GNU Linux-libre 4.14.266-gnu1
[releases.git] / mm / page_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, 
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uio.h>
26 #include <linux/sched/task.h>
27 #include <asm/pgtable.h>
28
29 static struct bio *get_swap_bio(gfp_t gfp_flags,
30                                 struct page *page, bio_end_io_t end_io)
31 {
32         int i, nr = hpage_nr_pages(page);
33         struct bio *bio;
34
35         bio = bio_alloc(gfp_flags, nr);
36         if (bio) {
37                 struct block_device *bdev;
38
39                 bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
40                 bio_set_dev(bio, bdev);
41                 bio->bi_end_io = end_io;
42
43                 for (i = 0; i < nr; i++)
44                         bio_add_page(bio, page + i, PAGE_SIZE, 0);
45                 VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
46         }
47         return bio;
48 }
49
50 void end_swap_bio_write(struct bio *bio)
51 {
52         struct page *page = bio->bi_io_vec[0].bv_page;
53
54         if (bio->bi_status) {
55                 SetPageError(page);
56                 /*
57                  * We failed to write the page out to swap-space.
58                  * Re-dirty the page in order to avoid it being reclaimed.
59                  * Also print a dire warning that things will go BAD (tm)
60                  * very quickly.
61                  *
62                  * Also clear PG_reclaim to avoid rotate_reclaimable_page()
63                  */
64                 set_page_dirty(page);
65                 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
66                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
67                          (unsigned long long)bio->bi_iter.bi_sector);
68                 ClearPageReclaim(page);
69         }
70         end_page_writeback(page);
71         bio_put(bio);
72 }
73
74 static void swap_slot_free_notify(struct page *page)
75 {
76         struct swap_info_struct *sis;
77         struct gendisk *disk;
78
79         /*
80          * There is no guarantee that the page is in swap cache - the software
81          * suspend code (at least) uses end_swap_bio_read() against a non-
82          * swapcache page.  So we must check PG_swapcache before proceeding with
83          * this optimization.
84          */
85         if (unlikely(!PageSwapCache(page)))
86                 return;
87
88         sis = page_swap_info(page);
89         if (!(sis->flags & SWP_BLKDEV))
90                 return;
91
92         /*
93          * The swap subsystem performs lazy swap slot freeing,
94          * expecting that the page will be swapped out again.
95          * So we can avoid an unnecessary write if the page
96          * isn't redirtied.
97          * This is good for real swap storage because we can
98          * reduce unnecessary I/O and enhance wear-leveling
99          * if an SSD is used as the as swap device.
100          * But if in-memory swap device (eg zram) is used,
101          * this causes a duplicated copy between uncompressed
102          * data in VM-owned memory and compressed data in
103          * zram-owned memory.  So let's free zram-owned memory
104          * and make the VM-owned decompressed page *dirty*,
105          * so the page should be swapped out somewhere again if
106          * we again wish to reclaim it.
107          */
108         disk = sis->bdev->bd_disk;
109         if (disk->fops->swap_slot_free_notify) {
110                 swp_entry_t entry;
111                 unsigned long offset;
112
113                 entry.val = page_private(page);
114                 offset = swp_offset(entry);
115
116                 SetPageDirty(page);
117                 disk->fops->swap_slot_free_notify(sis->bdev,
118                                 offset);
119         }
120 }
121
122 static void end_swap_bio_read(struct bio *bio)
123 {
124         struct page *page = bio->bi_io_vec[0].bv_page;
125         struct task_struct *waiter = bio->bi_private;
126
127         if (bio->bi_status) {
128                 SetPageError(page);
129                 ClearPageUptodate(page);
130                 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
131                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
132                          (unsigned long long)bio->bi_iter.bi_sector);
133                 goto out;
134         }
135
136         SetPageUptodate(page);
137         swap_slot_free_notify(page);
138 out:
139         unlock_page(page);
140         WRITE_ONCE(bio->bi_private, NULL);
141         bio_put(bio);
142         wake_up_process(waiter);
143         put_task_struct(waiter);
144 }
145
146 int generic_swapfile_activate(struct swap_info_struct *sis,
147                                 struct file *swap_file,
148                                 sector_t *span)
149 {
150         struct address_space *mapping = swap_file->f_mapping;
151         struct inode *inode = mapping->host;
152         unsigned blocks_per_page;
153         unsigned long page_no;
154         unsigned blkbits;
155         sector_t probe_block;
156         sector_t last_block;
157         sector_t lowest_block = -1;
158         sector_t highest_block = 0;
159         int nr_extents = 0;
160         int ret;
161
162         blkbits = inode->i_blkbits;
163         blocks_per_page = PAGE_SIZE >> blkbits;
164
165         /*
166          * Map all the blocks into the extent list.  This code doesn't try
167          * to be very smart.
168          */
169         probe_block = 0;
170         page_no = 0;
171         last_block = i_size_read(inode) >> blkbits;
172         while ((probe_block + blocks_per_page) <= last_block &&
173                         page_no < sis->max) {
174                 unsigned block_in_page;
175                 sector_t first_block;
176
177                 cond_resched();
178
179                 first_block = bmap(inode, probe_block);
180                 if (first_block == 0)
181                         goto bad_bmap;
182
183                 /*
184                  * It must be PAGE_SIZE aligned on-disk
185                  */
186                 if (first_block & (blocks_per_page - 1)) {
187                         probe_block++;
188                         goto reprobe;
189                 }
190
191                 for (block_in_page = 1; block_in_page < blocks_per_page;
192                                         block_in_page++) {
193                         sector_t block;
194
195                         block = bmap(inode, probe_block + block_in_page);
196                         if (block == 0)
197                                 goto bad_bmap;
198                         if (block != first_block + block_in_page) {
199                                 /* Discontiguity */
200                                 probe_block++;
201                                 goto reprobe;
202                         }
203                 }
204
205                 first_block >>= (PAGE_SHIFT - blkbits);
206                 if (page_no) {  /* exclude the header page */
207                         if (first_block < lowest_block)
208                                 lowest_block = first_block;
209                         if (first_block > highest_block)
210                                 highest_block = first_block;
211                 }
212
213                 /*
214                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
215                  */
216                 ret = add_swap_extent(sis, page_no, 1, first_block);
217                 if (ret < 0)
218                         goto out;
219                 nr_extents += ret;
220                 page_no++;
221                 probe_block += blocks_per_page;
222 reprobe:
223                 continue;
224         }
225         ret = nr_extents;
226         *span = 1 + highest_block - lowest_block;
227         if (page_no == 0)
228                 page_no = 1;    /* force Empty message */
229         sis->max = page_no;
230         sis->pages = page_no - 1;
231         sis->highest_bit = page_no - 1;
232 out:
233         return ret;
234 bad_bmap:
235         pr_err("swapon: swapfile has holes\n");
236         ret = -EINVAL;
237         goto out;
238 }
239
240 /*
241  * We may have stale swap cache pages in memory: notice
242  * them here and get rid of the unnecessary final write.
243  */
244 int swap_writepage(struct page *page, struct writeback_control *wbc)
245 {
246         int ret = 0;
247
248         if (try_to_free_swap(page)) {
249                 unlock_page(page);
250                 goto out;
251         }
252         if (frontswap_store(page) == 0) {
253                 set_page_writeback(page);
254                 unlock_page(page);
255                 end_page_writeback(page);
256                 goto out;
257         }
258         ret = __swap_writepage(page, wbc, end_swap_bio_write);
259 out:
260         return ret;
261 }
262
263 static inline void count_swpout_vm_event(struct page *page)
264 {
265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
266         if (unlikely(PageTransHuge(page)))
267                 count_vm_event(THP_SWPOUT);
268 #endif
269         count_vm_events(PSWPOUT, hpage_nr_pages(page));
270 }
271
272 int __swap_writepage(struct page *page, struct writeback_control *wbc,
273                 bio_end_io_t end_write_func)
274 {
275         struct bio *bio;
276         int ret;
277         struct swap_info_struct *sis = page_swap_info(page);
278
279         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
280         if (sis->flags & SWP_FILE) {
281                 struct kiocb kiocb;
282                 struct file *swap_file = sis->swap_file;
283                 struct address_space *mapping = swap_file->f_mapping;
284                 struct bio_vec bv = {
285                         .bv_page = page,
286                         .bv_len  = PAGE_SIZE,
287                         .bv_offset = 0
288                 };
289                 struct iov_iter from;
290
291                 iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
292                 init_sync_kiocb(&kiocb, swap_file);
293                 kiocb.ki_pos = page_file_offset(page);
294
295                 set_page_writeback(page);
296                 unlock_page(page);
297                 ret = mapping->a_ops->direct_IO(&kiocb, &from);
298                 if (ret == PAGE_SIZE) {
299                         count_vm_event(PSWPOUT);
300                         ret = 0;
301                 } else {
302                         /*
303                          * In the case of swap-over-nfs, this can be a
304                          * temporary failure if the system has limited
305                          * memory for allocating transmit buffers.
306                          * Mark the page dirty and avoid
307                          * rotate_reclaimable_page but rate-limit the
308                          * messages but do not flag PageError like
309                          * the normal direct-to-bio case as it could
310                          * be temporary.
311                          */
312                         set_page_dirty(page);
313                         ClearPageReclaim(page);
314                         pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
315                                            page_file_offset(page));
316                 }
317                 end_page_writeback(page);
318                 return ret;
319         }
320
321         ret = bdev_write_page(sis->bdev, map_swap_page(page, &sis->bdev),
322                               page, wbc);
323         if (!ret) {
324                 count_swpout_vm_event(page);
325                 return 0;
326         }
327
328         ret = 0;
329         bio = get_swap_bio(GFP_NOIO, page, end_write_func);
330         if (bio == NULL) {
331                 set_page_dirty(page);
332                 unlock_page(page);
333                 ret = -ENOMEM;
334                 goto out;
335         }
336         bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
337         count_swpout_vm_event(page);
338         set_page_writeback(page);
339         unlock_page(page);
340         submit_bio(bio);
341 out:
342         return ret;
343 }
344
345 int swap_readpage(struct page *page, bool do_poll)
346 {
347         struct bio *bio;
348         int ret = 0;
349         struct swap_info_struct *sis = page_swap_info(page);
350         blk_qc_t qc;
351         struct gendisk *disk;
352
353         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
354         VM_BUG_ON_PAGE(!PageLocked(page), page);
355         VM_BUG_ON_PAGE(PageUptodate(page), page);
356         if (frontswap_load(page) == 0) {
357                 SetPageUptodate(page);
358                 unlock_page(page);
359                 goto out;
360         }
361
362         if (sis->flags & SWP_FILE) {
363                 struct file *swap_file = sis->swap_file;
364                 struct address_space *mapping = swap_file->f_mapping;
365
366                 ret = mapping->a_ops->readpage(swap_file, page);
367                 if (!ret)
368                         count_vm_event(PSWPIN);
369                 return ret;
370         }
371
372         ret = bdev_read_page(sis->bdev, map_swap_page(page, &sis->bdev), page);
373         if (!ret) {
374                 if (trylock_page(page)) {
375                         swap_slot_free_notify(page);
376                         unlock_page(page);
377                 }
378
379                 count_vm_event(PSWPIN);
380                 return 0;
381         }
382
383         ret = 0;
384         bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
385         if (bio == NULL) {
386                 unlock_page(page);
387                 ret = -ENOMEM;
388                 goto out;
389         }
390         disk = bio->bi_disk;
391         /*
392          * Keep this task valid during swap readpage because the oom killer may
393          * attempt to access it in the page fault retry time check.
394          */
395         get_task_struct(current);
396         bio->bi_private = current;
397         bio_set_op_attrs(bio, REQ_OP_READ, 0);
398         count_vm_event(PSWPIN);
399         bio_get(bio);
400         qc = submit_bio(bio);
401         while (do_poll) {
402                 set_current_state(TASK_UNINTERRUPTIBLE);
403                 if (!READ_ONCE(bio->bi_private))
404                         break;
405
406                 if (!blk_mq_poll(disk->queue, qc))
407                         break;
408         }
409         __set_current_state(TASK_RUNNING);
410         bio_put(bio);
411
412 out:
413         return ret;
414 }
415
416 int swap_set_page_dirty(struct page *page)
417 {
418         struct swap_info_struct *sis = page_swap_info(page);
419
420         if (sis->flags & SWP_FILE) {
421                 struct address_space *mapping = sis->swap_file->f_mapping;
422
423                 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
424                 return mapping->a_ops->set_page_dirty(page);
425         } else {
426                 return __set_page_dirty_no_writeback(page);
427         }
428 }