GNU Linux-libre 4.9.309-gnu1
[releases.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)       (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74                 struct vm_area_struct *vma, struct vm_area_struct *prev,
75                 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type     prot
82  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
83  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
84  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
85  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
86  *
87  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  */
91 pgprot_t protection_map[16] = {
92         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
93         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
94 };
95
96 pgprot_t vm_get_page_prot(unsigned long vm_flags)
97 {
98         return __pgprot(pgprot_val(protection_map[vm_flags &
99                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
100                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
101 }
102 EXPORT_SYMBOL(vm_get_page_prot);
103
104 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
105 {
106         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
107 }
108
109 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
110 void vma_set_page_prot(struct vm_area_struct *vma)
111 {
112         unsigned long vm_flags = vma->vm_flags;
113         pgprot_t vm_page_prot;
114
115         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
116         if (vma_wants_writenotify(vma, vm_page_prot)) {
117                 vm_flags &= ~VM_SHARED;
118                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
119         }
120         /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
121         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
122 }
123
124 /*
125  * Requires inode->i_mapping->i_mmap_rwsem
126  */
127 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
128                 struct file *file, struct address_space *mapping)
129 {
130         if (vma->vm_flags & VM_DENYWRITE)
131                 atomic_inc(&file_inode(file)->i_writecount);
132         if (vma->vm_flags & VM_SHARED)
133                 mapping_unmap_writable(mapping);
134
135         flush_dcache_mmap_lock(mapping);
136         vma_interval_tree_remove(vma, &mapping->i_mmap);
137         flush_dcache_mmap_unlock(mapping);
138 }
139
140 /*
141  * Unlink a file-based vm structure from its interval tree, to hide
142  * vma from rmap and vmtruncate before freeing its page tables.
143  */
144 void unlink_file_vma(struct vm_area_struct *vma)
145 {
146         struct file *file = vma->vm_file;
147
148         if (file) {
149                 struct address_space *mapping = file->f_mapping;
150                 i_mmap_lock_write(mapping);
151                 __remove_shared_vm_struct(vma, file, mapping);
152                 i_mmap_unlock_write(mapping);
153         }
154 }
155
156 /*
157  * Close a vm structure and free it, returning the next.
158  */
159 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
160 {
161         struct vm_area_struct *next = vma->vm_next;
162
163         might_sleep();
164         if (vma->vm_ops && vma->vm_ops->close)
165                 vma->vm_ops->close(vma);
166         if (vma->vm_file)
167                 fput(vma->vm_file);
168         mpol_put(vma_policy(vma));
169         kmem_cache_free(vm_area_cachep, vma);
170         return next;
171 }
172
173 static int do_brk(unsigned long addr, unsigned long len);
174
175 SYSCALL_DEFINE1(brk, unsigned long, brk)
176 {
177         unsigned long retval;
178         unsigned long newbrk, oldbrk;
179         struct mm_struct *mm = current->mm;
180         struct vm_area_struct *next;
181         unsigned long min_brk;
182         bool populate;
183
184         if (down_write_killable(&mm->mmap_sem))
185                 return -EINTR;
186
187 #ifdef CONFIG_COMPAT_BRK
188         /*
189          * CONFIG_COMPAT_BRK can still be overridden by setting
190          * randomize_va_space to 2, which will still cause mm->start_brk
191          * to be arbitrarily shifted
192          */
193         if (current->brk_randomized)
194                 min_brk = mm->start_brk;
195         else
196                 min_brk = mm->end_data;
197 #else
198         min_brk = mm->start_brk;
199 #endif
200         if (brk < min_brk)
201                 goto out;
202
203         /*
204          * Check against rlimit here. If this check is done later after the test
205          * of oldbrk with newbrk then it can escape the test and let the data
206          * segment grow beyond its set limit the in case where the limit is
207          * not page aligned -Ram Gupta
208          */
209         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
210                               mm->end_data, mm->start_data))
211                 goto out;
212
213         newbrk = PAGE_ALIGN(brk);
214         oldbrk = PAGE_ALIGN(mm->brk);
215         if (oldbrk == newbrk)
216                 goto set_brk;
217
218         /* Always allow shrinking brk. */
219         if (brk <= mm->brk) {
220                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
221                         goto set_brk;
222                 goto out;
223         }
224
225         /* Check against existing mmap mappings. */
226         next = find_vma(mm, oldbrk);
227         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
228                 goto out;
229
230         /* Ok, looks good - let it rip. */
231         if (do_brk(oldbrk, newbrk-oldbrk) < 0)
232                 goto out;
233
234 set_brk:
235         mm->brk = brk;
236         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
237         up_write(&mm->mmap_sem);
238         if (populate)
239                 mm_populate(oldbrk, newbrk - oldbrk);
240         return brk;
241
242 out:
243         retval = mm->brk;
244         up_write(&mm->mmap_sem);
245         return retval;
246 }
247
248 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
249 {
250         unsigned long max, prev_end, subtree_gap;
251
252         /*
253          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
254          * allow two stack_guard_gaps between them here, and when choosing
255          * an unmapped area; whereas when expanding we only require one.
256          * That's a little inconsistent, but keeps the code here simpler.
257          */
258         max = vm_start_gap(vma);
259         if (vma->vm_prev) {
260                 prev_end = vm_end_gap(vma->vm_prev);
261                 if (max > prev_end)
262                         max -= prev_end;
263                 else
264                         max = 0;
265         }
266         if (vma->vm_rb.rb_left) {
267                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
268                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
269                 if (subtree_gap > max)
270                         max = subtree_gap;
271         }
272         if (vma->vm_rb.rb_right) {
273                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
274                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
275                 if (subtree_gap > max)
276                         max = subtree_gap;
277         }
278         return max;
279 }
280
281 #ifdef CONFIG_DEBUG_VM_RB
282 static int browse_rb(struct mm_struct *mm)
283 {
284         struct rb_root *root = &mm->mm_rb;
285         int i = 0, j, bug = 0;
286         struct rb_node *nd, *pn = NULL;
287         unsigned long prev = 0, pend = 0;
288
289         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
290                 struct vm_area_struct *vma;
291                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
292                 if (vma->vm_start < prev) {
293                         pr_emerg("vm_start %lx < prev %lx\n",
294                                   vma->vm_start, prev);
295                         bug = 1;
296                 }
297                 if (vma->vm_start < pend) {
298                         pr_emerg("vm_start %lx < pend %lx\n",
299                                   vma->vm_start, pend);
300                         bug = 1;
301                 }
302                 if (vma->vm_start > vma->vm_end) {
303                         pr_emerg("vm_start %lx > vm_end %lx\n",
304                                   vma->vm_start, vma->vm_end);
305                         bug = 1;
306                 }
307                 spin_lock(&mm->page_table_lock);
308                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
309                         pr_emerg("free gap %lx, correct %lx\n",
310                                vma->rb_subtree_gap,
311                                vma_compute_subtree_gap(vma));
312                         bug = 1;
313                 }
314                 spin_unlock(&mm->page_table_lock);
315                 i++;
316                 pn = nd;
317                 prev = vma->vm_start;
318                 pend = vma->vm_end;
319         }
320         j = 0;
321         for (nd = pn; nd; nd = rb_prev(nd))
322                 j++;
323         if (i != j) {
324                 pr_emerg("backwards %d, forwards %d\n", j, i);
325                 bug = 1;
326         }
327         return bug ? -1 : i;
328 }
329
330 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
331 {
332         struct rb_node *nd;
333
334         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
335                 struct vm_area_struct *vma;
336                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
337                 VM_BUG_ON_VMA(vma != ignore &&
338                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
339                         vma);
340         }
341 }
342
343 static void validate_mm(struct mm_struct *mm)
344 {
345         int bug = 0;
346         int i = 0;
347         unsigned long highest_address = 0;
348         struct vm_area_struct *vma = mm->mmap;
349
350         while (vma) {
351                 struct anon_vma *anon_vma = vma->anon_vma;
352                 struct anon_vma_chain *avc;
353
354                 if (anon_vma) {
355                         anon_vma_lock_read(anon_vma);
356                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
357                                 anon_vma_interval_tree_verify(avc);
358                         anon_vma_unlock_read(anon_vma);
359                 }
360
361                 highest_address = vm_end_gap(vma);
362                 vma = vma->vm_next;
363                 i++;
364         }
365         if (i != mm->map_count) {
366                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
367                 bug = 1;
368         }
369         if (highest_address != mm->highest_vm_end) {
370                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
371                           mm->highest_vm_end, highest_address);
372                 bug = 1;
373         }
374         i = browse_rb(mm);
375         if (i != mm->map_count) {
376                 if (i != -1)
377                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
378                 bug = 1;
379         }
380         VM_BUG_ON_MM(bug, mm);
381 }
382 #else
383 #define validate_mm_rb(root, ignore) do { } while (0)
384 #define validate_mm(mm) do { } while (0)
385 #endif
386
387 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
388                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
389
390 /*
391  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
392  * vma->vm_prev->vm_end values changed, without modifying the vma's position
393  * in the rbtree.
394  */
395 static void vma_gap_update(struct vm_area_struct *vma)
396 {
397         /*
398          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
399          * function that does exacltly what we want.
400          */
401         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
402 }
403
404 static inline void vma_rb_insert(struct vm_area_struct *vma,
405                                  struct rb_root *root)
406 {
407         /* All rb_subtree_gap values must be consistent prior to insertion */
408         validate_mm_rb(root, NULL);
409
410         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
411 }
412
413 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
414 {
415         /*
416          * Note rb_erase_augmented is a fairly large inline function,
417          * so make sure we instantiate it only once with our desired
418          * augmented rbtree callbacks.
419          */
420         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
421 }
422
423 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
424                                                 struct rb_root *root,
425                                                 struct vm_area_struct *ignore)
426 {
427         /*
428          * All rb_subtree_gap values must be consistent prior to erase,
429          * with the possible exception of the "next" vma being erased if
430          * next->vm_start was reduced.
431          */
432         validate_mm_rb(root, ignore);
433
434         __vma_rb_erase(vma, root);
435 }
436
437 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
438                                          struct rb_root *root)
439 {
440         /*
441          * All rb_subtree_gap values must be consistent prior to erase,
442          * with the possible exception of the vma being erased.
443          */
444         validate_mm_rb(root, vma);
445
446         __vma_rb_erase(vma, root);
447 }
448
449 /*
450  * vma has some anon_vma assigned, and is already inserted on that
451  * anon_vma's interval trees.
452  *
453  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
454  * vma must be removed from the anon_vma's interval trees using
455  * anon_vma_interval_tree_pre_update_vma().
456  *
457  * After the update, the vma will be reinserted using
458  * anon_vma_interval_tree_post_update_vma().
459  *
460  * The entire update must be protected by exclusive mmap_sem and by
461  * the root anon_vma's mutex.
462  */
463 static inline void
464 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
465 {
466         struct anon_vma_chain *avc;
467
468         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
469                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
470 }
471
472 static inline void
473 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
474 {
475         struct anon_vma_chain *avc;
476
477         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
478                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
479 }
480
481 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
482                 unsigned long end, struct vm_area_struct **pprev,
483                 struct rb_node ***rb_link, struct rb_node **rb_parent)
484 {
485         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
486
487         __rb_link = &mm->mm_rb.rb_node;
488         rb_prev = __rb_parent = NULL;
489
490         while (*__rb_link) {
491                 struct vm_area_struct *vma_tmp;
492
493                 __rb_parent = *__rb_link;
494                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
495
496                 if (vma_tmp->vm_end > addr) {
497                         /* Fail if an existing vma overlaps the area */
498                         if (vma_tmp->vm_start < end)
499                                 return -ENOMEM;
500                         __rb_link = &__rb_parent->rb_left;
501                 } else {
502                         rb_prev = __rb_parent;
503                         __rb_link = &__rb_parent->rb_right;
504                 }
505         }
506
507         *pprev = NULL;
508         if (rb_prev)
509                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
510         *rb_link = __rb_link;
511         *rb_parent = __rb_parent;
512         return 0;
513 }
514
515 static unsigned long count_vma_pages_range(struct mm_struct *mm,
516                 unsigned long addr, unsigned long end)
517 {
518         unsigned long nr_pages = 0;
519         struct vm_area_struct *vma;
520
521         /* Find first overlaping mapping */
522         vma = find_vma_intersection(mm, addr, end);
523         if (!vma)
524                 return 0;
525
526         nr_pages = (min(end, vma->vm_end) -
527                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
528
529         /* Iterate over the rest of the overlaps */
530         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
531                 unsigned long overlap_len;
532
533                 if (vma->vm_start > end)
534                         break;
535
536                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
537                 nr_pages += overlap_len >> PAGE_SHIFT;
538         }
539
540         return nr_pages;
541 }
542
543 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
544                 struct rb_node **rb_link, struct rb_node *rb_parent)
545 {
546         /* Update tracking information for the gap following the new vma. */
547         if (vma->vm_next)
548                 vma_gap_update(vma->vm_next);
549         else
550                 mm->highest_vm_end = vm_end_gap(vma);
551
552         /*
553          * vma->vm_prev wasn't known when we followed the rbtree to find the
554          * correct insertion point for that vma. As a result, we could not
555          * update the vma vm_rb parents rb_subtree_gap values on the way down.
556          * So, we first insert the vma with a zero rb_subtree_gap value
557          * (to be consistent with what we did on the way down), and then
558          * immediately update the gap to the correct value. Finally we
559          * rebalance the rbtree after all augmented values have been set.
560          */
561         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
562         vma->rb_subtree_gap = 0;
563         vma_gap_update(vma);
564         vma_rb_insert(vma, &mm->mm_rb);
565 }
566
567 static void __vma_link_file(struct vm_area_struct *vma)
568 {
569         struct file *file;
570
571         file = vma->vm_file;
572         if (file) {
573                 struct address_space *mapping = file->f_mapping;
574
575                 if (vma->vm_flags & VM_DENYWRITE)
576                         atomic_dec(&file_inode(file)->i_writecount);
577                 if (vma->vm_flags & VM_SHARED)
578                         atomic_inc(&mapping->i_mmap_writable);
579
580                 flush_dcache_mmap_lock(mapping);
581                 vma_interval_tree_insert(vma, &mapping->i_mmap);
582                 flush_dcache_mmap_unlock(mapping);
583         }
584 }
585
586 static void
587 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
588         struct vm_area_struct *prev, struct rb_node **rb_link,
589         struct rb_node *rb_parent)
590 {
591         __vma_link_list(mm, vma, prev, rb_parent);
592         __vma_link_rb(mm, vma, rb_link, rb_parent);
593 }
594
595 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
596                         struct vm_area_struct *prev, struct rb_node **rb_link,
597                         struct rb_node *rb_parent)
598 {
599         struct address_space *mapping = NULL;
600
601         if (vma->vm_file) {
602                 mapping = vma->vm_file->f_mapping;
603                 i_mmap_lock_write(mapping);
604         }
605
606         __vma_link(mm, vma, prev, rb_link, rb_parent);
607         __vma_link_file(vma);
608
609         if (mapping)
610                 i_mmap_unlock_write(mapping);
611
612         mm->map_count++;
613         validate_mm(mm);
614 }
615
616 /*
617  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
618  * mm's list and rbtree.  It has already been inserted into the interval tree.
619  */
620 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
621 {
622         struct vm_area_struct *prev;
623         struct rb_node **rb_link, *rb_parent;
624
625         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
626                            &prev, &rb_link, &rb_parent))
627                 BUG();
628         __vma_link(mm, vma, prev, rb_link, rb_parent);
629         mm->map_count++;
630 }
631
632 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
633                                                 struct vm_area_struct *vma,
634                                                 struct vm_area_struct *prev,
635                                                 bool has_prev,
636                                                 struct vm_area_struct *ignore)
637 {
638         struct vm_area_struct *next;
639
640         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
641         next = vma->vm_next;
642         if (has_prev)
643                 prev->vm_next = next;
644         else {
645                 prev = vma->vm_prev;
646                 if (prev)
647                         prev->vm_next = next;
648                 else
649                         mm->mmap = next;
650         }
651         if (next)
652                 next->vm_prev = prev;
653
654         /* Kill the cache */
655         vmacache_invalidate(mm);
656 }
657
658 static inline void __vma_unlink_prev(struct mm_struct *mm,
659                                      struct vm_area_struct *vma,
660                                      struct vm_area_struct *prev)
661 {
662         __vma_unlink_common(mm, vma, prev, true, vma);
663 }
664
665 /*
666  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
667  * is already present in an i_mmap tree without adjusting the tree.
668  * The following helper function should be used when such adjustments
669  * are necessary.  The "insert" vma (if any) is to be inserted
670  * before we drop the necessary locks.
671  */
672 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
673         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
674         struct vm_area_struct *expand)
675 {
676         struct mm_struct *mm = vma->vm_mm;
677         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
678         struct address_space *mapping = NULL;
679         struct rb_root *root = NULL;
680         struct anon_vma *anon_vma = NULL;
681         struct file *file = vma->vm_file;
682         bool start_changed = false, end_changed = false;
683         long adjust_next = 0;
684         int remove_next = 0;
685
686         if (next && !insert) {
687                 struct vm_area_struct *exporter = NULL, *importer = NULL;
688
689                 if (end >= next->vm_end) {
690                         /*
691                          * vma expands, overlapping all the next, and
692                          * perhaps the one after too (mprotect case 6).
693                          * The only other cases that gets here are
694                          * case 1, case 7 and case 8.
695                          */
696                         if (next == expand) {
697                                 /*
698                                  * The only case where we don't expand "vma"
699                                  * and we expand "next" instead is case 8.
700                                  */
701                                 VM_WARN_ON(end != next->vm_end);
702                                 /*
703                                  * remove_next == 3 means we're
704                                  * removing "vma" and that to do so we
705                                  * swapped "vma" and "next".
706                                  */
707                                 remove_next = 3;
708                                 VM_WARN_ON(file != next->vm_file);
709                                 swap(vma, next);
710                         } else {
711                                 VM_WARN_ON(expand != vma);
712                                 /*
713                                  * case 1, 6, 7, remove_next == 2 is case 6,
714                                  * remove_next == 1 is case 1 or 7.
715                                  */
716                                 remove_next = 1 + (end > next->vm_end);
717                                 VM_WARN_ON(remove_next == 2 &&
718                                            end != next->vm_next->vm_end);
719                                 VM_WARN_ON(remove_next == 1 &&
720                                            end != next->vm_end);
721                                 /* trim end to next, for case 6 first pass */
722                                 end = next->vm_end;
723                         }
724
725                         exporter = next;
726                         importer = vma;
727
728                         /*
729                          * If next doesn't have anon_vma, import from vma after
730                          * next, if the vma overlaps with it.
731                          */
732                         if (remove_next == 2 && !next->anon_vma)
733                                 exporter = next->vm_next;
734
735                 } else if (end > next->vm_start) {
736                         /*
737                          * vma expands, overlapping part of the next:
738                          * mprotect case 5 shifting the boundary up.
739                          */
740                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
741                         exporter = next;
742                         importer = vma;
743                         VM_WARN_ON(expand != importer);
744                 } else if (end < vma->vm_end) {
745                         /*
746                          * vma shrinks, and !insert tells it's not
747                          * split_vma inserting another: so it must be
748                          * mprotect case 4 shifting the boundary down.
749                          */
750                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
751                         exporter = vma;
752                         importer = next;
753                         VM_WARN_ON(expand != importer);
754                 }
755
756                 /*
757                  * Easily overlooked: when mprotect shifts the boundary,
758                  * make sure the expanding vma has anon_vma set if the
759                  * shrinking vma had, to cover any anon pages imported.
760                  */
761                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
762                         int error;
763
764                         importer->anon_vma = exporter->anon_vma;
765                         error = anon_vma_clone(importer, exporter);
766                         if (error)
767                                 return error;
768                 }
769         }
770 again:
771         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
772
773         if (file) {
774                 mapping = file->f_mapping;
775                 root = &mapping->i_mmap;
776                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
777
778                 if (adjust_next)
779                         uprobe_munmap(next, next->vm_start, next->vm_end);
780
781                 i_mmap_lock_write(mapping);
782                 if (insert) {
783                         /*
784                          * Put into interval tree now, so instantiated pages
785                          * are visible to arm/parisc __flush_dcache_page
786                          * throughout; but we cannot insert into address
787                          * space until vma start or end is updated.
788                          */
789                         __vma_link_file(insert);
790                 }
791         }
792
793         anon_vma = vma->anon_vma;
794         if (!anon_vma && adjust_next)
795                 anon_vma = next->anon_vma;
796         if (anon_vma) {
797                 VM_WARN_ON(adjust_next && next->anon_vma &&
798                            anon_vma != next->anon_vma);
799                 anon_vma_lock_write(anon_vma);
800                 anon_vma_interval_tree_pre_update_vma(vma);
801                 if (adjust_next)
802                         anon_vma_interval_tree_pre_update_vma(next);
803         }
804
805         if (root) {
806                 flush_dcache_mmap_lock(mapping);
807                 vma_interval_tree_remove(vma, root);
808                 if (adjust_next)
809                         vma_interval_tree_remove(next, root);
810         }
811
812         if (start != vma->vm_start) {
813                 vma->vm_start = start;
814                 start_changed = true;
815         }
816         if (end != vma->vm_end) {
817                 vma->vm_end = end;
818                 end_changed = true;
819         }
820         vma->vm_pgoff = pgoff;
821         if (adjust_next) {
822                 next->vm_start += adjust_next << PAGE_SHIFT;
823                 next->vm_pgoff += adjust_next;
824         }
825
826         if (root) {
827                 if (adjust_next)
828                         vma_interval_tree_insert(next, root);
829                 vma_interval_tree_insert(vma, root);
830                 flush_dcache_mmap_unlock(mapping);
831         }
832
833         if (remove_next) {
834                 /*
835                  * vma_merge has merged next into vma, and needs
836                  * us to remove next before dropping the locks.
837                  */
838                 if (remove_next != 3)
839                         __vma_unlink_prev(mm, next, vma);
840                 else
841                         /*
842                          * vma is not before next if they've been
843                          * swapped.
844                          *
845                          * pre-swap() next->vm_start was reduced so
846                          * tell validate_mm_rb to ignore pre-swap()
847                          * "next" (which is stored in post-swap()
848                          * "vma").
849                          */
850                         __vma_unlink_common(mm, next, NULL, false, vma);
851                 if (file)
852                         __remove_shared_vm_struct(next, file, mapping);
853         } else if (insert) {
854                 /*
855                  * split_vma has split insert from vma, and needs
856                  * us to insert it before dropping the locks
857                  * (it may either follow vma or precede it).
858                  */
859                 __insert_vm_struct(mm, insert);
860         } else {
861                 if (start_changed)
862                         vma_gap_update(vma);
863                 if (end_changed) {
864                         if (!next)
865                                 mm->highest_vm_end = vm_end_gap(vma);
866                         else if (!adjust_next)
867                                 vma_gap_update(next);
868                 }
869         }
870
871         if (anon_vma) {
872                 anon_vma_interval_tree_post_update_vma(vma);
873                 if (adjust_next)
874                         anon_vma_interval_tree_post_update_vma(next);
875                 anon_vma_unlock_write(anon_vma);
876         }
877         if (mapping)
878                 i_mmap_unlock_write(mapping);
879
880         if (root) {
881                 uprobe_mmap(vma);
882
883                 if (adjust_next)
884                         uprobe_mmap(next);
885         }
886
887         if (remove_next) {
888                 if (file) {
889                         uprobe_munmap(next, next->vm_start, next->vm_end);
890                         fput(file);
891                 }
892                 if (next->anon_vma)
893                         anon_vma_merge(vma, next);
894                 mm->map_count--;
895                 mpol_put(vma_policy(next));
896                 kmem_cache_free(vm_area_cachep, next);
897                 /*
898                  * In mprotect's case 6 (see comments on vma_merge),
899                  * we must remove another next too. It would clutter
900                  * up the code too much to do both in one go.
901                  */
902                 if (remove_next != 3) {
903                         /*
904                          * If "next" was removed and vma->vm_end was
905                          * expanded (up) over it, in turn
906                          * "next->vm_prev->vm_end" changed and the
907                          * "vma->vm_next" gap must be updated.
908                          */
909                         next = vma->vm_next;
910                 } else {
911                         /*
912                          * For the scope of the comment "next" and
913                          * "vma" considered pre-swap(): if "vma" was
914                          * removed, next->vm_start was expanded (down)
915                          * over it and the "next" gap must be updated.
916                          * Because of the swap() the post-swap() "vma"
917                          * actually points to pre-swap() "next"
918                          * (post-swap() "next" as opposed is now a
919                          * dangling pointer).
920                          */
921                         next = vma;
922                 }
923                 if (remove_next == 2) {
924                         remove_next = 1;
925                         end = next->vm_end;
926                         goto again;
927                 }
928                 else if (next)
929                         vma_gap_update(next);
930                 else {
931                         /*
932                          * If remove_next == 2 we obviously can't
933                          * reach this path.
934                          *
935                          * If remove_next == 3 we can't reach this
936                          * path because pre-swap() next is always not
937                          * NULL. pre-swap() "next" is not being
938                          * removed and its next->vm_end is not altered
939                          * (and furthermore "end" already matches
940                          * next->vm_end in remove_next == 3).
941                          *
942                          * We reach this only in the remove_next == 1
943                          * case if the "next" vma that was removed was
944                          * the highest vma of the mm. However in such
945                          * case next->vm_end == "end" and the extended
946                          * "vma" has vma->vm_end == next->vm_end so
947                          * mm->highest_vm_end doesn't need any update
948                          * in remove_next == 1 case.
949                          */
950                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
951                 }
952         }
953         if (insert && file)
954                 uprobe_mmap(insert);
955
956         validate_mm(mm);
957
958         return 0;
959 }
960
961 /*
962  * If the vma has a ->close operation then the driver probably needs to release
963  * per-vma resources, so we don't attempt to merge those.
964  */
965 static inline int is_mergeable_vma(struct vm_area_struct *vma,
966                                 struct file *file, unsigned long vm_flags,
967                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
968 {
969         /*
970          * VM_SOFTDIRTY should not prevent from VMA merging, if we
971          * match the flags but dirty bit -- the caller should mark
972          * merged VMA as dirty. If dirty bit won't be excluded from
973          * comparison, we increase pressue on the memory system forcing
974          * the kernel to generate new VMAs when old one could be
975          * extended instead.
976          */
977         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
978                 return 0;
979         if (vma->vm_file != file)
980                 return 0;
981         if (vma->vm_ops && vma->vm_ops->close)
982                 return 0;
983         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
984                 return 0;
985         return 1;
986 }
987
988 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
989                                         struct anon_vma *anon_vma2,
990                                         struct vm_area_struct *vma)
991 {
992         /*
993          * The list_is_singular() test is to avoid merging VMA cloned from
994          * parents. This can improve scalability caused by anon_vma lock.
995          */
996         if ((!anon_vma1 || !anon_vma2) && (!vma ||
997                 list_is_singular(&vma->anon_vma_chain)))
998                 return 1;
999         return anon_vma1 == anon_vma2;
1000 }
1001
1002 /*
1003  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1004  * in front of (at a lower virtual address and file offset than) the vma.
1005  *
1006  * We cannot merge two vmas if they have differently assigned (non-NULL)
1007  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1008  *
1009  * We don't check here for the merged mmap wrapping around the end of pagecache
1010  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1011  * wrap, nor mmaps which cover the final page at index -1UL.
1012  */
1013 static int
1014 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1015                      struct anon_vma *anon_vma, struct file *file,
1016                      pgoff_t vm_pgoff,
1017                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1018 {
1019         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1020             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1021                 if (vma->vm_pgoff == vm_pgoff)
1022                         return 1;
1023         }
1024         return 0;
1025 }
1026
1027 /*
1028  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1029  * beyond (at a higher virtual address and file offset than) the vma.
1030  *
1031  * We cannot merge two vmas if they have differently assigned (non-NULL)
1032  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1033  */
1034 static int
1035 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1036                     struct anon_vma *anon_vma, struct file *file,
1037                     pgoff_t vm_pgoff,
1038                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1039 {
1040         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1041             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1042                 pgoff_t vm_pglen;
1043                 vm_pglen = vma_pages(vma);
1044                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1045                         return 1;
1046         }
1047         return 0;
1048 }
1049
1050 /*
1051  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1052  * whether that can be merged with its predecessor or its successor.
1053  * Or both (it neatly fills a hole).
1054  *
1055  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1056  * certain not to be mapped by the time vma_merge is called; but when
1057  * called for mprotect, it is certain to be already mapped (either at
1058  * an offset within prev, or at the start of next), and the flags of
1059  * this area are about to be changed to vm_flags - and the no-change
1060  * case has already been eliminated.
1061  *
1062  * The following mprotect cases have to be considered, where AAAA is
1063  * the area passed down from mprotect_fixup, never extending beyond one
1064  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1065  *
1066  *     AAAA             AAAA                AAAA          AAAA
1067  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1068  *    cannot merge    might become    might become    might become
1069  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1070  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1071  *    mremap move:                                    PPPPXXXXXXXX 8
1072  *        AAAA
1073  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1074  *    might become    case 1 below    case 2 below    case 3 below
1075  *
1076  * It is important for case 8 that the the vma NNNN overlapping the
1077  * region AAAA is never going to extended over XXXX. Instead XXXX must
1078  * be extended in region AAAA and NNNN must be removed. This way in
1079  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1080  * rmap_locks, the properties of the merged vma will be already
1081  * correct for the whole merged range. Some of those properties like
1082  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1083  * be correct for the whole merged range immediately after the
1084  * rmap_locks are released. Otherwise if XXXX would be removed and
1085  * NNNN would be extended over the XXXX range, remove_migration_ptes
1086  * or other rmap walkers (if working on addresses beyond the "end"
1087  * parameter) may establish ptes with the wrong permissions of NNNN
1088  * instead of the right permissions of XXXX.
1089  */
1090 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1091                         struct vm_area_struct *prev, unsigned long addr,
1092                         unsigned long end, unsigned long vm_flags,
1093                         struct anon_vma *anon_vma, struct file *file,
1094                         pgoff_t pgoff, struct mempolicy *policy,
1095                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1096 {
1097         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1098         struct vm_area_struct *area, *next;
1099         int err;
1100
1101         /*
1102          * We later require that vma->vm_flags == vm_flags,
1103          * so this tests vma->vm_flags & VM_SPECIAL, too.
1104          */
1105         if (vm_flags & VM_SPECIAL)
1106                 return NULL;
1107
1108         if (prev)
1109                 next = prev->vm_next;
1110         else
1111                 next = mm->mmap;
1112         area = next;
1113         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1114                 next = next->vm_next;
1115
1116         /* verify some invariant that must be enforced by the caller */
1117         VM_WARN_ON(prev && addr <= prev->vm_start);
1118         VM_WARN_ON(area && end > area->vm_end);
1119         VM_WARN_ON(addr >= end);
1120
1121         /*
1122          * Can it merge with the predecessor?
1123          */
1124         if (prev && prev->vm_end == addr &&
1125                         mpol_equal(vma_policy(prev), policy) &&
1126                         can_vma_merge_after(prev, vm_flags,
1127                                             anon_vma, file, pgoff,
1128                                             vm_userfaultfd_ctx)) {
1129                 /*
1130                  * OK, it can.  Can we now merge in the successor as well?
1131                  */
1132                 if (next && end == next->vm_start &&
1133                                 mpol_equal(policy, vma_policy(next)) &&
1134                                 can_vma_merge_before(next, vm_flags,
1135                                                      anon_vma, file,
1136                                                      pgoff+pglen,
1137                                                      vm_userfaultfd_ctx) &&
1138                                 is_mergeable_anon_vma(prev->anon_vma,
1139                                                       next->anon_vma, NULL)) {
1140                                                         /* cases 1, 6 */
1141                         err = __vma_adjust(prev, prev->vm_start,
1142                                          next->vm_end, prev->vm_pgoff, NULL,
1143                                          prev);
1144                 } else                                  /* cases 2, 5, 7 */
1145                         err = __vma_adjust(prev, prev->vm_start,
1146                                          end, prev->vm_pgoff, NULL, prev);
1147                 if (err)
1148                         return NULL;
1149                 khugepaged_enter_vma_merge(prev, vm_flags);
1150                 return prev;
1151         }
1152
1153         /*
1154          * Can this new request be merged in front of next?
1155          */
1156         if (next && end == next->vm_start &&
1157                         mpol_equal(policy, vma_policy(next)) &&
1158                         can_vma_merge_before(next, vm_flags,
1159                                              anon_vma, file, pgoff+pglen,
1160                                              vm_userfaultfd_ctx)) {
1161                 if (prev && addr < prev->vm_end)        /* case 4 */
1162                         err = __vma_adjust(prev, prev->vm_start,
1163                                          addr, prev->vm_pgoff, NULL, next);
1164                 else {                                  /* cases 3, 8 */
1165                         err = __vma_adjust(area, addr, next->vm_end,
1166                                          next->vm_pgoff - pglen, NULL, next);
1167                         /*
1168                          * In case 3 area is already equal to next and
1169                          * this is a noop, but in case 8 "area" has
1170                          * been removed and next was expanded over it.
1171                          */
1172                         area = next;
1173                 }
1174                 if (err)
1175                         return NULL;
1176                 khugepaged_enter_vma_merge(area, vm_flags);
1177                 return area;
1178         }
1179
1180         return NULL;
1181 }
1182
1183 /*
1184  * Rough compatbility check to quickly see if it's even worth looking
1185  * at sharing an anon_vma.
1186  *
1187  * They need to have the same vm_file, and the flags can only differ
1188  * in things that mprotect may change.
1189  *
1190  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1191  * we can merge the two vma's. For example, we refuse to merge a vma if
1192  * there is a vm_ops->close() function, because that indicates that the
1193  * driver is doing some kind of reference counting. But that doesn't
1194  * really matter for the anon_vma sharing case.
1195  */
1196 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1197 {
1198         return a->vm_end == b->vm_start &&
1199                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1200                 a->vm_file == b->vm_file &&
1201                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1202                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1203 }
1204
1205 /*
1206  * Do some basic sanity checking to see if we can re-use the anon_vma
1207  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1208  * the same as 'old', the other will be the new one that is trying
1209  * to share the anon_vma.
1210  *
1211  * NOTE! This runs with mm_sem held for reading, so it is possible that
1212  * the anon_vma of 'old' is concurrently in the process of being set up
1213  * by another page fault trying to merge _that_. But that's ok: if it
1214  * is being set up, that automatically means that it will be a singleton
1215  * acceptable for merging, so we can do all of this optimistically. But
1216  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1217  *
1218  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1219  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1220  * is to return an anon_vma that is "complex" due to having gone through
1221  * a fork).
1222  *
1223  * We also make sure that the two vma's are compatible (adjacent,
1224  * and with the same memory policies). That's all stable, even with just
1225  * a read lock on the mm_sem.
1226  */
1227 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1228 {
1229         if (anon_vma_compatible(a, b)) {
1230                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1231
1232                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1233                         return anon_vma;
1234         }
1235         return NULL;
1236 }
1237
1238 /*
1239  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1240  * neighbouring vmas for a suitable anon_vma, before it goes off
1241  * to allocate a new anon_vma.  It checks because a repetitive
1242  * sequence of mprotects and faults may otherwise lead to distinct
1243  * anon_vmas being allocated, preventing vma merge in subsequent
1244  * mprotect.
1245  */
1246 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1247 {
1248         struct anon_vma *anon_vma;
1249         struct vm_area_struct *near;
1250
1251         near = vma->vm_next;
1252         if (!near)
1253                 goto try_prev;
1254
1255         anon_vma = reusable_anon_vma(near, vma, near);
1256         if (anon_vma)
1257                 return anon_vma;
1258 try_prev:
1259         near = vma->vm_prev;
1260         if (!near)
1261                 goto none;
1262
1263         anon_vma = reusable_anon_vma(near, near, vma);
1264         if (anon_vma)
1265                 return anon_vma;
1266 none:
1267         /*
1268          * There's no absolute need to look only at touching neighbours:
1269          * we could search further afield for "compatible" anon_vmas.
1270          * But it would probably just be a waste of time searching,
1271          * or lead to too many vmas hanging off the same anon_vma.
1272          * We're trying to allow mprotect remerging later on,
1273          * not trying to minimize memory used for anon_vmas.
1274          */
1275         return NULL;
1276 }
1277
1278 /*
1279  * If a hint addr is less than mmap_min_addr change hint to be as
1280  * low as possible but still greater than mmap_min_addr
1281  */
1282 static inline unsigned long round_hint_to_min(unsigned long hint)
1283 {
1284         hint &= PAGE_MASK;
1285         if (((void *)hint != NULL) &&
1286             (hint < mmap_min_addr))
1287                 return PAGE_ALIGN(mmap_min_addr);
1288         return hint;
1289 }
1290
1291 static inline int mlock_future_check(struct mm_struct *mm,
1292                                      unsigned long flags,
1293                                      unsigned long len)
1294 {
1295         unsigned long locked, lock_limit;
1296
1297         /*  mlock MCL_FUTURE? */
1298         if (flags & VM_LOCKED) {
1299                 locked = len >> PAGE_SHIFT;
1300                 locked += mm->locked_vm;
1301                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1302                 lock_limit >>= PAGE_SHIFT;
1303                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1304                         return -EAGAIN;
1305         }
1306         return 0;
1307 }
1308
1309 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1310 {
1311         if (S_ISREG(inode->i_mode))
1312                 return MAX_LFS_FILESIZE;
1313
1314         if (S_ISBLK(inode->i_mode))
1315                 return MAX_LFS_FILESIZE;
1316
1317         /* Special "we do even unsigned file positions" case */
1318         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1319                 return 0;
1320
1321         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1322         return ULONG_MAX;
1323 }
1324
1325 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1326                                 unsigned long pgoff, unsigned long len)
1327 {
1328         u64 maxsize = file_mmap_size_max(file, inode);
1329
1330         if (maxsize && len > maxsize)
1331                 return false;
1332         maxsize -= len;
1333         if (pgoff > maxsize >> PAGE_SHIFT)
1334                 return false;
1335         return true;
1336 }
1337
1338 /*
1339  * The caller must hold down_write(&current->mm->mmap_sem).
1340  */
1341 unsigned long do_mmap(struct file *file, unsigned long addr,
1342                         unsigned long len, unsigned long prot,
1343                         unsigned long flags, vm_flags_t vm_flags,
1344                         unsigned long pgoff, unsigned long *populate)
1345 {
1346         struct mm_struct *mm = current->mm;
1347         int pkey = 0;
1348
1349         *populate = 0;
1350
1351         if (!len)
1352                 return -EINVAL;
1353
1354         /*
1355          * Does the application expect PROT_READ to imply PROT_EXEC?
1356          *
1357          * (the exception is when the underlying filesystem is noexec
1358          *  mounted, in which case we dont add PROT_EXEC.)
1359          */
1360         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1361                 if (!(file && path_noexec(&file->f_path)))
1362                         prot |= PROT_EXEC;
1363
1364         if (!(flags & MAP_FIXED))
1365                 addr = round_hint_to_min(addr);
1366
1367         /* Careful about overflows.. */
1368         len = PAGE_ALIGN(len);
1369         if (!len)
1370                 return -ENOMEM;
1371
1372         /* offset overflow? */
1373         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1374                 return -EOVERFLOW;
1375
1376         /* Too many mappings? */
1377         if (mm->map_count > sysctl_max_map_count)
1378                 return -ENOMEM;
1379
1380         /* Obtain the address to map to. we verify (or select) it and ensure
1381          * that it represents a valid section of the address space.
1382          */
1383         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1384         if (offset_in_page(addr))
1385                 return addr;
1386
1387         if (prot == PROT_EXEC) {
1388                 pkey = execute_only_pkey(mm);
1389                 if (pkey < 0)
1390                         pkey = 0;
1391         }
1392
1393         /* Do simple checking here so the lower-level routines won't have
1394          * to. we assume access permissions have been handled by the open
1395          * of the memory object, so we don't do any here.
1396          */
1397         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1398                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1399
1400         if (flags & MAP_LOCKED)
1401                 if (!can_do_mlock())
1402                         return -EPERM;
1403
1404         if (mlock_future_check(mm, vm_flags, len))
1405                 return -EAGAIN;
1406
1407         if (file) {
1408                 struct inode *inode = file_inode(file);
1409
1410                 if (!file_mmap_ok(file, inode, pgoff, len))
1411                         return -EOVERFLOW;
1412
1413                 switch (flags & MAP_TYPE) {
1414                 case MAP_SHARED:
1415                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1416                                 return -EACCES;
1417
1418                         /*
1419                          * Make sure we don't allow writing to an append-only
1420                          * file..
1421                          */
1422                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1423                                 return -EACCES;
1424
1425                         /*
1426                          * Make sure there are no mandatory locks on the file.
1427                          */
1428                         if (locks_verify_locked(file))
1429                                 return -EAGAIN;
1430
1431                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1432                         if (!(file->f_mode & FMODE_WRITE))
1433                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1434
1435                         /* fall through */
1436                 case MAP_PRIVATE:
1437                         if (!(file->f_mode & FMODE_READ))
1438                                 return -EACCES;
1439                         if (path_noexec(&file->f_path)) {
1440                                 if (vm_flags & VM_EXEC)
1441                                         return -EPERM;
1442                                 vm_flags &= ~VM_MAYEXEC;
1443                         }
1444
1445                         if (!file->f_op->mmap)
1446                                 return -ENODEV;
1447                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1448                                 return -EINVAL;
1449                         break;
1450
1451                 default:
1452                         return -EINVAL;
1453                 }
1454         } else {
1455                 switch (flags & MAP_TYPE) {
1456                 case MAP_SHARED:
1457                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1458                                 return -EINVAL;
1459                         /*
1460                          * Ignore pgoff.
1461                          */
1462                         pgoff = 0;
1463                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1464                         break;
1465                 case MAP_PRIVATE:
1466                         /*
1467                          * Set pgoff according to addr for anon_vma.
1468                          */
1469                         pgoff = addr >> PAGE_SHIFT;
1470                         break;
1471                 default:
1472                         return -EINVAL;
1473                 }
1474         }
1475
1476         /*
1477          * Set 'VM_NORESERVE' if we should not account for the
1478          * memory use of this mapping.
1479          */
1480         if (flags & MAP_NORESERVE) {
1481                 /* We honor MAP_NORESERVE if allowed to overcommit */
1482                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1483                         vm_flags |= VM_NORESERVE;
1484
1485                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1486                 if (file && is_file_hugepages(file))
1487                         vm_flags |= VM_NORESERVE;
1488         }
1489
1490         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1491         if (!IS_ERR_VALUE(addr) &&
1492             ((vm_flags & VM_LOCKED) ||
1493              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1494                 *populate = len;
1495         return addr;
1496 }
1497
1498 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1499                 unsigned long, prot, unsigned long, flags,
1500                 unsigned long, fd, unsigned long, pgoff)
1501 {
1502         struct file *file = NULL;
1503         unsigned long retval;
1504
1505         if (!(flags & MAP_ANONYMOUS)) {
1506                 audit_mmap_fd(fd, flags);
1507                 file = fget(fd);
1508                 if (!file)
1509                         return -EBADF;
1510                 if (is_file_hugepages(file))
1511                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1512                 retval = -EINVAL;
1513                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1514                         goto out_fput;
1515         } else if (flags & MAP_HUGETLB) {
1516                 struct user_struct *user = NULL;
1517                 struct hstate *hs;
1518
1519                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1520                 if (!hs)
1521                         return -EINVAL;
1522
1523                 len = ALIGN(len, huge_page_size(hs));
1524                 /*
1525                  * VM_NORESERVE is used because the reservations will be
1526                  * taken when vm_ops->mmap() is called
1527                  * A dummy user value is used because we are not locking
1528                  * memory so no accounting is necessary
1529                  */
1530                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1531                                 VM_NORESERVE,
1532                                 &user, HUGETLB_ANONHUGE_INODE,
1533                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1534                 if (IS_ERR(file))
1535                         return PTR_ERR(file);
1536         }
1537
1538         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1539
1540         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1541 out_fput:
1542         if (file)
1543                 fput(file);
1544         return retval;
1545 }
1546
1547 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1548 struct mmap_arg_struct {
1549         unsigned long addr;
1550         unsigned long len;
1551         unsigned long prot;
1552         unsigned long flags;
1553         unsigned long fd;
1554         unsigned long offset;
1555 };
1556
1557 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1558 {
1559         struct mmap_arg_struct a;
1560
1561         if (copy_from_user(&a, arg, sizeof(a)))
1562                 return -EFAULT;
1563         if (offset_in_page(a.offset))
1564                 return -EINVAL;
1565
1566         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1567                               a.offset >> PAGE_SHIFT);
1568 }
1569 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1570
1571 /*
1572  * Some shared mappigns will want the pages marked read-only
1573  * to track write events. If so, we'll downgrade vm_page_prot
1574  * to the private version (using protection_map[] without the
1575  * VM_SHARED bit).
1576  */
1577 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1578 {
1579         vm_flags_t vm_flags = vma->vm_flags;
1580         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1581
1582         /* If it was private or non-writable, the write bit is already clear */
1583         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1584                 return 0;
1585
1586         /* The backer wishes to know when pages are first written to? */
1587         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1588                 return 1;
1589
1590         /* The open routine did something to the protections that pgprot_modify
1591          * won't preserve? */
1592         if (pgprot_val(vm_page_prot) !=
1593             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1594                 return 0;
1595
1596         /* Do we need to track softdirty? */
1597         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1598                 return 1;
1599
1600         /* Specialty mapping? */
1601         if (vm_flags & VM_PFNMAP)
1602                 return 0;
1603
1604         /* Can the mapping track the dirty pages? */
1605         return vma->vm_file && vma->vm_file->f_mapping &&
1606                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1607 }
1608
1609 /*
1610  * We account for memory if it's a private writeable mapping,
1611  * not hugepages and VM_NORESERVE wasn't set.
1612  */
1613 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1614 {
1615         /*
1616          * hugetlb has its own accounting separate from the core VM
1617          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1618          */
1619         if (file && is_file_hugepages(file))
1620                 return 0;
1621
1622         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1623 }
1624
1625 unsigned long mmap_region(struct file *file, unsigned long addr,
1626                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1627 {
1628         struct mm_struct *mm = current->mm;
1629         struct vm_area_struct *vma, *prev;
1630         int error;
1631         struct rb_node **rb_link, *rb_parent;
1632         unsigned long charged = 0;
1633
1634         /* Check against address space limit. */
1635         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1636                 unsigned long nr_pages;
1637
1638                 /*
1639                  * MAP_FIXED may remove pages of mappings that intersects with
1640                  * requested mapping. Account for the pages it would unmap.
1641                  */
1642                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1643
1644                 if (!may_expand_vm(mm, vm_flags,
1645                                         (len >> PAGE_SHIFT) - nr_pages))
1646                         return -ENOMEM;
1647         }
1648
1649         /* Clear old maps */
1650         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1651                               &rb_parent)) {
1652                 if (do_munmap(mm, addr, len))
1653                         return -ENOMEM;
1654         }
1655
1656         /*
1657          * Private writable mapping: check memory availability
1658          */
1659         if (accountable_mapping(file, vm_flags)) {
1660                 charged = len >> PAGE_SHIFT;
1661                 if (security_vm_enough_memory_mm(mm, charged))
1662                         return -ENOMEM;
1663                 vm_flags |= VM_ACCOUNT;
1664         }
1665
1666         /*
1667          * Can we just expand an old mapping?
1668          */
1669         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1670                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1671         if (vma)
1672                 goto out;
1673
1674         /*
1675          * Determine the object being mapped and call the appropriate
1676          * specific mapper. the address has already been validated, but
1677          * not unmapped, but the maps are removed from the list.
1678          */
1679         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1680         if (!vma) {
1681                 error = -ENOMEM;
1682                 goto unacct_error;
1683         }
1684
1685         vma->vm_mm = mm;
1686         vma->vm_start = addr;
1687         vma->vm_end = addr + len;
1688         vma->vm_flags = vm_flags;
1689         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1690         vma->vm_pgoff = pgoff;
1691         INIT_LIST_HEAD(&vma->anon_vma_chain);
1692
1693         if (file) {
1694                 if (vm_flags & VM_DENYWRITE) {
1695                         error = deny_write_access(file);
1696                         if (error)
1697                                 goto free_vma;
1698                 }
1699                 if (vm_flags & VM_SHARED) {
1700                         error = mapping_map_writable(file->f_mapping);
1701                         if (error)
1702                                 goto allow_write_and_free_vma;
1703                 }
1704
1705                 /* ->mmap() can change vma->vm_file, but must guarantee that
1706                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1707                  * and map writably if VM_SHARED is set. This usually means the
1708                  * new file must not have been exposed to user-space, yet.
1709                  */
1710                 vma->vm_file = get_file(file);
1711                 error = file->f_op->mmap(file, vma);
1712                 if (error)
1713                         goto unmap_and_free_vma;
1714
1715                 /* Can addr have changed??
1716                  *
1717                  * Answer: Yes, several device drivers can do it in their
1718                  *         f_op->mmap method. -DaveM
1719                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1720                  *      be updated for vma_link()
1721                  */
1722                 WARN_ON_ONCE(addr != vma->vm_start);
1723
1724                 addr = vma->vm_start;
1725                 vm_flags = vma->vm_flags;
1726         } else if (vm_flags & VM_SHARED) {
1727                 error = shmem_zero_setup(vma);
1728                 if (error)
1729                         goto free_vma;
1730         }
1731
1732         vma_link(mm, vma, prev, rb_link, rb_parent);
1733         /* Once vma denies write, undo our temporary denial count */
1734         if (file) {
1735                 if (vm_flags & VM_SHARED)
1736                         mapping_unmap_writable(file->f_mapping);
1737                 if (vm_flags & VM_DENYWRITE)
1738                         allow_write_access(file);
1739         }
1740         file = vma->vm_file;
1741 out:
1742         perf_event_mmap(vma);
1743
1744         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1745         if (vm_flags & VM_LOCKED) {
1746                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1747                                         vma == get_gate_vma(current->mm)))
1748                         mm->locked_vm += (len >> PAGE_SHIFT);
1749                 else
1750                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1751         }
1752
1753         if (file)
1754                 uprobe_mmap(vma);
1755
1756         /*
1757          * New (or expanded) vma always get soft dirty status.
1758          * Otherwise user-space soft-dirty page tracker won't
1759          * be able to distinguish situation when vma area unmapped,
1760          * then new mapped in-place (which must be aimed as
1761          * a completely new data area).
1762          */
1763         vma->vm_flags |= VM_SOFTDIRTY;
1764
1765         vma_set_page_prot(vma);
1766
1767         return addr;
1768
1769 unmap_and_free_vma:
1770         vma->vm_file = NULL;
1771         fput(file);
1772
1773         /* Undo any partial mapping done by a device driver. */
1774         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1775         charged = 0;
1776         if (vm_flags & VM_SHARED)
1777                 mapping_unmap_writable(file->f_mapping);
1778 allow_write_and_free_vma:
1779         if (vm_flags & VM_DENYWRITE)
1780                 allow_write_access(file);
1781 free_vma:
1782         kmem_cache_free(vm_area_cachep, vma);
1783 unacct_error:
1784         if (charged)
1785                 vm_unacct_memory(charged);
1786         return error;
1787 }
1788
1789 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1790 {
1791         /*
1792          * We implement the search by looking for an rbtree node that
1793          * immediately follows a suitable gap. That is,
1794          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1795          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1796          * - gap_end - gap_start >= length
1797          */
1798
1799         struct mm_struct *mm = current->mm;
1800         struct vm_area_struct *vma;
1801         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1802
1803         /* Adjust search length to account for worst case alignment overhead */
1804         length = info->length + info->align_mask;
1805         if (length < info->length)
1806                 return -ENOMEM;
1807
1808         /* Adjust search limits by the desired length */
1809         if (info->high_limit < length)
1810                 return -ENOMEM;
1811         high_limit = info->high_limit - length;
1812
1813         if (info->low_limit > high_limit)
1814                 return -ENOMEM;
1815         low_limit = info->low_limit + length;
1816
1817         /* Check if rbtree root looks promising */
1818         if (RB_EMPTY_ROOT(&mm->mm_rb))
1819                 goto check_highest;
1820         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1821         if (vma->rb_subtree_gap < length)
1822                 goto check_highest;
1823
1824         while (true) {
1825                 /* Visit left subtree if it looks promising */
1826                 gap_end = vm_start_gap(vma);
1827                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1828                         struct vm_area_struct *left =
1829                                 rb_entry(vma->vm_rb.rb_left,
1830                                          struct vm_area_struct, vm_rb);
1831                         if (left->rb_subtree_gap >= length) {
1832                                 vma = left;
1833                                 continue;
1834                         }
1835                 }
1836
1837                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1838 check_current:
1839                 /* Check if current node has a suitable gap */
1840                 if (gap_start > high_limit)
1841                         return -ENOMEM;
1842                 if (gap_end >= low_limit &&
1843                     gap_end > gap_start && gap_end - gap_start >= length)
1844                         goto found;
1845
1846                 /* Visit right subtree if it looks promising */
1847                 if (vma->vm_rb.rb_right) {
1848                         struct vm_area_struct *right =
1849                                 rb_entry(vma->vm_rb.rb_right,
1850                                          struct vm_area_struct, vm_rb);
1851                         if (right->rb_subtree_gap >= length) {
1852                                 vma = right;
1853                                 continue;
1854                         }
1855                 }
1856
1857                 /* Go back up the rbtree to find next candidate node */
1858                 while (true) {
1859                         struct rb_node *prev = &vma->vm_rb;
1860                         if (!rb_parent(prev))
1861                                 goto check_highest;
1862                         vma = rb_entry(rb_parent(prev),
1863                                        struct vm_area_struct, vm_rb);
1864                         if (prev == vma->vm_rb.rb_left) {
1865                                 gap_start = vm_end_gap(vma->vm_prev);
1866                                 gap_end = vm_start_gap(vma);
1867                                 goto check_current;
1868                         }
1869                 }
1870         }
1871
1872 check_highest:
1873         /* Check highest gap, which does not precede any rbtree node */
1874         gap_start = mm->highest_vm_end;
1875         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1876         if (gap_start > high_limit)
1877                 return -ENOMEM;
1878
1879 found:
1880         /* We found a suitable gap. Clip it with the original low_limit. */
1881         if (gap_start < info->low_limit)
1882                 gap_start = info->low_limit;
1883
1884         /* Adjust gap address to the desired alignment */
1885         gap_start += (info->align_offset - gap_start) & info->align_mask;
1886
1887         VM_BUG_ON(gap_start + info->length > info->high_limit);
1888         VM_BUG_ON(gap_start + info->length > gap_end);
1889         return gap_start;
1890 }
1891
1892 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1893 {
1894         struct mm_struct *mm = current->mm;
1895         struct vm_area_struct *vma;
1896         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1897
1898         /* Adjust search length to account for worst case alignment overhead */
1899         length = info->length + info->align_mask;
1900         if (length < info->length)
1901                 return -ENOMEM;
1902
1903         /*
1904          * Adjust search limits by the desired length.
1905          * See implementation comment at top of unmapped_area().
1906          */
1907         gap_end = info->high_limit;
1908         if (gap_end < length)
1909                 return -ENOMEM;
1910         high_limit = gap_end - length;
1911
1912         if (info->low_limit > high_limit)
1913                 return -ENOMEM;
1914         low_limit = info->low_limit + length;
1915
1916         /* Check highest gap, which does not precede any rbtree node */
1917         gap_start = mm->highest_vm_end;
1918         if (gap_start <= high_limit)
1919                 goto found_highest;
1920
1921         /* Check if rbtree root looks promising */
1922         if (RB_EMPTY_ROOT(&mm->mm_rb))
1923                 return -ENOMEM;
1924         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1925         if (vma->rb_subtree_gap < length)
1926                 return -ENOMEM;
1927
1928         while (true) {
1929                 /* Visit right subtree if it looks promising */
1930                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1931                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1932                         struct vm_area_struct *right =
1933                                 rb_entry(vma->vm_rb.rb_right,
1934                                          struct vm_area_struct, vm_rb);
1935                         if (right->rb_subtree_gap >= length) {
1936                                 vma = right;
1937                                 continue;
1938                         }
1939                 }
1940
1941 check_current:
1942                 /* Check if current node has a suitable gap */
1943                 gap_end = vm_start_gap(vma);
1944                 if (gap_end < low_limit)
1945                         return -ENOMEM;
1946                 if (gap_start <= high_limit &&
1947                     gap_end > gap_start && gap_end - gap_start >= length)
1948                         goto found;
1949
1950                 /* Visit left subtree if it looks promising */
1951                 if (vma->vm_rb.rb_left) {
1952                         struct vm_area_struct *left =
1953                                 rb_entry(vma->vm_rb.rb_left,
1954                                          struct vm_area_struct, vm_rb);
1955                         if (left->rb_subtree_gap >= length) {
1956                                 vma = left;
1957                                 continue;
1958                         }
1959                 }
1960
1961                 /* Go back up the rbtree to find next candidate node */
1962                 while (true) {
1963                         struct rb_node *prev = &vma->vm_rb;
1964                         if (!rb_parent(prev))
1965                                 return -ENOMEM;
1966                         vma = rb_entry(rb_parent(prev),
1967                                        struct vm_area_struct, vm_rb);
1968                         if (prev == vma->vm_rb.rb_right) {
1969                                 gap_start = vma->vm_prev ?
1970                                         vm_end_gap(vma->vm_prev) : 0;
1971                                 goto check_current;
1972                         }
1973                 }
1974         }
1975
1976 found:
1977         /* We found a suitable gap. Clip it with the original high_limit. */
1978         if (gap_end > info->high_limit)
1979                 gap_end = info->high_limit;
1980
1981 found_highest:
1982         /* Compute highest gap address at the desired alignment */
1983         gap_end -= info->length;
1984         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1985
1986         VM_BUG_ON(gap_end < info->low_limit);
1987         VM_BUG_ON(gap_end < gap_start);
1988         return gap_end;
1989 }
1990
1991 /* Get an address range which is currently unmapped.
1992  * For shmat() with addr=0.
1993  *
1994  * Ugly calling convention alert:
1995  * Return value with the low bits set means error value,
1996  * ie
1997  *      if (ret & ~PAGE_MASK)
1998  *              error = ret;
1999  *
2000  * This function "knows" that -ENOMEM has the bits set.
2001  */
2002 #ifndef HAVE_ARCH_UNMAPPED_AREA
2003 unsigned long
2004 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2005                 unsigned long len, unsigned long pgoff, unsigned long flags)
2006 {
2007         struct mm_struct *mm = current->mm;
2008         struct vm_area_struct *vma, *prev;
2009         struct vm_unmapped_area_info info;
2010
2011         if (len > TASK_SIZE - mmap_min_addr)
2012                 return -ENOMEM;
2013
2014         if (flags & MAP_FIXED)
2015                 return addr;
2016
2017         if (addr) {
2018                 addr = PAGE_ALIGN(addr);
2019                 vma = find_vma_prev(mm, addr, &prev);
2020                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2021                     (!vma || addr + len <= vm_start_gap(vma)) &&
2022                     (!prev || addr >= vm_end_gap(prev)))
2023                         return addr;
2024         }
2025
2026         info.flags = 0;
2027         info.length = len;
2028         info.low_limit = mm->mmap_base;
2029         info.high_limit = TASK_SIZE;
2030         info.align_mask = 0;
2031         info.align_offset = 0;
2032         return vm_unmapped_area(&info);
2033 }
2034 #endif
2035
2036 /*
2037  * This mmap-allocator allocates new areas top-down from below the
2038  * stack's low limit (the base):
2039  */
2040 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2041 unsigned long
2042 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2043                           const unsigned long len, const unsigned long pgoff,
2044                           const unsigned long flags)
2045 {
2046         struct vm_area_struct *vma, *prev;
2047         struct mm_struct *mm = current->mm;
2048         unsigned long addr = addr0;
2049         struct vm_unmapped_area_info info;
2050
2051         /* requested length too big for entire address space */
2052         if (len > TASK_SIZE - mmap_min_addr)
2053                 return -ENOMEM;
2054
2055         if (flags & MAP_FIXED)
2056                 return addr;
2057
2058         /* requesting a specific address */
2059         if (addr) {
2060                 addr = PAGE_ALIGN(addr);
2061                 vma = find_vma_prev(mm, addr, &prev);
2062                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2063                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2064                                 (!prev || addr >= vm_end_gap(prev)))
2065                         return addr;
2066         }
2067
2068         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2069         info.length = len;
2070         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2071         info.high_limit = mm->mmap_base;
2072         info.align_mask = 0;
2073         info.align_offset = 0;
2074         addr = vm_unmapped_area(&info);
2075
2076         /*
2077          * A failed mmap() very likely causes application failure,
2078          * so fall back to the bottom-up function here. This scenario
2079          * can happen with large stack limits and large mmap()
2080          * allocations.
2081          */
2082         if (offset_in_page(addr)) {
2083                 VM_BUG_ON(addr != -ENOMEM);
2084                 info.flags = 0;
2085                 info.low_limit = TASK_UNMAPPED_BASE;
2086                 info.high_limit = TASK_SIZE;
2087                 addr = vm_unmapped_area(&info);
2088         }
2089
2090         return addr;
2091 }
2092 #endif
2093
2094 unsigned long
2095 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2096                 unsigned long pgoff, unsigned long flags)
2097 {
2098         unsigned long (*get_area)(struct file *, unsigned long,
2099                                   unsigned long, unsigned long, unsigned long);
2100
2101         unsigned long error = arch_mmap_check(addr, len, flags);
2102         if (error)
2103                 return error;
2104
2105         /* Careful about overflows.. */
2106         if (len > TASK_SIZE)
2107                 return -ENOMEM;
2108
2109         get_area = current->mm->get_unmapped_area;
2110         if (file) {
2111                 if (file->f_op->get_unmapped_area)
2112                         get_area = file->f_op->get_unmapped_area;
2113         } else if (flags & MAP_SHARED) {
2114                 /*
2115                  * mmap_region() will call shmem_zero_setup() to create a file,
2116                  * so use shmem's get_unmapped_area in case it can be huge.
2117                  * do_mmap_pgoff() will clear pgoff, so match alignment.
2118                  */
2119                 pgoff = 0;
2120                 get_area = shmem_get_unmapped_area;
2121         }
2122
2123         addr = get_area(file, addr, len, pgoff, flags);
2124         if (IS_ERR_VALUE(addr))
2125                 return addr;
2126
2127         if (addr > TASK_SIZE - len)
2128                 return -ENOMEM;
2129         if (offset_in_page(addr))
2130                 return -EINVAL;
2131
2132         error = security_mmap_addr(addr);
2133         return error ? error : addr;
2134 }
2135
2136 EXPORT_SYMBOL(get_unmapped_area);
2137
2138 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2139 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2140 {
2141         struct rb_node *rb_node;
2142         struct vm_area_struct *vma;
2143
2144         /* Check the cache first. */
2145         vma = vmacache_find(mm, addr);
2146         if (likely(vma))
2147                 return vma;
2148
2149         rb_node = mm->mm_rb.rb_node;
2150
2151         while (rb_node) {
2152                 struct vm_area_struct *tmp;
2153
2154                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2155
2156                 if (tmp->vm_end > addr) {
2157                         vma = tmp;
2158                         if (tmp->vm_start <= addr)
2159                                 break;
2160                         rb_node = rb_node->rb_left;
2161                 } else
2162                         rb_node = rb_node->rb_right;
2163         }
2164
2165         if (vma)
2166                 vmacache_update(addr, vma);
2167         return vma;
2168 }
2169
2170 EXPORT_SYMBOL(find_vma);
2171
2172 /*
2173  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2174  */
2175 struct vm_area_struct *
2176 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2177                         struct vm_area_struct **pprev)
2178 {
2179         struct vm_area_struct *vma;
2180
2181         vma = find_vma(mm, addr);
2182         if (vma) {
2183                 *pprev = vma->vm_prev;
2184         } else {
2185                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2186                 *pprev = NULL;
2187                 while (rb_node) {
2188                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2189                         rb_node = rb_node->rb_right;
2190                 }
2191         }
2192         return vma;
2193 }
2194
2195 /*
2196  * Verify that the stack growth is acceptable and
2197  * update accounting. This is shared with both the
2198  * grow-up and grow-down cases.
2199  */
2200 static int acct_stack_growth(struct vm_area_struct *vma,
2201                              unsigned long size, unsigned long grow)
2202 {
2203         struct mm_struct *mm = vma->vm_mm;
2204         struct rlimit *rlim = current->signal->rlim;
2205         unsigned long new_start;
2206
2207         /* address space limit tests */
2208         if (!may_expand_vm(mm, vma->vm_flags, grow))
2209                 return -ENOMEM;
2210
2211         /* Stack limit test */
2212         if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2213                 return -ENOMEM;
2214
2215         /* mlock limit tests */
2216         if (vma->vm_flags & VM_LOCKED) {
2217                 unsigned long locked;
2218                 unsigned long limit;
2219                 locked = mm->locked_vm + grow;
2220                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2221                 limit >>= PAGE_SHIFT;
2222                 if (locked > limit && !capable(CAP_IPC_LOCK))
2223                         return -ENOMEM;
2224         }
2225
2226         /* Check to ensure the stack will not grow into a hugetlb-only region */
2227         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2228                         vma->vm_end - size;
2229         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2230                 return -EFAULT;
2231
2232         /*
2233          * Overcommit..  This must be the final test, as it will
2234          * update security statistics.
2235          */
2236         if (security_vm_enough_memory_mm(mm, grow))
2237                 return -ENOMEM;
2238
2239         return 0;
2240 }
2241
2242 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2243 /*
2244  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2245  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2246  */
2247 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2248 {
2249         struct mm_struct *mm = vma->vm_mm;
2250         struct vm_area_struct *next;
2251         unsigned long gap_addr;
2252         int error = 0;
2253
2254         if (!(vma->vm_flags & VM_GROWSUP))
2255                 return -EFAULT;
2256
2257         /* Guard against exceeding limits of the address space. */
2258         address &= PAGE_MASK;
2259         if (address >= (TASK_SIZE & PAGE_MASK))
2260                 return -ENOMEM;
2261         address += PAGE_SIZE;
2262
2263         /* Enforce stack_guard_gap */
2264         gap_addr = address + stack_guard_gap;
2265
2266         /* Guard against overflow */
2267         if (gap_addr < address || gap_addr > TASK_SIZE)
2268                 gap_addr = TASK_SIZE;
2269
2270         next = vma->vm_next;
2271         if (next && next->vm_start < gap_addr &&
2272                         (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2273                 if (!(next->vm_flags & VM_GROWSUP))
2274                         return -ENOMEM;
2275                 /* Check that both stack segments have the same anon_vma? */
2276         }
2277
2278         /* We must make sure the anon_vma is allocated. */
2279         if (unlikely(anon_vma_prepare(vma)))
2280                 return -ENOMEM;
2281
2282         /*
2283          * vma->vm_start/vm_end cannot change under us because the caller
2284          * is required to hold the mmap_sem in read mode.  We need the
2285          * anon_vma lock to serialize against concurrent expand_stacks.
2286          */
2287         anon_vma_lock_write(vma->anon_vma);
2288
2289         /* Somebody else might have raced and expanded it already */
2290         if (address > vma->vm_end) {
2291                 unsigned long size, grow;
2292
2293                 size = address - vma->vm_start;
2294                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2295
2296                 error = -ENOMEM;
2297                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2298                         error = acct_stack_growth(vma, size, grow);
2299                         if (!error) {
2300                                 /*
2301                                  * vma_gap_update() doesn't support concurrent
2302                                  * updates, but we only hold a shared mmap_sem
2303                                  * lock here, so we need to protect against
2304                                  * concurrent vma expansions.
2305                                  * anon_vma_lock_write() doesn't help here, as
2306                                  * we don't guarantee that all growable vmas
2307                                  * in a mm share the same root anon vma.
2308                                  * So, we reuse mm->page_table_lock to guard
2309                                  * against concurrent vma expansions.
2310                                  */
2311                                 spin_lock(&mm->page_table_lock);
2312                                 if (vma->vm_flags & VM_LOCKED)
2313                                         mm->locked_vm += grow;
2314                                 vm_stat_account(mm, vma->vm_flags, grow);
2315                                 anon_vma_interval_tree_pre_update_vma(vma);
2316                                 vma->vm_end = address;
2317                                 anon_vma_interval_tree_post_update_vma(vma);
2318                                 if (vma->vm_next)
2319                                         vma_gap_update(vma->vm_next);
2320                                 else
2321                                         mm->highest_vm_end = vm_end_gap(vma);
2322                                 spin_unlock(&mm->page_table_lock);
2323
2324                                 perf_event_mmap(vma);
2325                         }
2326                 }
2327         }
2328         anon_vma_unlock_write(vma->anon_vma);
2329         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2330         validate_mm(mm);
2331         return error;
2332 }
2333 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2334
2335 /*
2336  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2337  */
2338 int expand_downwards(struct vm_area_struct *vma,
2339                                    unsigned long address)
2340 {
2341         struct mm_struct *mm = vma->vm_mm;
2342         struct vm_area_struct *prev;
2343         unsigned long gap_addr;
2344         int error = 0;
2345
2346         address &= PAGE_MASK;
2347         if (address < mmap_min_addr)
2348                 return -EPERM;
2349
2350         /* Enforce stack_guard_gap */
2351         gap_addr = address - stack_guard_gap;
2352         if (gap_addr > address)
2353                 return -ENOMEM;
2354         prev = vma->vm_prev;
2355         if (prev && prev->vm_end > gap_addr &&
2356                         (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2357                 if (!(prev->vm_flags & VM_GROWSDOWN))
2358                         return -ENOMEM;
2359                 /* Check that both stack segments have the same anon_vma? */
2360         }
2361
2362         /* We must make sure the anon_vma is allocated. */
2363         if (unlikely(anon_vma_prepare(vma)))
2364                 return -ENOMEM;
2365
2366         /*
2367          * vma->vm_start/vm_end cannot change under us because the caller
2368          * is required to hold the mmap_sem in read mode.  We need the
2369          * anon_vma lock to serialize against concurrent expand_stacks.
2370          */
2371         anon_vma_lock_write(vma->anon_vma);
2372
2373         /* Somebody else might have raced and expanded it already */
2374         if (address < vma->vm_start) {
2375                 unsigned long size, grow;
2376
2377                 size = vma->vm_end - address;
2378                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2379
2380                 error = -ENOMEM;
2381                 if (grow <= vma->vm_pgoff) {
2382                         error = acct_stack_growth(vma, size, grow);
2383                         if (!error) {
2384                                 /*
2385                                  * vma_gap_update() doesn't support concurrent
2386                                  * updates, but we only hold a shared mmap_sem
2387                                  * lock here, so we need to protect against
2388                                  * concurrent vma expansions.
2389                                  * anon_vma_lock_write() doesn't help here, as
2390                                  * we don't guarantee that all growable vmas
2391                                  * in a mm share the same root anon vma.
2392                                  * So, we reuse mm->page_table_lock to guard
2393                                  * against concurrent vma expansions.
2394                                  */
2395                                 spin_lock(&mm->page_table_lock);
2396                                 if (vma->vm_flags & VM_LOCKED)
2397                                         mm->locked_vm += grow;
2398                                 vm_stat_account(mm, vma->vm_flags, grow);
2399                                 anon_vma_interval_tree_pre_update_vma(vma);
2400                                 vma->vm_start = address;
2401                                 vma->vm_pgoff -= grow;
2402                                 anon_vma_interval_tree_post_update_vma(vma);
2403                                 vma_gap_update(vma);
2404                                 spin_unlock(&mm->page_table_lock);
2405
2406                                 perf_event_mmap(vma);
2407                         }
2408                 }
2409         }
2410         anon_vma_unlock_write(vma->anon_vma);
2411         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2412         validate_mm(mm);
2413         return error;
2414 }
2415
2416 /* enforced gap between the expanding stack and other mappings. */
2417 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2418
2419 static int __init cmdline_parse_stack_guard_gap(char *p)
2420 {
2421         unsigned long val;
2422         char *endptr;
2423
2424         val = simple_strtoul(p, &endptr, 10);
2425         if (!*endptr)
2426                 stack_guard_gap = val << PAGE_SHIFT;
2427
2428         return 0;
2429 }
2430 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2431
2432 #ifdef CONFIG_STACK_GROWSUP
2433 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2434 {
2435         return expand_upwards(vma, address);
2436 }
2437
2438 struct vm_area_struct *
2439 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2440 {
2441         struct vm_area_struct *vma, *prev;
2442
2443         addr &= PAGE_MASK;
2444         vma = find_vma_prev(mm, addr, &prev);
2445         if (vma && (vma->vm_start <= addr))
2446                 return vma;
2447         /* don't alter vm_end if the coredump is running */
2448         if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2449                 return NULL;
2450         if (prev->vm_flags & VM_LOCKED)
2451                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2452         return prev;
2453 }
2454 #else
2455 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2456 {
2457         return expand_downwards(vma, address);
2458 }
2459
2460 struct vm_area_struct *
2461 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2462 {
2463         struct vm_area_struct *vma;
2464         unsigned long start;
2465
2466         addr &= PAGE_MASK;
2467         vma = find_vma(mm, addr);
2468         if (!vma)
2469                 return NULL;
2470         if (vma->vm_start <= addr)
2471                 return vma;
2472         if (!(vma->vm_flags & VM_GROWSDOWN))
2473                 return NULL;
2474         /* don't alter vm_start if the coredump is running */
2475         if (!mmget_still_valid(mm))
2476                 return NULL;
2477         start = vma->vm_start;
2478         if (expand_stack(vma, addr))
2479                 return NULL;
2480         if (vma->vm_flags & VM_LOCKED)
2481                 populate_vma_page_range(vma, addr, start, NULL);
2482         return vma;
2483 }
2484 #endif
2485
2486 EXPORT_SYMBOL_GPL(find_extend_vma);
2487
2488 /*
2489  * Ok - we have the memory areas we should free on the vma list,
2490  * so release them, and do the vma updates.
2491  *
2492  * Called with the mm semaphore held.
2493  */
2494 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2495 {
2496         unsigned long nr_accounted = 0;
2497
2498         /* Update high watermark before we lower total_vm */
2499         update_hiwater_vm(mm);
2500         do {
2501                 long nrpages = vma_pages(vma);
2502
2503                 if (vma->vm_flags & VM_ACCOUNT)
2504                         nr_accounted += nrpages;
2505                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2506                 vma = remove_vma(vma);
2507         } while (vma);
2508         vm_unacct_memory(nr_accounted);
2509         validate_mm(mm);
2510 }
2511
2512 /*
2513  * Get rid of page table information in the indicated region.
2514  *
2515  * Called with the mm semaphore held.
2516  */
2517 static void unmap_region(struct mm_struct *mm,
2518                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2519                 unsigned long start, unsigned long end)
2520 {
2521         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2522         struct mmu_gather tlb;
2523
2524         lru_add_drain();
2525         tlb_gather_mmu(&tlb, mm, start, end);
2526         update_hiwater_rss(mm);
2527         unmap_vmas(&tlb, vma, start, end);
2528         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2529                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2530         tlb_finish_mmu(&tlb, start, end);
2531 }
2532
2533 /*
2534  * Create a list of vma's touched by the unmap, removing them from the mm's
2535  * vma list as we go..
2536  */
2537 static void
2538 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2539         struct vm_area_struct *prev, unsigned long end)
2540 {
2541         struct vm_area_struct **insertion_point;
2542         struct vm_area_struct *tail_vma = NULL;
2543
2544         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2545         vma->vm_prev = NULL;
2546         do {
2547                 vma_rb_erase(vma, &mm->mm_rb);
2548                 mm->map_count--;
2549                 tail_vma = vma;
2550                 vma = vma->vm_next;
2551         } while (vma && vma->vm_start < end);
2552         *insertion_point = vma;
2553         if (vma) {
2554                 vma->vm_prev = prev;
2555                 vma_gap_update(vma);
2556         } else
2557                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2558         tail_vma->vm_next = NULL;
2559
2560         /* Kill the cache */
2561         vmacache_invalidate(mm);
2562 }
2563
2564 /*
2565  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2566  * munmap path where it doesn't make sense to fail.
2567  */
2568 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2569               unsigned long addr, int new_below)
2570 {
2571         struct vm_area_struct *new;
2572         int err;
2573
2574         if (vma->vm_ops && vma->vm_ops->split) {
2575                 err = vma->vm_ops->split(vma, addr);
2576                 if (err)
2577                         return err;
2578         }
2579
2580         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2581         if (!new)
2582                 return -ENOMEM;
2583
2584         /* most fields are the same, copy all, and then fixup */
2585         *new = *vma;
2586
2587         INIT_LIST_HEAD(&new->anon_vma_chain);
2588
2589         if (new_below)
2590                 new->vm_end = addr;
2591         else {
2592                 new->vm_start = addr;
2593                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2594         }
2595
2596         err = vma_dup_policy(vma, new);
2597         if (err)
2598                 goto out_free_vma;
2599
2600         err = anon_vma_clone(new, vma);
2601         if (err)
2602                 goto out_free_mpol;
2603
2604         if (new->vm_file)
2605                 get_file(new->vm_file);
2606
2607         if (new->vm_ops && new->vm_ops->open)
2608                 new->vm_ops->open(new);
2609
2610         if (new_below)
2611                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2612                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2613         else
2614                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2615
2616         /* Success. */
2617         if (!err)
2618                 return 0;
2619
2620         /* Clean everything up if vma_adjust failed. */
2621         if (new->vm_ops && new->vm_ops->close)
2622                 new->vm_ops->close(new);
2623         if (new->vm_file)
2624                 fput(new->vm_file);
2625         unlink_anon_vmas(new);
2626  out_free_mpol:
2627         mpol_put(vma_policy(new));
2628  out_free_vma:
2629         kmem_cache_free(vm_area_cachep, new);
2630         return err;
2631 }
2632
2633 /*
2634  * Split a vma into two pieces at address 'addr', a new vma is allocated
2635  * either for the first part or the tail.
2636  */
2637 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2638               unsigned long addr, int new_below)
2639 {
2640         if (mm->map_count >= sysctl_max_map_count)
2641                 return -ENOMEM;
2642
2643         return __split_vma(mm, vma, addr, new_below);
2644 }
2645
2646 /* Munmap is split into 2 main parts -- this part which finds
2647  * what needs doing, and the areas themselves, which do the
2648  * work.  This now handles partial unmappings.
2649  * Jeremy Fitzhardinge <jeremy@goop.org>
2650  */
2651 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2652 {
2653         unsigned long end;
2654         struct vm_area_struct *vma, *prev, *last;
2655
2656         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2657                 return -EINVAL;
2658
2659         len = PAGE_ALIGN(len);
2660         if (len == 0)
2661                 return -EINVAL;
2662
2663         /* Find the first overlapping VMA */
2664         vma = find_vma(mm, start);
2665         if (!vma)
2666                 return 0;
2667         prev = vma->vm_prev;
2668         /* we have  start < vma->vm_end  */
2669
2670         /* if it doesn't overlap, we have nothing.. */
2671         end = start + len;
2672         if (vma->vm_start >= end)
2673                 return 0;
2674
2675         /*
2676          * If we need to split any vma, do it now to save pain later.
2677          *
2678          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2679          * unmapped vm_area_struct will remain in use: so lower split_vma
2680          * places tmp vma above, and higher split_vma places tmp vma below.
2681          */
2682         if (start > vma->vm_start) {
2683                 int error;
2684
2685                 /*
2686                  * Make sure that map_count on return from munmap() will
2687                  * not exceed its limit; but let map_count go just above
2688                  * its limit temporarily, to help free resources as expected.
2689                  */
2690                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2691                         return -ENOMEM;
2692
2693                 error = __split_vma(mm, vma, start, 0);
2694                 if (error)
2695                         return error;
2696                 prev = vma;
2697         }
2698
2699         /* Does it split the last one? */
2700         last = find_vma(mm, end);
2701         if (last && end > last->vm_start) {
2702                 int error = __split_vma(mm, last, end, 1);
2703                 if (error)
2704                         return error;
2705         }
2706         vma = prev ? prev->vm_next : mm->mmap;
2707
2708         /*
2709          * unlock any mlock()ed ranges before detaching vmas
2710          */
2711         if (mm->locked_vm) {
2712                 struct vm_area_struct *tmp = vma;
2713                 while (tmp && tmp->vm_start < end) {
2714                         if (tmp->vm_flags & VM_LOCKED) {
2715                                 mm->locked_vm -= vma_pages(tmp);
2716                                 munlock_vma_pages_all(tmp);
2717                         }
2718                         tmp = tmp->vm_next;
2719                 }
2720         }
2721
2722         /*
2723          * Remove the vma's, and unmap the actual pages
2724          */
2725         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2726         unmap_region(mm, vma, prev, start, end);
2727
2728         arch_unmap(mm, vma, start, end);
2729
2730         /* Fix up all other VM information */
2731         remove_vma_list(mm, vma);
2732
2733         return 0;
2734 }
2735
2736 int vm_munmap(unsigned long start, size_t len)
2737 {
2738         int ret;
2739         struct mm_struct *mm = current->mm;
2740
2741         if (down_write_killable(&mm->mmap_sem))
2742                 return -EINTR;
2743
2744         ret = do_munmap(mm, start, len);
2745         up_write(&mm->mmap_sem);
2746         return ret;
2747 }
2748 EXPORT_SYMBOL(vm_munmap);
2749
2750 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2751 {
2752         int ret;
2753         struct mm_struct *mm = current->mm;
2754
2755         profile_munmap(addr);
2756         if (down_write_killable(&mm->mmap_sem))
2757                 return -EINTR;
2758         ret = do_munmap(mm, addr, len);
2759         up_write(&mm->mmap_sem);
2760         return ret;
2761 }
2762
2763
2764 /*
2765  * Emulation of deprecated remap_file_pages() syscall.
2766  */
2767 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2768                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2769 {
2770
2771         struct mm_struct *mm = current->mm;
2772         struct vm_area_struct *vma;
2773         unsigned long populate = 0;
2774         unsigned long ret = -EINVAL;
2775         struct file *file;
2776
2777         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2778                      current->comm, current->pid);
2779
2780         if (prot)
2781                 return ret;
2782         start = start & PAGE_MASK;
2783         size = size & PAGE_MASK;
2784
2785         if (start + size <= start)
2786                 return ret;
2787
2788         /* Does pgoff wrap? */
2789         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2790                 return ret;
2791
2792         if (down_write_killable(&mm->mmap_sem))
2793                 return -EINTR;
2794
2795         vma = find_vma(mm, start);
2796
2797         if (!vma || !(vma->vm_flags & VM_SHARED))
2798                 goto out;
2799
2800         if (start < vma->vm_start)
2801                 goto out;
2802
2803         if (start + size > vma->vm_end) {
2804                 struct vm_area_struct *next;
2805
2806                 for (next = vma->vm_next; next; next = next->vm_next) {
2807                         /* hole between vmas ? */
2808                         if (next->vm_start != next->vm_prev->vm_end)
2809                                 goto out;
2810
2811                         if (next->vm_file != vma->vm_file)
2812                                 goto out;
2813
2814                         if (next->vm_flags != vma->vm_flags)
2815                                 goto out;
2816
2817                         if (start + size <= next->vm_end)
2818                                 break;
2819                 }
2820
2821                 if (!next)
2822                         goto out;
2823         }
2824
2825         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2826         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2827         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2828
2829         flags &= MAP_NONBLOCK;
2830         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2831         if (vma->vm_flags & VM_LOCKED) {
2832                 struct vm_area_struct *tmp;
2833                 flags |= MAP_LOCKED;
2834
2835                 /* drop PG_Mlocked flag for over-mapped range */
2836                 for (tmp = vma; tmp->vm_start >= start + size;
2837                                 tmp = tmp->vm_next) {
2838                         /*
2839                          * Split pmd and munlock page on the border
2840                          * of the range.
2841                          */
2842                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2843
2844                         munlock_vma_pages_range(tmp,
2845                                         max(tmp->vm_start, start),
2846                                         min(tmp->vm_end, start + size));
2847                 }
2848         }
2849
2850         file = get_file(vma->vm_file);
2851         ret = do_mmap_pgoff(vma->vm_file, start, size,
2852                         prot, flags, pgoff, &populate);
2853         fput(file);
2854 out:
2855         up_write(&mm->mmap_sem);
2856         if (populate)
2857                 mm_populate(ret, populate);
2858         if (!IS_ERR_VALUE(ret))
2859                 ret = 0;
2860         return ret;
2861 }
2862
2863 static inline void verify_mm_writelocked(struct mm_struct *mm)
2864 {
2865 #ifdef CONFIG_DEBUG_VM
2866         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2867                 WARN_ON(1);
2868                 up_read(&mm->mmap_sem);
2869         }
2870 #endif
2871 }
2872
2873 /*
2874  *  this is really a simplified "do_mmap".  it only handles
2875  *  anonymous maps.  eventually we may be able to do some
2876  *  brk-specific accounting here.
2877  */
2878 static int do_brk(unsigned long addr, unsigned long len)
2879 {
2880         struct mm_struct *mm = current->mm;
2881         struct vm_area_struct *vma, *prev;
2882         unsigned long flags;
2883         struct rb_node **rb_link, *rb_parent;
2884         pgoff_t pgoff = addr >> PAGE_SHIFT;
2885         int error;
2886
2887         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2888
2889         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2890         if (offset_in_page(error))
2891                 return error;
2892
2893         error = mlock_future_check(mm, mm->def_flags, len);
2894         if (error)
2895                 return error;
2896
2897         /*
2898          * mm->mmap_sem is required to protect against another thread
2899          * changing the mappings in case we sleep.
2900          */
2901         verify_mm_writelocked(mm);
2902
2903         /*
2904          * Clear old maps.  this also does some error checking for us
2905          */
2906         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2907                               &rb_parent)) {
2908                 if (do_munmap(mm, addr, len))
2909                         return -ENOMEM;
2910         }
2911
2912         /* Check against address space limits *after* clearing old maps... */
2913         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2914                 return -ENOMEM;
2915
2916         if (mm->map_count > sysctl_max_map_count)
2917                 return -ENOMEM;
2918
2919         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2920                 return -ENOMEM;
2921
2922         /* Can we just expand an old private anonymous mapping? */
2923         vma = vma_merge(mm, prev, addr, addr + len, flags,
2924                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2925         if (vma)
2926                 goto out;
2927
2928         /*
2929          * create a vma struct for an anonymous mapping
2930          */
2931         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2932         if (!vma) {
2933                 vm_unacct_memory(len >> PAGE_SHIFT);
2934                 return -ENOMEM;
2935         }
2936
2937         INIT_LIST_HEAD(&vma->anon_vma_chain);
2938         vma->vm_mm = mm;
2939         vma->vm_start = addr;
2940         vma->vm_end = addr + len;
2941         vma->vm_pgoff = pgoff;
2942         vma->vm_flags = flags;
2943         vma->vm_page_prot = vm_get_page_prot(flags);
2944         vma_link(mm, vma, prev, rb_link, rb_parent);
2945 out:
2946         perf_event_mmap(vma);
2947         mm->total_vm += len >> PAGE_SHIFT;
2948         mm->data_vm += len >> PAGE_SHIFT;
2949         if (flags & VM_LOCKED)
2950                 mm->locked_vm += (len >> PAGE_SHIFT);
2951         vma->vm_flags |= VM_SOFTDIRTY;
2952         return 0;
2953 }
2954
2955 int vm_brk(unsigned long addr, unsigned long request)
2956 {
2957         struct mm_struct *mm = current->mm;
2958         unsigned long len;
2959         int ret;
2960         bool populate;
2961
2962         len = PAGE_ALIGN(request);
2963         if (len < request)
2964                 return -ENOMEM;
2965         if (!len)
2966                 return 0;
2967
2968         if (down_write_killable(&mm->mmap_sem))
2969                 return -EINTR;
2970
2971         ret = do_brk(addr, len);
2972         populate = ((mm->def_flags & VM_LOCKED) != 0);
2973         up_write(&mm->mmap_sem);
2974         if (populate && !ret)
2975                 mm_populate(addr, len);
2976         return ret;
2977 }
2978 EXPORT_SYMBOL(vm_brk);
2979
2980 /* Release all mmaps. */
2981 void exit_mmap(struct mm_struct *mm)
2982 {
2983         struct mmu_gather tlb;
2984         struct vm_area_struct *vma;
2985         unsigned long nr_accounted = 0;
2986
2987         /* mm's last user has gone, and its about to be pulled down */
2988         mmu_notifier_release(mm);
2989
2990         if (mm->locked_vm) {
2991                 vma = mm->mmap;
2992                 while (vma) {
2993                         if (vma->vm_flags & VM_LOCKED)
2994                                 munlock_vma_pages_all(vma);
2995                         vma = vma->vm_next;
2996                 }
2997         }
2998
2999         arch_exit_mmap(mm);
3000
3001         vma = mm->mmap;
3002         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3003                 return;
3004
3005         lru_add_drain();
3006         flush_cache_mm(mm);
3007         tlb_gather_mmu(&tlb, mm, 0, -1);
3008         /* update_hiwater_rss(mm) here? but nobody should be looking */
3009         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3010         unmap_vmas(&tlb, vma, 0, -1);
3011
3012         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3013         tlb_finish_mmu(&tlb, 0, -1);
3014
3015         /*
3016          * Walk the list again, actually closing and freeing it,
3017          * with preemption enabled, without holding any MM locks.
3018          */
3019         while (vma) {
3020                 if (vma->vm_flags & VM_ACCOUNT)
3021                         nr_accounted += vma_pages(vma);
3022                 vma = remove_vma(vma);
3023                 cond_resched();
3024         }
3025         vm_unacct_memory(nr_accounted);
3026 }
3027
3028 /* Insert vm structure into process list sorted by address
3029  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3030  * then i_mmap_rwsem is taken here.
3031  */
3032 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3033 {
3034         struct vm_area_struct *prev;
3035         struct rb_node **rb_link, *rb_parent;
3036
3037         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3038                            &prev, &rb_link, &rb_parent))
3039                 return -ENOMEM;
3040         if ((vma->vm_flags & VM_ACCOUNT) &&
3041              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3042                 return -ENOMEM;
3043
3044         /*
3045          * The vm_pgoff of a purely anonymous vma should be irrelevant
3046          * until its first write fault, when page's anon_vma and index
3047          * are set.  But now set the vm_pgoff it will almost certainly
3048          * end up with (unless mremap moves it elsewhere before that
3049          * first wfault), so /proc/pid/maps tells a consistent story.
3050          *
3051          * By setting it to reflect the virtual start address of the
3052          * vma, merges and splits can happen in a seamless way, just
3053          * using the existing file pgoff checks and manipulations.
3054          * Similarly in do_mmap_pgoff and in do_brk.
3055          */
3056         if (vma_is_anonymous(vma)) {
3057                 BUG_ON(vma->anon_vma);
3058                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3059         }
3060
3061         vma_link(mm, vma, prev, rb_link, rb_parent);
3062         return 0;
3063 }
3064
3065 /*
3066  * Copy the vma structure to a new location in the same mm,
3067  * prior to moving page table entries, to effect an mremap move.
3068  */
3069 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3070         unsigned long addr, unsigned long len, pgoff_t pgoff,
3071         bool *need_rmap_locks)
3072 {
3073         struct vm_area_struct *vma = *vmap;
3074         unsigned long vma_start = vma->vm_start;
3075         struct mm_struct *mm = vma->vm_mm;
3076         struct vm_area_struct *new_vma, *prev;
3077         struct rb_node **rb_link, *rb_parent;
3078         bool faulted_in_anon_vma = true;
3079
3080         /*
3081          * If anonymous vma has not yet been faulted, update new pgoff
3082          * to match new location, to increase its chance of merging.
3083          */
3084         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3085                 pgoff = addr >> PAGE_SHIFT;
3086                 faulted_in_anon_vma = false;
3087         }
3088
3089         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3090                 return NULL;    /* should never get here */
3091         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3092                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3093                             vma->vm_userfaultfd_ctx);
3094         if (new_vma) {
3095                 /*
3096                  * Source vma may have been merged into new_vma
3097                  */
3098                 if (unlikely(vma_start >= new_vma->vm_start &&
3099                              vma_start < new_vma->vm_end)) {
3100                         /*
3101                          * The only way we can get a vma_merge with
3102                          * self during an mremap is if the vma hasn't
3103                          * been faulted in yet and we were allowed to
3104                          * reset the dst vma->vm_pgoff to the
3105                          * destination address of the mremap to allow
3106                          * the merge to happen. mremap must change the
3107                          * vm_pgoff linearity between src and dst vmas
3108                          * (in turn preventing a vma_merge) to be
3109                          * safe. It is only safe to keep the vm_pgoff
3110                          * linear if there are no pages mapped yet.
3111                          */
3112                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3113                         *vmap = vma = new_vma;
3114                 }
3115                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3116         } else {
3117                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3118                 if (!new_vma)
3119                         goto out;
3120                 *new_vma = *vma;
3121                 new_vma->vm_start = addr;
3122                 new_vma->vm_end = addr + len;
3123                 new_vma->vm_pgoff = pgoff;
3124                 if (vma_dup_policy(vma, new_vma))
3125                         goto out_free_vma;
3126                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3127                 if (anon_vma_clone(new_vma, vma))
3128                         goto out_free_mempol;
3129                 if (new_vma->vm_file)
3130                         get_file(new_vma->vm_file);
3131                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3132                         new_vma->vm_ops->open(new_vma);
3133                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3134                 *need_rmap_locks = false;
3135         }
3136         return new_vma;
3137
3138 out_free_mempol:
3139         mpol_put(vma_policy(new_vma));
3140 out_free_vma:
3141         kmem_cache_free(vm_area_cachep, new_vma);
3142 out:
3143         return NULL;
3144 }
3145
3146 /*
3147  * Return true if the calling process may expand its vm space by the passed
3148  * number of pages
3149  */
3150 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3151 {
3152         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3153                 return false;
3154
3155         if (is_data_mapping(flags) &&
3156             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3157                 /* Workaround for Valgrind */
3158                 if (rlimit(RLIMIT_DATA) == 0 &&
3159                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3160                         return true;
3161                 if (!ignore_rlimit_data) {
3162                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3163                                      current->comm, current->pid,
3164                                      (mm->data_vm + npages) << PAGE_SHIFT,
3165                                      rlimit(RLIMIT_DATA));
3166                         return false;
3167                 }
3168         }
3169
3170         return true;
3171 }
3172
3173 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3174 {
3175         mm->total_vm += npages;
3176
3177         if (is_exec_mapping(flags))
3178                 mm->exec_vm += npages;
3179         else if (is_stack_mapping(flags))
3180                 mm->stack_vm += npages;
3181         else if (is_data_mapping(flags))
3182                 mm->data_vm += npages;
3183 }
3184
3185 static int special_mapping_fault(struct vm_area_struct *vma,
3186                                  struct vm_fault *vmf);
3187
3188 /*
3189  * Having a close hook prevents vma merging regardless of flags.
3190  */
3191 static void special_mapping_close(struct vm_area_struct *vma)
3192 {
3193 }
3194
3195 static const char *special_mapping_name(struct vm_area_struct *vma)
3196 {
3197         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3198 }
3199
3200 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3201 {
3202         struct vm_special_mapping *sm = new_vma->vm_private_data;
3203
3204         if (sm->mremap)
3205                 return sm->mremap(sm, new_vma);
3206         return 0;
3207 }
3208
3209 static const struct vm_operations_struct special_mapping_vmops = {
3210         .close = special_mapping_close,
3211         .fault = special_mapping_fault,
3212         .mremap = special_mapping_mremap,
3213         .name = special_mapping_name,
3214 };
3215
3216 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3217         .close = special_mapping_close,
3218         .fault = special_mapping_fault,
3219 };
3220
3221 static int special_mapping_fault(struct vm_area_struct *vma,
3222                                 struct vm_fault *vmf)
3223 {
3224         pgoff_t pgoff;
3225         struct page **pages;
3226
3227         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3228                 pages = vma->vm_private_data;
3229         } else {
3230                 struct vm_special_mapping *sm = vma->vm_private_data;
3231
3232                 if (sm->fault)
3233                         return sm->fault(sm, vma, vmf);
3234
3235                 pages = sm->pages;
3236         }
3237
3238         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3239                 pgoff--;
3240
3241         if (*pages) {
3242                 struct page *page = *pages;
3243                 get_page(page);
3244                 vmf->page = page;
3245                 return 0;
3246         }
3247
3248         return VM_FAULT_SIGBUS;
3249 }
3250
3251 static struct vm_area_struct *__install_special_mapping(
3252         struct mm_struct *mm,
3253         unsigned long addr, unsigned long len,
3254         unsigned long vm_flags, void *priv,
3255         const struct vm_operations_struct *ops)
3256 {
3257         int ret;
3258         struct vm_area_struct *vma;
3259
3260         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3261         if (unlikely(vma == NULL))
3262                 return ERR_PTR(-ENOMEM);
3263
3264         INIT_LIST_HEAD(&vma->anon_vma_chain);
3265         vma->vm_mm = mm;
3266         vma->vm_start = addr;
3267         vma->vm_end = addr + len;
3268
3269         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3270         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3271
3272         vma->vm_ops = ops;
3273         vma->vm_private_data = priv;
3274
3275         ret = insert_vm_struct(mm, vma);
3276         if (ret)
3277                 goto out;
3278
3279         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3280
3281         perf_event_mmap(vma);
3282
3283         return vma;
3284
3285 out:
3286         kmem_cache_free(vm_area_cachep, vma);
3287         return ERR_PTR(ret);
3288 }
3289
3290 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3291         const struct vm_special_mapping *sm)
3292 {
3293         return vma->vm_private_data == sm &&
3294                 (vma->vm_ops == &special_mapping_vmops ||
3295                  vma->vm_ops == &legacy_special_mapping_vmops);
3296 }
3297
3298 /*
3299  * Called with mm->mmap_sem held for writing.
3300  * Insert a new vma covering the given region, with the given flags.
3301  * Its pages are supplied by the given array of struct page *.
3302  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3303  * The region past the last page supplied will always produce SIGBUS.
3304  * The array pointer and the pages it points to are assumed to stay alive
3305  * for as long as this mapping might exist.
3306  */
3307 struct vm_area_struct *_install_special_mapping(
3308         struct mm_struct *mm,
3309         unsigned long addr, unsigned long len,
3310         unsigned long vm_flags, const struct vm_special_mapping *spec)
3311 {
3312         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3313                                         &special_mapping_vmops);
3314 }
3315
3316 int install_special_mapping(struct mm_struct *mm,
3317                             unsigned long addr, unsigned long len,
3318                             unsigned long vm_flags, struct page **pages)
3319 {
3320         struct vm_area_struct *vma = __install_special_mapping(
3321                 mm, addr, len, vm_flags, (void *)pages,
3322                 &legacy_special_mapping_vmops);
3323
3324         return PTR_ERR_OR_ZERO(vma);
3325 }
3326
3327 static DEFINE_MUTEX(mm_all_locks_mutex);
3328
3329 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3330 {
3331         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3332                 /*
3333                  * The LSB of head.next can't change from under us
3334                  * because we hold the mm_all_locks_mutex.
3335                  */
3336                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3337                 /*
3338                  * We can safely modify head.next after taking the
3339                  * anon_vma->root->rwsem. If some other vma in this mm shares
3340                  * the same anon_vma we won't take it again.
3341                  *
3342                  * No need of atomic instructions here, head.next
3343                  * can't change from under us thanks to the
3344                  * anon_vma->root->rwsem.
3345                  */
3346                 if (__test_and_set_bit(0, (unsigned long *)
3347                                        &anon_vma->root->rb_root.rb_node))
3348                         BUG();
3349         }
3350 }
3351
3352 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3353 {
3354         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3355                 /*
3356                  * AS_MM_ALL_LOCKS can't change from under us because
3357                  * we hold the mm_all_locks_mutex.
3358                  *
3359                  * Operations on ->flags have to be atomic because
3360                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3361                  * mm_all_locks_mutex, there may be other cpus
3362                  * changing other bitflags in parallel to us.
3363                  */
3364                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3365                         BUG();
3366                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3367         }
3368 }
3369
3370 /*
3371  * This operation locks against the VM for all pte/vma/mm related
3372  * operations that could ever happen on a certain mm. This includes
3373  * vmtruncate, try_to_unmap, and all page faults.
3374  *
3375  * The caller must take the mmap_sem in write mode before calling
3376  * mm_take_all_locks(). The caller isn't allowed to release the
3377  * mmap_sem until mm_drop_all_locks() returns.
3378  *
3379  * mmap_sem in write mode is required in order to block all operations
3380  * that could modify pagetables and free pages without need of
3381  * altering the vma layout. It's also needed in write mode to avoid new
3382  * anon_vmas to be associated with existing vmas.
3383  *
3384  * A single task can't take more than one mm_take_all_locks() in a row
3385  * or it would deadlock.
3386  *
3387  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3388  * mapping->flags avoid to take the same lock twice, if more than one
3389  * vma in this mm is backed by the same anon_vma or address_space.
3390  *
3391  * We take locks in following order, accordingly to comment at beginning
3392  * of mm/rmap.c:
3393  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3394  *     hugetlb mapping);
3395  *   - all i_mmap_rwsem locks;
3396  *   - all anon_vma->rwseml
3397  *
3398  * We can take all locks within these types randomly because the VM code
3399  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3400  * mm_all_locks_mutex.
3401  *
3402  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3403  * that may have to take thousand of locks.
3404  *
3405  * mm_take_all_locks() can fail if it's interrupted by signals.
3406  */
3407 int mm_take_all_locks(struct mm_struct *mm)
3408 {
3409         struct vm_area_struct *vma;
3410         struct anon_vma_chain *avc;
3411
3412         BUG_ON(down_read_trylock(&mm->mmap_sem));
3413
3414         mutex_lock(&mm_all_locks_mutex);
3415
3416         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3417                 if (signal_pending(current))
3418                         goto out_unlock;
3419                 if (vma->vm_file && vma->vm_file->f_mapping &&
3420                                 is_vm_hugetlb_page(vma))
3421                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3422         }
3423
3424         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3425                 if (signal_pending(current))
3426                         goto out_unlock;
3427                 if (vma->vm_file && vma->vm_file->f_mapping &&
3428                                 !is_vm_hugetlb_page(vma))
3429                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3430         }
3431
3432         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3433                 if (signal_pending(current))
3434                         goto out_unlock;
3435                 if (vma->anon_vma)
3436                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3437                                 vm_lock_anon_vma(mm, avc->anon_vma);
3438         }
3439
3440         return 0;
3441
3442 out_unlock:
3443         mm_drop_all_locks(mm);
3444         return -EINTR;
3445 }
3446
3447 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3448 {
3449         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3450                 /*
3451                  * The LSB of head.next can't change to 0 from under
3452                  * us because we hold the mm_all_locks_mutex.
3453                  *
3454                  * We must however clear the bitflag before unlocking
3455                  * the vma so the users using the anon_vma->rb_root will
3456                  * never see our bitflag.
3457                  *
3458                  * No need of atomic instructions here, head.next
3459                  * can't change from under us until we release the
3460                  * anon_vma->root->rwsem.
3461                  */
3462                 if (!__test_and_clear_bit(0, (unsigned long *)
3463                                           &anon_vma->root->rb_root.rb_node))
3464                         BUG();
3465                 anon_vma_unlock_write(anon_vma);
3466         }
3467 }
3468
3469 static void vm_unlock_mapping(struct address_space *mapping)
3470 {
3471         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3472                 /*
3473                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3474                  * because we hold the mm_all_locks_mutex.
3475                  */
3476                 i_mmap_unlock_write(mapping);
3477                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3478                                         &mapping->flags))
3479                         BUG();
3480         }
3481 }
3482
3483 /*
3484  * The mmap_sem cannot be released by the caller until
3485  * mm_drop_all_locks() returns.
3486  */
3487 void mm_drop_all_locks(struct mm_struct *mm)
3488 {
3489         struct vm_area_struct *vma;
3490         struct anon_vma_chain *avc;
3491
3492         BUG_ON(down_read_trylock(&mm->mmap_sem));
3493         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3494
3495         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3496                 if (vma->anon_vma)
3497                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3498                                 vm_unlock_anon_vma(avc->anon_vma);
3499                 if (vma->vm_file && vma->vm_file->f_mapping)
3500                         vm_unlock_mapping(vma->vm_file->f_mapping);
3501         }
3502
3503         mutex_unlock(&mm_all_locks_mutex);
3504 }
3505
3506 /*
3507  * initialise the VMA slab
3508  */
3509 void __init mmap_init(void)
3510 {
3511         int ret;
3512
3513         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3514         VM_BUG_ON(ret);
3515 }
3516
3517 /*
3518  * Initialise sysctl_user_reserve_kbytes.
3519  *
3520  * This is intended to prevent a user from starting a single memory hogging
3521  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3522  * mode.
3523  *
3524  * The default value is min(3% of free memory, 128MB)
3525  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3526  */
3527 static int init_user_reserve(void)
3528 {
3529         unsigned long free_kbytes;
3530
3531         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3532
3533         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3534         return 0;
3535 }
3536 subsys_initcall(init_user_reserve);
3537
3538 /*
3539  * Initialise sysctl_admin_reserve_kbytes.
3540  *
3541  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3542  * to log in and kill a memory hogging process.
3543  *
3544  * Systems with more than 256MB will reserve 8MB, enough to recover
3545  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3546  * only reserve 3% of free pages by default.
3547  */
3548 static int init_admin_reserve(void)
3549 {
3550         unsigned long free_kbytes;
3551
3552         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3553
3554         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3555         return 0;
3556 }
3557 subsys_initcall(init_admin_reserve);
3558
3559 /*
3560  * Reinititalise user and admin reserves if memory is added or removed.
3561  *
3562  * The default user reserve max is 128MB, and the default max for the
3563  * admin reserve is 8MB. These are usually, but not always, enough to
3564  * enable recovery from a memory hogging process using login/sshd, a shell,
3565  * and tools like top. It may make sense to increase or even disable the
3566  * reserve depending on the existence of swap or variations in the recovery
3567  * tools. So, the admin may have changed them.
3568  *
3569  * If memory is added and the reserves have been eliminated or increased above
3570  * the default max, then we'll trust the admin.
3571  *
3572  * If memory is removed and there isn't enough free memory, then we
3573  * need to reset the reserves.
3574  *
3575  * Otherwise keep the reserve set by the admin.
3576  */
3577 static int reserve_mem_notifier(struct notifier_block *nb,
3578                              unsigned long action, void *data)
3579 {
3580         unsigned long tmp, free_kbytes;
3581
3582         switch (action) {
3583         case MEM_ONLINE:
3584                 /* Default max is 128MB. Leave alone if modified by operator. */
3585                 tmp = sysctl_user_reserve_kbytes;
3586                 if (0 < tmp && tmp < (1UL << 17))
3587                         init_user_reserve();
3588
3589                 /* Default max is 8MB.  Leave alone if modified by operator. */
3590                 tmp = sysctl_admin_reserve_kbytes;
3591                 if (0 < tmp && tmp < (1UL << 13))
3592                         init_admin_reserve();
3593
3594                 break;
3595         case MEM_OFFLINE:
3596                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3597
3598                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3599                         init_user_reserve();
3600                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3601                                 sysctl_user_reserve_kbytes);
3602                 }
3603
3604                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3605                         init_admin_reserve();
3606                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3607                                 sysctl_admin_reserve_kbytes);
3608                 }
3609                 break;
3610         default:
3611                 break;
3612         }
3613         return NOTIFY_OK;
3614 }
3615
3616 static struct notifier_block reserve_mem_nb = {
3617         .notifier_call = reserve_mem_notifier,
3618 };
3619
3620 static int __meminit init_reserve_notifier(void)
3621 {
3622         if (register_hotmemory_notifier(&reserve_mem_nb))
3623                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3624
3625         return 0;
3626 }
3627 subsys_initcall(init_reserve_notifier);