GNU Linux-libre 4.4.284-gnu1
[releases.git] / mm / page_io.c
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, 
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
26
27 static struct bio *get_swap_bio(gfp_t gfp_flags,
28                                 struct page *page, bio_end_io_t end_io)
29 {
30         struct bio *bio;
31
32         bio = bio_alloc(gfp_flags, 1);
33         if (bio) {
34                 bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35                 bio->bi_end_io = end_io;
36
37                 bio_add_page(bio, page, PAGE_SIZE, 0);
38                 BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
39         }
40         return bio;
41 }
42
43 void end_swap_bio_write(struct bio *bio)
44 {
45         struct page *page = bio->bi_io_vec[0].bv_page;
46
47         if (bio->bi_error) {
48                 SetPageError(page);
49                 /*
50                  * We failed to write the page out to swap-space.
51                  * Re-dirty the page in order to avoid it being reclaimed.
52                  * Also print a dire warning that things will go BAD (tm)
53                  * very quickly.
54                  *
55                  * Also clear PG_reclaim to avoid rotate_reclaimable_page()
56                  */
57                 set_page_dirty(page);
58                 printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n",
59                                 imajor(bio->bi_bdev->bd_inode),
60                                 iminor(bio->bi_bdev->bd_inode),
61                                 (unsigned long long)bio->bi_iter.bi_sector);
62                 ClearPageReclaim(page);
63         }
64         end_page_writeback(page);
65         bio_put(bio);
66 }
67
68 static void end_swap_bio_read(struct bio *bio)
69 {
70         struct page *page = bio->bi_io_vec[0].bv_page;
71
72         if (bio->bi_error) {
73                 SetPageError(page);
74                 ClearPageUptodate(page);
75                 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
76                                 imajor(bio->bi_bdev->bd_inode),
77                                 iminor(bio->bi_bdev->bd_inode),
78                                 (unsigned long long)bio->bi_iter.bi_sector);
79                 goto out;
80         }
81
82         SetPageUptodate(page);
83
84         /*
85          * There is no guarantee that the page is in swap cache - the software
86          * suspend code (at least) uses end_swap_bio_read() against a non-
87          * swapcache page.  So we must check PG_swapcache before proceeding with
88          * this optimization.
89          */
90         if (likely(PageSwapCache(page))) {
91                 struct swap_info_struct *sis;
92
93                 sis = page_swap_info(page);
94                 if (sis->flags & SWP_BLKDEV) {
95                         /*
96                          * The swap subsystem performs lazy swap slot freeing,
97                          * expecting that the page will be swapped out again.
98                          * So we can avoid an unnecessary write if the page
99                          * isn't redirtied.
100                          * This is good for real swap storage because we can
101                          * reduce unnecessary I/O and enhance wear-leveling
102                          * if an SSD is used as the as swap device.
103                          * But if in-memory swap device (eg zram) is used,
104                          * this causes a duplicated copy between uncompressed
105                          * data in VM-owned memory and compressed data in
106                          * zram-owned memory.  So let's free zram-owned memory
107                          * and make the VM-owned decompressed page *dirty*,
108                          * so the page should be swapped out somewhere again if
109                          * we again wish to reclaim it.
110                          */
111                         struct gendisk *disk = sis->bdev->bd_disk;
112                         if (disk->fops->swap_slot_free_notify) {
113                                 swp_entry_t entry;
114                                 unsigned long offset;
115
116                                 entry.val = page_private(page);
117                                 offset = swp_offset(entry);
118
119                                 SetPageDirty(page);
120                                 disk->fops->swap_slot_free_notify(sis->bdev,
121                                                 offset);
122                         }
123                 }
124         }
125
126 out:
127         unlock_page(page);
128         bio_put(bio);
129 }
130
131 int generic_swapfile_activate(struct swap_info_struct *sis,
132                                 struct file *swap_file,
133                                 sector_t *span)
134 {
135         struct address_space *mapping = swap_file->f_mapping;
136         struct inode *inode = mapping->host;
137         unsigned blocks_per_page;
138         unsigned long page_no;
139         unsigned blkbits;
140         sector_t probe_block;
141         sector_t last_block;
142         sector_t lowest_block = -1;
143         sector_t highest_block = 0;
144         int nr_extents = 0;
145         int ret;
146
147         blkbits = inode->i_blkbits;
148         blocks_per_page = PAGE_SIZE >> blkbits;
149
150         /*
151          * Map all the blocks into the extent list.  This code doesn't try
152          * to be very smart.
153          */
154         probe_block = 0;
155         page_no = 0;
156         last_block = i_size_read(inode) >> blkbits;
157         while ((probe_block + blocks_per_page) <= last_block &&
158                         page_no < sis->max) {
159                 unsigned block_in_page;
160                 sector_t first_block;
161
162                 first_block = bmap(inode, probe_block);
163                 if (first_block == 0)
164                         goto bad_bmap;
165
166                 /*
167                  * It must be PAGE_SIZE aligned on-disk
168                  */
169                 if (first_block & (blocks_per_page - 1)) {
170                         probe_block++;
171                         goto reprobe;
172                 }
173
174                 for (block_in_page = 1; block_in_page < blocks_per_page;
175                                         block_in_page++) {
176                         sector_t block;
177
178                         block = bmap(inode, probe_block + block_in_page);
179                         if (block == 0)
180                                 goto bad_bmap;
181                         if (block != first_block + block_in_page) {
182                                 /* Discontiguity */
183                                 probe_block++;
184                                 goto reprobe;
185                         }
186                 }
187
188                 first_block >>= (PAGE_SHIFT - blkbits);
189                 if (page_no) {  /* exclude the header page */
190                         if (first_block < lowest_block)
191                                 lowest_block = first_block;
192                         if (first_block > highest_block)
193                                 highest_block = first_block;
194                 }
195
196                 /*
197                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
198                  */
199                 ret = add_swap_extent(sis, page_no, 1, first_block);
200                 if (ret < 0)
201                         goto out;
202                 nr_extents += ret;
203                 page_no++;
204                 probe_block += blocks_per_page;
205 reprobe:
206                 continue;
207         }
208         ret = nr_extents;
209         *span = 1 + highest_block - lowest_block;
210         if (page_no == 0)
211                 page_no = 1;    /* force Empty message */
212         sis->max = page_no;
213         sis->pages = page_no - 1;
214         sis->highest_bit = page_no - 1;
215 out:
216         return ret;
217 bad_bmap:
218         printk(KERN_ERR "swapon: swapfile has holes\n");
219         ret = -EINVAL;
220         goto out;
221 }
222
223 /*
224  * We may have stale swap cache pages in memory: notice
225  * them here and get rid of the unnecessary final write.
226  */
227 int swap_writepage(struct page *page, struct writeback_control *wbc)
228 {
229         int ret = 0;
230
231         if (try_to_free_swap(page)) {
232                 unlock_page(page);
233                 goto out;
234         }
235         if (frontswap_store(page) == 0) {
236                 set_page_writeback(page);
237                 unlock_page(page);
238                 end_page_writeback(page);
239                 goto out;
240         }
241         ret = __swap_writepage(page, wbc, end_swap_bio_write);
242 out:
243         return ret;
244 }
245
246 int __swap_writepage(struct page *page, struct writeback_control *wbc,
247                 bio_end_io_t end_write_func)
248 {
249         struct bio *bio;
250         int ret, rw = WRITE;
251         struct swap_info_struct *sis = page_swap_info(page);
252
253         if (sis->flags & SWP_FILE) {
254                 struct kiocb kiocb;
255                 struct file *swap_file = sis->swap_file;
256                 struct address_space *mapping = swap_file->f_mapping;
257                 struct bio_vec bv = {
258                         .bv_page = page,
259                         .bv_len  = PAGE_SIZE,
260                         .bv_offset = 0
261                 };
262                 struct iov_iter from;
263
264                 iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
265                 init_sync_kiocb(&kiocb, swap_file);
266                 kiocb.ki_pos = page_file_offset(page);
267
268                 set_page_writeback(page);
269                 unlock_page(page);
270                 ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
271                 if (ret == PAGE_SIZE) {
272                         count_vm_event(PSWPOUT);
273                         ret = 0;
274                 } else {
275                         /*
276                          * In the case of swap-over-nfs, this can be a
277                          * temporary failure if the system has limited
278                          * memory for allocating transmit buffers.
279                          * Mark the page dirty and avoid
280                          * rotate_reclaimable_page but rate-limit the
281                          * messages but do not flag PageError like
282                          * the normal direct-to-bio case as it could
283                          * be temporary.
284                          */
285                         set_page_dirty(page);
286                         ClearPageReclaim(page);
287                         pr_err_ratelimited("Write error on dio swapfile (%Lu)\n",
288                                 page_file_offset(page));
289                 }
290                 end_page_writeback(page);
291                 return ret;
292         }
293
294         ret = bdev_write_page(sis->bdev, map_swap_page(page, &sis->bdev),
295                               page, wbc);
296         if (!ret) {
297                 count_vm_event(PSWPOUT);
298                 return 0;
299         }
300
301         ret = 0;
302         bio = get_swap_bio(GFP_NOIO, page, end_write_func);
303         if (bio == NULL) {
304                 set_page_dirty(page);
305                 unlock_page(page);
306                 ret = -ENOMEM;
307                 goto out;
308         }
309         if (wbc->sync_mode == WB_SYNC_ALL)
310                 rw |= REQ_SYNC;
311         count_vm_event(PSWPOUT);
312         set_page_writeback(page);
313         unlock_page(page);
314         submit_bio(rw, bio);
315 out:
316         return ret;
317 }
318
319 int swap_readpage(struct page *page)
320 {
321         struct bio *bio;
322         int ret = 0;
323         struct swap_info_struct *sis = page_swap_info(page);
324
325         VM_BUG_ON_PAGE(!PageLocked(page), page);
326         VM_BUG_ON_PAGE(PageUptodate(page), page);
327         if (frontswap_load(page) == 0) {
328                 SetPageUptodate(page);
329                 unlock_page(page);
330                 goto out;
331         }
332
333         if (sis->flags & SWP_FILE) {
334                 struct file *swap_file = sis->swap_file;
335                 struct address_space *mapping = swap_file->f_mapping;
336
337                 ret = mapping->a_ops->readpage(swap_file, page);
338                 if (!ret)
339                         count_vm_event(PSWPIN);
340                 return ret;
341         }
342
343         ret = bdev_read_page(sis->bdev, map_swap_page(page, &sis->bdev), page);
344         if (!ret) {
345                 count_vm_event(PSWPIN);
346                 return 0;
347         }
348
349         ret = 0;
350         bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
351         if (bio == NULL) {
352                 unlock_page(page);
353                 ret = -ENOMEM;
354                 goto out;
355         }
356         count_vm_event(PSWPIN);
357         submit_bio(READ, bio);
358 out:
359         return ret;
360 }
361
362 int swap_set_page_dirty(struct page *page)
363 {
364         struct swap_info_struct *sis = page_swap_info(page);
365
366         if (sis->flags & SWP_FILE) {
367                 struct address_space *mapping = sis->swap_file->f_mapping;
368                 return mapping->a_ops->set_page_dirty(page);
369         } else {
370                 return __set_page_dirty_no_writeback(page);
371         }
372 }