* drop PG_Mlocked flag for over-mapped range */
2848                 for (tmp = vma; tmp->vm_start >= start + size;
2849                                 tmp = tmp->vm_next) {
2850                         /*
2851                          * Split pmd and munlock page on the border
2852                          * of the range.
2853                          */
2854                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2855
2856                         munlock_vma_pages_range(tmp,
2857                                         max(tmp->vm_start, start),
2858                                         min(tmp->vm_end, start + size));
2859                 }
2860         }
2861
2862         file = get_file(vma->vm_file);
2863         ret = do_mmap_pgoff(vma->vm_file, start, size,
2864                         prot, flags, pgoff, &populate, NULL);
2865         fput(file);
2866 out:
2867         up_write(&mm->mmap_sem);
2868         if (populate)
2869                 mm_populate(ret, populate);
2870         if (!IS_ERR_VALUE(ret))
2871                 ret = 0;
2872         return ret;
2873 }
2874
2875 static inline void verify_mm_writelocked(struct mm_struct *mm)
2876 {
2877 #ifdef CONFIG_DEBUG_VM
2878         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2879                 WARN_ON(1);
2880                 up_read(&mm->mmap_sem);
2881         }
2882 #endif
2883 }
2884
2885 /*
2886  *  this is really a simplified "do_mmap".  it only handles
2887  *  anonymous maps.  eventually we may be able to do some
2888  *  brk-specific accounting here.
2889  */
2890 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2891 {
2892         struct mm_struct *mm = current->mm;
2893         struct vm_area_struct *vma, *prev;
2894         struct rb_node **rb_link, *rb_parent;
2895         pgoff_t pgoff = addr >> PAGE_SHIFT;
2896         int error;
2897
2898         /* Until we need other flags, refuse anything except VM_EXEC. */
2899         if ((flags & (~VM_EXEC)) != 0)
2900                 return -EINVAL;
2901         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2902
2903         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2904         if (offset_in_page(error))
2905                 return error;
2906
2907         error = mlock_future_check(mm, mm->def_flags, len);
2908         if (error)
2909                 return error;
2910
2911         /*
2912          * mm->mmap_sem is required to protect against another thread
2913          * changing the mappings in case we sleep.
2914          */
2915         verify_mm_writelocked(mm);
2916
2917         /*
2918          * Clear old maps.  this also does some error checking for us
2919          */
2920         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2921                               &rb_parent)) {
2922                 if (do_munmap(mm, addr, len, uf))
2923                         return -ENOMEM;
2924         }
2925
2926         /* Check against address space limits *after* clearing old maps... */
2927         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2928                 return -ENOMEM;
2929
2930         if (mm->map_count > sysctl_max_map_count)
2931                 return -ENOMEM;
2932
2933         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2934                 return -ENOMEM;
2935
2936         /* Can we just expand an old private anonymous mapping? */
2937         vma = vma_merge(mm, prev, addr, addr + len, flags,
2938                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2939         if (vma)
2940                 goto out;
2941
2942         /*
2943          * create a vma struct for an anonymous mapping
2944          */
2945         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2946         if (!vma) {
2947                 vm_unacct_memory(len >> PAGE_SHIFT);
2948                 return -ENOMEM;
2949         }
2950
2951         INIT_LIST_HEAD(&vma->anon_vma_chain);
2952         vma->vm_mm = mm;
2953         vma->vm_start = addr;
2954         vma->vm_end = addr + len;
2955         vma->vm_pgoff = pgoff;
2956         vma->vm_flags = flags;
2957         vma->vm_page_prot = vm_get_page_prot(flags);
2958         vma_link(mm, vma, prev, rb_link, rb_parent);
2959 out:
2960         perf_event_mmap(vma);
2961         mm->total_vm += len >> PAGE_SHIFT;
2962         mm->data_vm += len >> PAGE_SHIFT;
2963         if (flags & VM_LOCKED)
2964                 mm->locked_vm += (len >> PAGE_SHIFT);
2965         vma->vm_flags |= VM_SOFTDIRTY;
2966         return 0;
2967 }
2968
2969 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
2970 {
2971         struct mm_struct *mm = current->mm;
2972         unsigned long len;
2973         int ret;
2974         bool populate;
2975         LIST_HEAD(uf);
2976
2977         len = PAGE_ALIGN(request);
2978         if (len < request)
2979                 return -ENOMEM;
2980         if (!len)
2981                 return 0;
2982
2983         if (down_write_killable(&mm->mmap_sem))
2984                 return -EINTR;
2985
2986         ret = do_brk_flags(addr, len, flags, &uf);
2987         populate = ((mm->def_flags & VM_LOCKED) != 0);
2988         up_write(&mm->mmap_sem);
2989         userfaultfd_unmap_complete(mm, &uf);
2990         if (populate && !ret)
2991                 mm_populate(addr, len);
2992         return ret;
2993 }
2994 EXPORT_SYMBOL(vm_brk_flags);
2995
2996 int vm_brk(unsigned long addr, unsigned long len)
2997 {
2998         return vm_brk_flags(addr, len, 0);
2999 }
3000 EXPORT_SYMBOL(vm_brk);
3001
3002 /* Release all mmaps. */
3003 void exit_mmap(struct mm_struct *mm)
3004 {
3005         struct mmu_gather tlb;
3006         struct vm_area_struct *vma;
3007         unsigned long nr_accounted = 0;
3008
3009         /* mm's last user has gone, and its about to be pulled down */
3010         mmu_notifier_release(mm);
3011
3012         if (unlikely(mm_is_oom_victim(mm))) {
3013                 /*
3014                  * Manually reap the mm to free as much memory as possible.
3015                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3016                  * this mm from further consideration.  Taking mm->mmap_sem for
3017                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3018                  * reaper will not run on this mm again after mmap_sem is
3019                  * dropped.
3020                  *
3021                  * Nothing can be holding mm->mmap_sem here and the above call
3022                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3023                  * __oom_reap_task_mm() will not block.
3024                  *
3025                  * This needs to be done before calling munlock_vma_pages_all(),
3026                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3027                  * reliably test it.
3028                  */
3029                 mutex_lock(&oom_lock);
3030                 __oom_reap_task_mm(mm);
3031                 mutex_unlock(&oom_lock);
3032
3033                 set_bit(MMF_OOM_SKIP, &mm->flags);
3034                 down_write(&mm->mmap_sem);
3035                 up_write(&mm->mmap_sem);
3036         }
3037
3038         if (mm->locked_vm) {
3039                 vma = mm->mmap;
3040                 while (vma) {
3041                         if (vma->vm_flags & VM_LOCKED)
3042                                 munlock_vma_pages_all(vma);
3043                         vma = vma->vm_next;
3044                 }
3045         }
3046
3047         arch_exit_mmap(mm);
3048
3049         vma = mm->mmap;
3050         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3051                 return;
3052
3053         lru_add_drain();
3054         flush_cache_mm(mm);
3055         tlb_gather_mmu(&tlb, mm, 0, -1);
3056         /* update_hiwater_rss(mm) here? but nobody should be looking */
3057         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3058         unmap_vmas(&tlb, vma, 0, -1);
3059         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3060         tlb_finish_mmu(&tlb, 0, -1);
3061
3062         /*
3063          * Walk the list again, actually closing and freeing it,
3064          * with preemption enabled, without holding any MM locks.
3065          */
3066         while (vma) {
3067                 if (vma->vm_flags & VM_ACCOUNT)
3068                         nr_accounted += vma_pages(vma);
3069                 vma = remove_vma(vma);
3070                 cond_resched();
3071         }
3072         vm_unacct_memory(nr_accounted);
3073 }
3074
3075 /* Insert vm structure into process list sorted by address
3076  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3077  * then i_mmap_rwsem is taken here.
3078  */
3079 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3080 {
3081         struct vm_area_struct *prev;
3082         struct rb_node **rb_link, *rb_parent;
3083
3084         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3085                            &prev, &rb_link, &rb_parent))
3086                 return -ENOMEM;
3087         if ((vma->vm_flags & VM_ACCOUNT) &&
3088              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3089                 return -ENOMEM;
3090
3091         /*
3092          * The vm_pgoff of a purely anonymous vma should be irrelevant
3093          * until its first write fault, when page's anon_vma and index
3094          * are set.  But now set the vm_pgoff it will almost certainly
3095          * end up with (unless mremap moves it elsewhere before that
3096          * first wfault), so /proc/pid/maps tells a consistent story.
3097          *
3098          * By setting it to reflect the virtual start address of the
3099          * vma, merges and splits can happen in a seamless way, just
3100          * using the existing file pgoff checks and manipulations.
3101          * Similarly in do_mmap_pgoff and in do_brk.
3102          */
3103         if (vma_is_anonymous(vma)) {
3104                 BUG_ON(vma->anon_vma);
3105                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3106         }
3107
3108         vma_link(mm, vma, prev, rb_link, rb_parent);
3109         return 0;
3110 }
3111
3112 /*
3113  * Copy the vma structure to a new location in the same mm,
3114  * prior to moving page table entries, to effect an mremap move.
3115  */
3116 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3117         unsigned long addr, unsigned long len, pgoff_t pgoff,
3118         bool *need_rmap_locks)
3119 {
3120         struct vm_area_struct *vma = *vmap;
3121         unsigned long vma_start = vma->vm_start;
3122         struct mm_struct *mm = vma->vm_mm;
3123         struct vm_area_struct *new_vma, *prev;
3124         struct rb_node **rb_link, *rb_parent;
3125         bool faulted_in_anon_vma = true;
3126
3127         /*
3128          * If anonymous vma has not yet been faulted, update new pgoff
3129          * to match new location, to increase its chance of merging.
3130          */
3131         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3132                 pgoff = addr >> PAGE_SHIFT;
3133                 faulted_in_anon_vma = false;
3134         }
3135
3136         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3137                 return NULL;    /* should never get here */
3138         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3139                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3140                             vma->vm_userfaultfd_ctx);
3141         if (new_vma) {
3142                 /*
3143                  * Source vma may have been merged into new_vma
3144                  */
3145                 if (unlikely(vma_start >= new_vma->vm_start &&
3146                              vma_start < new_vma->vm_end)) {
3147                         /*
3148                          * The only way we can get a vma_merge with
3149                          * self during an mremap is if the vma hasn't
3150                          * been faulted in yet and we were allowed to
3151                          * reset the dst vma->vm_pgoff to the
3152                          * destination address of the mremap to allow
3153                          * the merge to happen. mremap must change the
3154                          * vm_pgoff linearity between src and dst vmas
3155                          * (in turn preventing a vma_merge) to be
3156                          * safe. It is only safe to keep the vm_pgoff
3157                          * linear if there are no pages mapped yet.
3158                          */
3159                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3160                         *vmap = vma = new_vma;
3161                 }
3162                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3163         } else {
3164                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3165                 if (!new_vma)
3166                         goto out;
3167                 *new_vma = *vma;
3168                 new_vma->vm_start = addr;
3169                 new_vma->vm_end = addr + len;
3170                 new_vma->vm_pgoff = pgoff;
3171                 if (vma_dup_policy(vma, new_vma))
3172                         goto out_free_vma;
3173                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3174                 if (anon_vma_clone(new_vma, vma))
3175                         goto out_free_mempol;
3176                 if (new_vma->vm_file)
3177                         get_file(new_vma->vm_file);
3178                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3179                         new_vma->vm_ops->open(new_vma);
3180                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3181                 *need_rmap_locks = false;
3182         }
3183         return new_vma;
3184
3185 out_free_mempol:
3186         mpol_put(vma_policy(new_vma));
3187 out_free_vma:
3188         kmem_cache_free(vm_area_cachep, new_vma);
3189 out:
3190         return NULL;
3191 }
3192
3193 /*
3194  * Return true if the calling process may expand its vm space by the passed
3195  * number of pages
3196  */
3197 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3198 {
3199         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3200                 return false;
3201
3202         if (is_data_mapping(flags) &&
3203             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3204                 /* Workaround for Valgrind */
3205                 if (rlimit(RLIMIT_DATA) == 0 &&
3206                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3207                         return true;
3208                 if (!ignore_rlimit_data) {
3209                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3210                                      current->comm, current->pid,
3211                                      (mm->data_vm + npages) << PAGE_SHIFT,
3212                                      rlimit(RLIMIT_DATA));
3213                         return false;
3214                 }
3215         }
3216
3217         return true;
3218 }
3219
3220 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3221 {
3222         mm->total_vm += npages;
3223
3224         if (is_exec_mapping(flags))
3225                 mm->exec_vm += npages;
3226         else if (is_stack_mapping(flags))
3227                 mm->stack_vm += npages;
3228         else if (is_data_mapping(flags))
3229                 mm->data_vm += npages;
3230 }
3231
3232 static int special_mapping_fault(struct vm_fault *vmf);
3233
3234 /*
3235  * Having a close hook prevents vma merging regardless of flags.
3236  */
3237 static void special_mapping_close(struct vm_area_struct *vma)
3238 {
3239 }
3240
3241 static const char *special_mapping_name(struct vm_area_struct *vma)
3242 {
3243         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3244 }
3245
3246 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3247 {
3248         struct vm_special_mapping *sm = new_vma->vm_private_data;
3249
3250         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3251                 return -EFAULT;
3252
3253         if (sm->mremap)
3254                 return sm->mremap(sm, new_vma);
3255
3256         return 0;
3257 }
3258
3259 static const struct vm_operations_struct special_mapping_vmops = {
3260         .close = special_mapping_close,
3261         .fault = special_mapping_fault,
3262         .mremap = special_mapping_mremap,
3263         .name = special_mapping_name,
3264 };
3265
3266 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3267         .close = special_mapping_close,
3268         .fault = special_mapping_fault,
3269 };
3270
3271 static int special_mapping_fault(struct vm_fault *vmf)
3272 {
3273         struct vm_area_struct *vma = vmf->vma;
3274         pgoff_t pgoff;
3275         struct page **pages;
3276
3277         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3278                 pages = vma->vm_private_data;
3279         } else {
3280                 struct vm_special_mapping *sm = vma->vm_private_data;
3281
3282                 if (sm->fault)
3283                         return sm->fault(sm, vmf->vma, vmf);
3284
3285                 pages = sm->pages;
3286         }
3287
3288         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3289                 pgoff--;
3290
3291         if (*pages) {
3292                 struct page *page = *pages;
3293                 get_page(page);
3294                 vmf->page = page;
3295                 return 0;
3296         }
3297
3298         return VM_FAULT_SIGBUS;
3299 }
3300
3301 static struct vm_area_struct *__install_special_mapping(
3302         struct mm_struct *mm,
3303         unsigned long addr, unsigned long len,
3304         unsigned long vm_flags, void *priv,
3305         const struct vm_operations_struct *ops)
3306 {
3307         int ret;
3308         struct vm_area_struct *vma;
3309
3310         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3311         if (unlikely(vma == NULL))
3312                 return ERR_PTR(-ENOMEM);
3313
3314         INIT_LIST_HEAD(&vma->anon_vma_chain);
3315         vma->vm_mm = mm;
3316         vma->vm_start = addr;
3317         vma->vm_end = addr + len;
3318
3319         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3320         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3321
3322         vma->vm_ops = ops;
3323         vma->vm_private_data = priv;
3324
3325         ret = insert_vm_struct(mm, vma);
3326         if (ret)
3327                 goto out;
3328
3329         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3330
3331         perf_event_mmap(vma);
3332
3333         return vma;
3334
3335 out:
3336         kmem_cache_free(vm_area_cachep, vma);
3337         return ERR_PTR(ret);
3338 }
3339
3340 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3341         const struct vm_special_mapping *sm)
3342 {
3343         return vma->vm_private_data == sm &&
3344                 (vma->vm_ops == &special_mapping_vmops ||
3345                  vma->vm_ops == &legacy_special_mapping_vmops);
3346 }
3347
3348 /*
3349  * Called with mm->mmap_sem held for writing.
3350  * Insert a new vma covering the given region, with the given flags.
3351  * Its pages are supplied by the given array of struct page *.
3352  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3353  * The region past the last page supplied will always produce SIGBUS.
3354  * The array pointer and the pages it points to are assumed to stay alive
3355  * for as long as this mapping might exist.
3356  */
3357 struct vm_area_struct *_install_special_mapping(
3358         struct mm_struct *mm,
3359         unsigned long addr, unsigned long len,
3360         unsigned long vm_flags, const struct vm_special_mapping *spec)
3361 {
3362         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3363                                         &special_mapping_vmops);
3364 }
3365
3366 int install_special_mapping(struct mm_struct *mm,
3367                             unsigned long addr, unsigned long len,
3368                             unsigned long vm_flags, struct page **pages)
3369 {
3370         struct vm_area_struct *vma = __install_special_mapping(
3371                 mm, addr, len, vm_flags, (void *)pages,
3372                 &legacy_special_mapping_vmops);
3373
3374         return PTR_ERR_OR_ZERO(vma);
3375 }
3376
3377 static DEFINE_MUTEX(mm_all_locks_mutex);
3378
3379 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3380 {
3381         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3382                 /*
3383                  * The LSB of head.next can't change from under us
3384                  * because we hold the mm_all_locks_mutex.
3385                  */
3386                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3387                 /*
3388                  * We can safely modify head.next after taking the
3389                  * anon_vma->root->rwsem. If some other vma in this mm shares
3390                  * the same anon_vma we won't take it again.
3391                  *
3392                  * No need of atomic instructions here, head.next
3393                  * can't change from under us thanks to the
3394                  * anon_vma->root->rwsem.
3395                  */
3396                 if (__test_and_set_bit(0, (unsigned long *)
3397                                        &anon_vma->root->rb_root.rb_root.rb_node))
3398                         BUG();
3399         }
3400 }
3401
3402 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3403 {
3404         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3405                 /*
3406                  * AS_MM_ALL_LOCKS can't change from under us because
3407                  * we hold the mm_all_locks_mutex.
3408                  *
3409                  * Operations on ->flags have to be atomic because
3410                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3411                  * mm_all_locks_mutex, there may be other cpus
3412                  * changing other bitflags in parallel to us.
3413                  */
3414                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3415                         BUG();
3416                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3417         }
3418 }
3419
3420 /*
3421  * This operation locks against the VM for all pte/vma/mm related
3422  * operations that could ever happen on a certain mm. This includes
3423  * vmtruncate, try_to_unmap, and all page faults.
3424  *
3425  * The caller must take the mmap_sem in write mode before calling
3426  * mm_take_all_locks(). The caller isn't allowed to release the
3427  * mmap_sem until mm_drop_all_locks() returns.
3428  *
3429  * mmap_sem in write mode is required in order to block all operations
3430  * that could modify pagetables and free pages without need of
3431  * altering the vma layout. It's also needed in write mode to avoid new
3432  * anon_vmas to be associated with existing vmas.
3433  *
3434  * A single task can't take more than one mm_take_all_locks() in a row
3435  * or it would deadlock.
3436  *
3437  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3438  * mapping->flags avoid to take the same lock twice, if more than one
3439  * vma in this mm is backed by the same anon_vma or address_space.
3440  *
3441  * We take locks in following order, accordingly to comment at beginning
3442  * of mm/rmap.c:
3443  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3444  *     hugetlb mapping);
3445  *   - all i_mmap_rwsem locks;
3446  *   - all anon_vma->rwseml
3447  *
3448  * We can take all locks within these types randomly because the VM code
3449  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3450  * mm_all_locks_mutex.
3451  *
3452  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3453  * that may have to take thousand of locks.
3454  *
3455  * mm_take_all_locks() can fail if it's interrupted by signals.
3456  */
3457 int mm_take_all_locks(struct mm_struct *mm)
3458 {
3459         struct vm_area_struct *vma;
3460         struct anon_vma_chain *avc;
3461
3462         BUG_ON(down_read_trylock(&mm->mmap_sem));
3463
3464         mutex_lock(&mm_all_locks_mutex);
3465
3466         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3467                 if (signal_pending(current))
3468                         goto out_unlock;
3469                 if (vma->vm_file && vma->vm_file->f_mapping &&
3470                                 is_vm_hugetlb_page(vma))
3471                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3472         }
3473
3474         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3475                 if (signal_pending(current))
3476                         goto out_unlock;
3477                 if (vma->vm_file && vma->vm_file->f_mapping &&
3478                                 !is_vm_hugetlb_page(vma))
3479                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3480         }
3481
3482         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3483                 if (signal_pending(current))
3484                         goto out_unlock;
3485                 if (vma->anon_vma)
3486                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3487                                 vm_lock_anon_vma(mm, avc->anon_vma);
3488         }
3489
3490         return 0;
3491
3492 out_unlock:
3493         mm_drop_all_locks(mm);
3494         return -EINTR;
3495 }
3496
3497 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3498 {
3499         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3500                 /*
3501                  * The LSB of head.next can't change to 0 from under
3502                  * us because we hold the mm_all_locks_mutex.
3503                  *
3504                  * We must however clear the bitflag before unlocking
3505                  * the vma so the users using the anon_vma->rb_root will
3506                  * never see our bitflag.
3507                  *
3508                  * No need of atomic instructions here, head.next
3509                  * can't change from under us until we release the
3510                  * anon_vma->root->rwsem.
3511                  */
3512                 if (!__test_and_clear_bit(0, (unsigned long *)
3513                                           &anon_vma->root->rb_root.rb_root.rb_node))
3514                         BUG();
3515                 anon_vma_unlock_write(anon_vma);
3516         }
3517 }
3518
3519 static void vm_unlock_mapping(struct address_space *mapping)
3520 {
3521         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3522                 /*
3523                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3524                  * because we hold the mm_all_locks_mutex.
3525                  */
3526                 i_mmap_unlock_write(mapping);
3527                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3528                                         &mapping->flags))
3529                         BUG();
3530         }
3531 }
3532
3533 /*
3534  * The mmap_sem cannot be released by the caller until
3535  * mm_drop_all_locks() returns.
3536  */
3537 void mm_drop_all_locks(struct mm_struct *mm)
3538 {
3539         struct vm_area_struct *vma;
3540         struct anon_vma_chain *avc;
3541
3542         BUG_ON(down_read_trylock(&mm->mmap_sem));
3543         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3544
3545         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3546                 if (vma->anon_vma)
3547                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3548                                 vm_unlock_anon_vma(avc->anon_vma);
3549                 if (vma->vm_file && vma->vm_file->f_mapping)
3550                         vm_unlock_mapping(vma->vm_file->f_mapping);
3551         }
3552
3553         mutex_unlock(&mm_all_locks_mutex);
3554 }
3555
3556 /*
3557  * initialise the percpu counter for VM
3558  */
3559 void __init mmap_init(void)
3560 {
3561         int ret;
3562
3563         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3564         VM_BUG_ON(ret);
3565 }
3566
3567 /*
3568  * Initialise sysctl_user_reserve_kbytes.
3569  *
3570  * This is intended to prevent a user from starting a single memory hogging
3571  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3572  * mode.
3573  *
3574  * The default value is min(3% of free memory, 128MB)
3575  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3576  */
3577 static int init_user_reserve(void)
3578 {
3579         unsigned long free_kbytes;
3580
3581         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3582
3583         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3584         return 0;
3585 }
3586 subsys_initcall(init_user_reserve);
3587
3588 /*
3589  * Initialise sysctl_admin_reserve_kbytes.
3590  *
3591  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3592  * to log in and kill a memory hogging process.
3593  *
3594  * Systems with more than 256MB will reserve 8MB, enough to recover
3595  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3596  * only reserve 3% of free pages by default.
3597  */
3598 static int init_admin_reserve(void)
3599 {
3600         unsigned long free_kbytes;
3601
3602         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3603
3604         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3605         return 0;
3606 }
3607 subsys_initcall(init_admin_reserve);
3608
3609 /*
3610  * Reinititalise user and admin reserves if memory is added or removed.
3611  *
3612  * The default user reserve max is 128MB, and the default max for the
3613  * admin reserve is 8MB. These are usually, but not always, enough to
3614  * enable recovery from a memory hogging process using login/sshd, a shell,
3615  * and tools like top. It may make sense to increase or even disable the
3616  * reserve depending on the existence of swap or variations in the recovery
3617  * tools. So, the admin may have changed them.
3618  *
3619  * If memory is added and the reserves have been eliminated or increased above
3620  * the default max, then we'll trust the admin.
3621  *
3622  * If memory is removed and there isn't enough free memory, then we
3623  * need to reset the reserves.
3624  *
3625  * Otherwise keep the reserve set by the admin.
3626  */
3627 static int reserve_mem_notifier(struct notifier_block *nb,
3628                              unsigned long action, void *data)
3629 {
3630         unsigned long tmp, free_kbytes;
3631
3632         switch (action) {
3633         case MEM_ONLINE:
3634                 /* Default max is 128MB. Leave alone if modified by operator. */
3635                 tmp = sysctl_user_reserve_kbytes;
3636                 if (0 < tmp && tmp < (1UL << 17))
3637                         init_user_reserve();
3638
3639                 /* Default max is 8MB.  Leave alone if modified by operator. */
3640                 tmp = sysctl_admin_reserve_kbytes;
3641                 if (0 < tmp && tmp < (1UL << 13))
3642                         init_admin_reserve();
3643
3644                 break;
3645         case MEM_OFFLINE:
3646                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3647
3648                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3649                         init_user_reserve();
3650                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3651                                 sysctl_user_reserve_kbytes);
3652                 }
3653
3654                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3655                         init_admin_reserve();
3656                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3657                                 sysctl_admin_reserve_kbytes);
3658                 }
3659                 break;
3660         default:
3661                 break;
3662         }
3663         return NOTIFY_OK;
3664 }
3665
3666 static struct notifier_block reserve_mem_nb = {
3667         .notifier_call = reserve_mem_notifier,
3668 };
3669
3670 static int __meminit init_reserve_notifier(void)
3671 {
3672         if (register_hotmemory_notifier(&reserve_mem_nb))
3673                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3674
3675         return 0;
3676 }
3677 subsys_initcall(init_reserve_notifier);