GNU Linux-libre 4.9.337-gnu1
[releases.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36
37 static struct vfsmount *shm_mnt;
38
39 #ifdef CONFIG_SHMEM
40 /*
41  * This virtual memory filesystem is heavily based on the ramfs. It
42  * extends ramfs by the ability to use swap and honor resource limits
43  * which makes it a completely usable filesystem.
44  */
45
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
76
77 #include "internal.h"
78
79 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
80 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
81
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87
88 /*
89  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90  * inode->i_private (with i_mutex making sure that it has only one user at
91  * a time): we would prefer not to enlarge the shmem inode just for that.
92  */
93 struct shmem_falloc {
94         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95         pgoff_t start;          /* start of range currently being fallocated */
96         pgoff_t next;           /* the next page offset to be fallocated */
97         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
98         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
99 };
100
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104         return totalram_pages / 2;
105 }
106
107 static unsigned long shmem_default_max_inodes(void)
108 {
109         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115                                 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117                 struct page **pagep, enum sgp_type sgp,
118                 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121                 struct page **pagep, enum sgp_type sgp)
122 {
123         return shmem_getpage_gfp(inode, index, pagep, sgp,
124                 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129         return sb->s_fs_info;
130 }
131
132 /*
133  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134  * for shared memory and for shared anonymous (/dev/zero) mappings
135  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136  * consistent with the pre-accounting of private mappings ...
137  */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140         return (flags & VM_NORESERVE) ?
141                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146         if (!(flags & VM_NORESERVE))
147                 vm_unacct_memory(VM_ACCT(size));
148 }
149
150 static inline int shmem_reacct_size(unsigned long flags,
151                 loff_t oldsize, loff_t newsize)
152 {
153         if (!(flags & VM_NORESERVE)) {
154                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155                         return security_vm_enough_memory_mm(current->mm,
156                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
157                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159         }
160         return 0;
161 }
162
163 /*
164  * ... whereas tmpfs objects are accounted incrementally as
165  * pages are allocated, in order to allow large sparse files.
166  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168  */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171         if (!(flags & VM_NORESERVE))
172                 return 0;
173
174         return security_vm_enough_memory_mm(current->mm,
175                         pages * VM_ACCT(PAGE_SIZE));
176 }
177
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180         if (flags & VM_NORESERVE)
181                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183
184 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
185 {
186         struct shmem_inode_info *info = SHMEM_I(inode);
187         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
188
189         if (shmem_acct_block(info->flags, pages))
190                 return false;
191
192         if (sbinfo->max_blocks) {
193                 if (percpu_counter_compare(&sbinfo->used_blocks,
194                                            sbinfo->max_blocks - pages) > 0)
195                         goto unacct;
196                 percpu_counter_add(&sbinfo->used_blocks, pages);
197         }
198
199         return true;
200
201 unacct:
202         shmem_unacct_blocks(info->flags, pages);
203         return false;
204 }
205
206 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
207 {
208         struct shmem_inode_info *info = SHMEM_I(inode);
209         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
210
211         if (sbinfo->max_blocks)
212                 percpu_counter_sub(&sbinfo->used_blocks, pages);
213         shmem_unacct_blocks(info->flags, pages);
214 }
215
216 static const struct super_operations shmem_ops;
217 static const struct address_space_operations shmem_aops;
218 static const struct file_operations shmem_file_operations;
219 static const struct inode_operations shmem_inode_operations;
220 static const struct inode_operations shmem_dir_inode_operations;
221 static const struct inode_operations shmem_special_inode_operations;
222 static const struct vm_operations_struct shmem_vm_ops;
223 static struct file_system_type shmem_fs_type;
224
225 static LIST_HEAD(shmem_swaplist);
226 static DEFINE_MUTEX(shmem_swaplist_mutex);
227
228 static int shmem_reserve_inode(struct super_block *sb)
229 {
230         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
231         if (sbinfo->max_inodes) {
232                 spin_lock(&sbinfo->stat_lock);
233                 if (!sbinfo->free_inodes) {
234                         spin_unlock(&sbinfo->stat_lock);
235                         return -ENOSPC;
236                 }
237                 sbinfo->free_inodes--;
238                 spin_unlock(&sbinfo->stat_lock);
239         }
240         return 0;
241 }
242
243 static void shmem_free_inode(struct super_block *sb)
244 {
245         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246         if (sbinfo->max_inodes) {
247                 spin_lock(&sbinfo->stat_lock);
248                 sbinfo->free_inodes++;
249                 spin_unlock(&sbinfo->stat_lock);
250         }
251 }
252
253 /**
254  * shmem_recalc_inode - recalculate the block usage of an inode
255  * @inode: inode to recalc
256  *
257  * We have to calculate the free blocks since the mm can drop
258  * undirtied hole pages behind our back.
259  *
260  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
261  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
262  *
263  * It has to be called with the spinlock held.
264  */
265 static void shmem_recalc_inode(struct inode *inode)
266 {
267         struct shmem_inode_info *info = SHMEM_I(inode);
268         long freed;
269
270         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
271         if (freed > 0) {
272                 info->alloced -= freed;
273                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
274                 shmem_inode_unacct_blocks(inode, freed);
275         }
276 }
277
278 bool shmem_charge(struct inode *inode, long pages)
279 {
280         struct shmem_inode_info *info = SHMEM_I(inode);
281         unsigned long flags;
282
283         if (!shmem_inode_acct_block(inode, pages))
284                 return false;
285
286         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
287         inode->i_mapping->nrpages += pages;
288
289         spin_lock_irqsave(&info->lock, flags);
290         info->alloced += pages;
291         inode->i_blocks += pages * BLOCKS_PER_PAGE;
292         shmem_recalc_inode(inode);
293         spin_unlock_irqrestore(&info->lock, flags);
294
295         return true;
296 }
297
298 void shmem_uncharge(struct inode *inode, long pages)
299 {
300         struct shmem_inode_info *info = SHMEM_I(inode);
301         unsigned long flags;
302
303         /* nrpages adjustment done by __delete_from_page_cache() or caller */
304
305         spin_lock_irqsave(&info->lock, flags);
306         info->alloced -= pages;
307         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
308         shmem_recalc_inode(inode);
309         spin_unlock_irqrestore(&info->lock, flags);
310
311         shmem_inode_unacct_blocks(inode, pages);
312 }
313
314 /*
315  * Replace item expected in radix tree by a new item, while holding tree lock.
316  */
317 static int shmem_radix_tree_replace(struct address_space *mapping,
318                         pgoff_t index, void *expected, void *replacement)
319 {
320         void **pslot;
321         void *item;
322
323         VM_BUG_ON(!expected);
324         VM_BUG_ON(!replacement);
325         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
326         if (!pslot)
327                 return -ENOENT;
328         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
329         if (item != expected)
330                 return -ENOENT;
331         radix_tree_replace_slot(pslot, replacement);
332         return 0;
333 }
334
335 /*
336  * Sometimes, before we decide whether to proceed or to fail, we must check
337  * that an entry was not already brought back from swap by a racing thread.
338  *
339  * Checking page is not enough: by the time a SwapCache page is locked, it
340  * might be reused, and again be SwapCache, using the same swap as before.
341  */
342 static bool shmem_confirm_swap(struct address_space *mapping,
343                                pgoff_t index, swp_entry_t swap)
344 {
345         void *item;
346
347         rcu_read_lock();
348         item = radix_tree_lookup(&mapping->page_tree, index);
349         rcu_read_unlock();
350         return item == swp_to_radix_entry(swap);
351 }
352
353 /*
354  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
355  *
356  * SHMEM_HUGE_NEVER:
357  *      disables huge pages for the mount;
358  * SHMEM_HUGE_ALWAYS:
359  *      enables huge pages for the mount;
360  * SHMEM_HUGE_WITHIN_SIZE:
361  *      only allocate huge pages if the page will be fully within i_size,
362  *      also respect fadvise()/madvise() hints;
363  * SHMEM_HUGE_ADVISE:
364  *      only allocate huge pages if requested with fadvise()/madvise();
365  */
366
367 #define SHMEM_HUGE_NEVER        0
368 #define SHMEM_HUGE_ALWAYS       1
369 #define SHMEM_HUGE_WITHIN_SIZE  2
370 #define SHMEM_HUGE_ADVISE       3
371
372 /*
373  * Special values.
374  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
375  *
376  * SHMEM_HUGE_DENY:
377  *      disables huge on shm_mnt and all mounts, for emergency use;
378  * SHMEM_HUGE_FORCE:
379  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
380  *
381  */
382 #define SHMEM_HUGE_DENY         (-1)
383 #define SHMEM_HUGE_FORCE        (-2)
384
385 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
386 /* ifdef here to avoid bloating shmem.o when not necessary */
387
388 int shmem_huge __read_mostly;
389
390 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
391 static int shmem_parse_huge(const char *str)
392 {
393         if (!strcmp(str, "never"))
394                 return SHMEM_HUGE_NEVER;
395         if (!strcmp(str, "always"))
396                 return SHMEM_HUGE_ALWAYS;
397         if (!strcmp(str, "within_size"))
398                 return SHMEM_HUGE_WITHIN_SIZE;
399         if (!strcmp(str, "advise"))
400                 return SHMEM_HUGE_ADVISE;
401         if (!strcmp(str, "deny"))
402                 return SHMEM_HUGE_DENY;
403         if (!strcmp(str, "force"))
404                 return SHMEM_HUGE_FORCE;
405         return -EINVAL;
406 }
407
408 static const char *shmem_format_huge(int huge)
409 {
410         switch (huge) {
411         case SHMEM_HUGE_NEVER:
412                 return "never";
413         case SHMEM_HUGE_ALWAYS:
414                 return "always";
415         case SHMEM_HUGE_WITHIN_SIZE:
416                 return "within_size";
417         case SHMEM_HUGE_ADVISE:
418                 return "advise";
419         case SHMEM_HUGE_DENY:
420                 return "deny";
421         case SHMEM_HUGE_FORCE:
422                 return "force";
423         default:
424                 VM_BUG_ON(1);
425                 return "bad_val";
426         }
427 }
428 #endif
429
430 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
431                 struct shrink_control *sc, unsigned long nr_to_split)
432 {
433         LIST_HEAD(list), *pos, *next;
434         LIST_HEAD(to_remove);
435         struct inode *inode;
436         struct shmem_inode_info *info;
437         struct page *page;
438         unsigned long batch = sc ? sc->nr_to_scan : 128;
439         int split = 0;
440
441         if (list_empty(&sbinfo->shrinklist))
442                 return SHRINK_STOP;
443
444         spin_lock(&sbinfo->shrinklist_lock);
445         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
446                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
447
448                 /* pin the inode */
449                 inode = igrab(&info->vfs_inode);
450
451                 /* inode is about to be evicted */
452                 if (!inode) {
453                         list_del_init(&info->shrinklist);
454                         goto next;
455                 }
456
457                 /* Check if there's anything to gain */
458                 if (round_up(inode->i_size, PAGE_SIZE) ==
459                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
460                         list_move(&info->shrinklist, &to_remove);
461                         goto next;
462                 }
463
464                 list_move(&info->shrinklist, &list);
465 next:
466                 sbinfo->shrinklist_len--;
467                 if (!--batch)
468                         break;
469         }
470         spin_unlock(&sbinfo->shrinklist_lock);
471
472         list_for_each_safe(pos, next, &to_remove) {
473                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
474                 inode = &info->vfs_inode;
475                 list_del_init(&info->shrinklist);
476                 iput(inode);
477         }
478
479         list_for_each_safe(pos, next, &list) {
480                 int ret;
481
482                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
483                 inode = &info->vfs_inode;
484
485                 if (nr_to_split && split >= nr_to_split)
486                         goto move_back;
487
488                 page = find_get_page(inode->i_mapping,
489                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
490                 if (!page)
491                         goto drop;
492
493                 /* No huge page at the end of the file: nothing to split */
494                 if (!PageTransHuge(page)) {
495                         put_page(page);
496                         goto drop;
497                 }
498
499                 /*
500                  * Move the inode on the list back to shrinklist if we failed
501                  * to lock the page at this time.
502                  *
503                  * Waiting for the lock may lead to deadlock in the
504                  * reclaim path.
505                  */
506                 if (!trylock_page(page)) {
507                         put_page(page);
508                         goto move_back;
509                 }
510
511                 ret = split_huge_page(page);
512                 unlock_page(page);
513                 put_page(page);
514
515                 /* If split failed move the inode on the list back to shrinklist */
516                 if (ret)
517                         goto move_back;
518
519                 split++;
520 drop:
521                 list_del_init(&info->shrinklist);
522                 goto put;
523 move_back:
524                 /*
525                  * Make sure the inode is either on the global list or deleted
526                  * from any local list before iput() since it could be deleted
527                  * in another thread once we put the inode (then the local list
528                  * is corrupted).
529                  */
530                 spin_lock(&sbinfo->shrinklist_lock);
531                 list_move(&info->shrinklist, &sbinfo->shrinklist);
532                 sbinfo->shrinklist_len++;
533                 spin_unlock(&sbinfo->shrinklist_lock);
534 put:
535                 iput(inode);
536         }
537
538         return split;
539 }
540
541 static long shmem_unused_huge_scan(struct super_block *sb,
542                 struct shrink_control *sc)
543 {
544         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
545
546         if (!READ_ONCE(sbinfo->shrinklist_len))
547                 return SHRINK_STOP;
548
549         return shmem_unused_huge_shrink(sbinfo, sc, 0);
550 }
551
552 static long shmem_unused_huge_count(struct super_block *sb,
553                 struct shrink_control *sc)
554 {
555         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
556         return READ_ONCE(sbinfo->shrinklist_len);
557 }
558 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
559
560 #define shmem_huge SHMEM_HUGE_DENY
561
562 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
563                 struct shrink_control *sc, unsigned long nr_to_split)
564 {
565         return 0;
566 }
567 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
568
569 /*
570  * Like add_to_page_cache_locked, but error if expected item has gone.
571  */
572 static int shmem_add_to_page_cache(struct page *page,
573                                    struct address_space *mapping,
574                                    pgoff_t index, void *expected)
575 {
576         int error, nr = hpage_nr_pages(page);
577
578         VM_BUG_ON_PAGE(PageTail(page), page);
579         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
580         VM_BUG_ON_PAGE(!PageLocked(page), page);
581         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
582         VM_BUG_ON(expected && PageTransHuge(page));
583
584         page_ref_add(page, nr);
585         page->mapping = mapping;
586         page->index = index;
587
588         spin_lock_irq(&mapping->tree_lock);
589         if (PageTransHuge(page)) {
590                 void __rcu **results;
591                 pgoff_t idx;
592                 int i;
593
594                 error = 0;
595                 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
596                                         &results, &idx, index, 1) &&
597                                 idx < index + HPAGE_PMD_NR) {
598                         error = -EEXIST;
599                 }
600
601                 if (!error) {
602                         for (i = 0; i < HPAGE_PMD_NR; i++) {
603                                 error = radix_tree_insert(&mapping->page_tree,
604                                                 index + i, page + i);
605                                 VM_BUG_ON(error);
606                         }
607                         count_vm_event(THP_FILE_ALLOC);
608                 }
609         } else if (!expected) {
610                 error = radix_tree_insert(&mapping->page_tree, index, page);
611         } else {
612                 error = shmem_radix_tree_replace(mapping, index, expected,
613                                                                  page);
614         }
615
616         if (!error) {
617                 mapping->nrpages += nr;
618                 if (PageTransHuge(page))
619                         __inc_node_page_state(page, NR_SHMEM_THPS);
620                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
621                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
622                 spin_unlock_irq(&mapping->tree_lock);
623         } else {
624                 page->mapping = NULL;
625                 spin_unlock_irq(&mapping->tree_lock);
626                 page_ref_sub(page, nr);
627         }
628         return error;
629 }
630
631 /*
632  * Like delete_from_page_cache, but substitutes swap for page.
633  */
634 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
635 {
636         struct address_space *mapping = page->mapping;
637         int error;
638
639         VM_BUG_ON_PAGE(PageCompound(page), page);
640
641         spin_lock_irq(&mapping->tree_lock);
642         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
643         page->mapping = NULL;
644         mapping->nrpages--;
645         __dec_node_page_state(page, NR_FILE_PAGES);
646         __dec_node_page_state(page, NR_SHMEM);
647         spin_unlock_irq(&mapping->tree_lock);
648         put_page(page);
649         BUG_ON(error);
650 }
651
652 /*
653  * Remove swap entry from radix tree, free the swap and its page cache.
654  */
655 static int shmem_free_swap(struct address_space *mapping,
656                            pgoff_t index, void *radswap)
657 {
658         void *old;
659
660         spin_lock_irq(&mapping->tree_lock);
661         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
662         spin_unlock_irq(&mapping->tree_lock);
663         if (old != radswap)
664                 return -ENOENT;
665         free_swap_and_cache(radix_to_swp_entry(radswap));
666         return 0;
667 }
668
669 /*
670  * Determine (in bytes) how many of the shmem object's pages mapped by the
671  * given offsets are swapped out.
672  *
673  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
674  * as long as the inode doesn't go away and racy results are not a problem.
675  */
676 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
677                                                 pgoff_t start, pgoff_t end)
678 {
679         struct radix_tree_iter iter;
680         void **slot;
681         struct page *page;
682         unsigned long swapped = 0;
683
684         rcu_read_lock();
685
686         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
687                 if (iter.index >= end)
688                         break;
689
690                 page = radix_tree_deref_slot(slot);
691
692                 if (radix_tree_deref_retry(page)) {
693                         slot = radix_tree_iter_retry(&iter);
694                         continue;
695                 }
696
697                 if (radix_tree_exceptional_entry(page))
698                         swapped++;
699
700                 if (need_resched()) {
701                         cond_resched_rcu();
702                         slot = radix_tree_iter_next(&iter);
703                 }
704         }
705
706         rcu_read_unlock();
707
708         return swapped << PAGE_SHIFT;
709 }
710
711 /*
712  * Determine (in bytes) how many of the shmem object's pages mapped by the
713  * given vma is swapped out.
714  *
715  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
716  * as long as the inode doesn't go away and racy results are not a problem.
717  */
718 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
719 {
720         struct inode *inode = file_inode(vma->vm_file);
721         struct shmem_inode_info *info = SHMEM_I(inode);
722         struct address_space *mapping = inode->i_mapping;
723         unsigned long swapped;
724
725         /* Be careful as we don't hold info->lock */
726         swapped = READ_ONCE(info->swapped);
727
728         /*
729          * The easier cases are when the shmem object has nothing in swap, or
730          * the vma maps it whole. Then we can simply use the stats that we
731          * already track.
732          */
733         if (!swapped)
734                 return 0;
735
736         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
737                 return swapped << PAGE_SHIFT;
738
739         /* Here comes the more involved part */
740         return shmem_partial_swap_usage(mapping,
741                         linear_page_index(vma, vma->vm_start),
742                         linear_page_index(vma, vma->vm_end));
743 }
744
745 /*
746  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
747  */
748 void shmem_unlock_mapping(struct address_space *mapping)
749 {
750         struct pagevec pvec;
751         pgoff_t indices[PAGEVEC_SIZE];
752         pgoff_t index = 0;
753
754         pagevec_init(&pvec, 0);
755         /*
756          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
757          */
758         while (!mapping_unevictable(mapping)) {
759                 /*
760                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
761                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
762                  */
763                 pvec.nr = find_get_entries(mapping, index,
764                                            PAGEVEC_SIZE, pvec.pages, indices);
765                 if (!pvec.nr)
766                         break;
767                 index = indices[pvec.nr - 1] + 1;
768                 pagevec_remove_exceptionals(&pvec);
769                 check_move_unevictable_pages(pvec.pages, pvec.nr);
770                 pagevec_release(&pvec);
771                 cond_resched();
772         }
773 }
774
775 /*
776  * Remove range of pages and swap entries from radix tree, and free them.
777  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
778  */
779 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
780                                                                  bool unfalloc)
781 {
782         struct address_space *mapping = inode->i_mapping;
783         struct shmem_inode_info *info = SHMEM_I(inode);
784         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
785         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
786         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
787         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
788         struct pagevec pvec;
789         pgoff_t indices[PAGEVEC_SIZE];
790         long nr_swaps_freed = 0;
791         pgoff_t index;
792         int i;
793
794         if (lend == -1)
795                 end = -1;       /* unsigned, so actually very big */
796
797         pagevec_init(&pvec, 0);
798         index = start;
799         while (index < end) {
800                 pvec.nr = find_get_entries(mapping, index,
801                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
802                         pvec.pages, indices);
803                 if (!pvec.nr)
804                         break;
805                 for (i = 0; i < pagevec_count(&pvec); i++) {
806                         struct page *page = pvec.pages[i];
807
808                         index = indices[i];
809                         if (index >= end)
810                                 break;
811
812                         if (radix_tree_exceptional_entry(page)) {
813                                 if (unfalloc)
814                                         continue;
815                                 nr_swaps_freed += !shmem_free_swap(mapping,
816                                                                 index, page);
817                                 continue;
818                         }
819
820                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
821
822                         if (!trylock_page(page))
823                                 continue;
824
825                         if (PageTransTail(page)) {
826                                 /* Middle of THP: zero out the page */
827                                 clear_highpage(page);
828                                 unlock_page(page);
829                                 continue;
830                         } else if (PageTransHuge(page)) {
831                                 if (index == round_down(end, HPAGE_PMD_NR)) {
832                                         /*
833                                          * Range ends in the middle of THP:
834                                          * zero out the page
835                                          */
836                                         clear_highpage(page);
837                                         unlock_page(page);
838                                         continue;
839                                 }
840                                 index += HPAGE_PMD_NR - 1;
841                                 i += HPAGE_PMD_NR - 1;
842                         }
843
844                         if (!unfalloc || !PageUptodate(page)) {
845                                 VM_BUG_ON_PAGE(PageTail(page), page);
846                                 if (page_mapping(page) == mapping) {
847                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
848                                         truncate_inode_page(mapping, page);
849                                 }
850                         }
851                         unlock_page(page);
852                 }
853                 pagevec_remove_exceptionals(&pvec);
854                 pagevec_release(&pvec);
855                 cond_resched();
856                 index++;
857         }
858
859         if (partial_start) {
860                 struct page *page = NULL;
861                 shmem_getpage(inode, start - 1, &page, SGP_READ);
862                 if (page) {
863                         unsigned int top = PAGE_SIZE;
864                         if (start > end) {
865                                 top = partial_end;
866                                 partial_end = 0;
867                         }
868                         zero_user_segment(page, partial_start, top);
869                         set_page_dirty(page);
870                         unlock_page(page);
871                         put_page(page);
872                 }
873         }
874         if (partial_end) {
875                 struct page *page = NULL;
876                 shmem_getpage(inode, end, &page, SGP_READ);
877                 if (page) {
878                         zero_user_segment(page, 0, partial_end);
879                         set_page_dirty(page);
880                         unlock_page(page);
881                         put_page(page);
882                 }
883         }
884         if (start >= end)
885                 return;
886
887         index = start;
888         while (index < end) {
889                 cond_resched();
890
891                 pvec.nr = find_get_entries(mapping, index,
892                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
893                                 pvec.pages, indices);
894                 if (!pvec.nr) {
895                         /* If all gone or hole-punch or unfalloc, we're done */
896                         if (index == start || end != -1)
897                                 break;
898                         /* But if truncating, restart to make sure all gone */
899                         index = start;
900                         continue;
901                 }
902                 for (i = 0; i < pagevec_count(&pvec); i++) {
903                         struct page *page = pvec.pages[i];
904
905                         index = indices[i];
906                         if (index >= end)
907                                 break;
908
909                         if (radix_tree_exceptional_entry(page)) {
910                                 if (unfalloc)
911                                         continue;
912                                 if (shmem_free_swap(mapping, index, page)) {
913                                         /* Swap was replaced by page: retry */
914                                         index--;
915                                         break;
916                                 }
917                                 nr_swaps_freed++;
918                                 continue;
919                         }
920
921                         lock_page(page);
922
923                         if (PageTransTail(page)) {
924                                 /* Middle of THP: zero out the page */
925                                 clear_highpage(page);
926                                 unlock_page(page);
927                                 /*
928                                  * Partial thp truncate due 'start' in middle
929                                  * of THP: don't need to look on these pages
930                                  * again on !pvec.nr restart.
931                                  */
932                                 if (index != round_down(end, HPAGE_PMD_NR))
933                                         start++;
934                                 continue;
935                         } else if (PageTransHuge(page)) {
936                                 if (index == round_down(end, HPAGE_PMD_NR)) {
937                                         /*
938                                          * Range ends in the middle of THP:
939                                          * zero out the page
940                                          */
941                                         clear_highpage(page);
942                                         unlock_page(page);
943                                         continue;
944                                 }
945                                 index += HPAGE_PMD_NR - 1;
946                                 i += HPAGE_PMD_NR - 1;
947                         }
948
949                         if (!unfalloc || !PageUptodate(page)) {
950                                 VM_BUG_ON_PAGE(PageTail(page), page);
951                                 if (page_mapping(page) == mapping) {
952                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
953                                         truncate_inode_page(mapping, page);
954                                 } else {
955                                         /* Page was replaced by swap: retry */
956                                         unlock_page(page);
957                                         index--;
958                                         break;
959                                 }
960                         }
961                         unlock_page(page);
962                 }
963                 pagevec_remove_exceptionals(&pvec);
964                 pagevec_release(&pvec);
965                 index++;
966         }
967
968         spin_lock_irq(&info->lock);
969         info->swapped -= nr_swaps_freed;
970         shmem_recalc_inode(inode);
971         spin_unlock_irq(&info->lock);
972 }
973
974 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
975 {
976         shmem_undo_range(inode, lstart, lend, false);
977         inode->i_ctime = inode->i_mtime = current_time(inode);
978 }
979 EXPORT_SYMBOL_GPL(shmem_truncate_range);
980
981 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
982                          struct kstat *stat)
983 {
984         struct inode *inode = dentry->d_inode;
985         struct shmem_inode_info *info = SHMEM_I(inode);
986
987         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
988                 spin_lock_irq(&info->lock);
989                 shmem_recalc_inode(inode);
990                 spin_unlock_irq(&info->lock);
991         }
992         generic_fillattr(inode, stat);
993         return 0;
994 }
995
996 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
997 {
998         struct inode *inode = d_inode(dentry);
999         struct shmem_inode_info *info = SHMEM_I(inode);
1000         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1001         int error;
1002
1003         error = setattr_prepare(dentry, attr);
1004         if (error)
1005                 return error;
1006
1007         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1008                 loff_t oldsize = inode->i_size;
1009                 loff_t newsize = attr->ia_size;
1010
1011                 /* protected by i_mutex */
1012                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1013                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1014                         return -EPERM;
1015
1016                 if (newsize != oldsize) {
1017                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1018                                         oldsize, newsize);
1019                         if (error)
1020                                 return error;
1021                         i_size_write(inode, newsize);
1022                         inode->i_ctime = inode->i_mtime = current_time(inode);
1023                 }
1024                 if (newsize <= oldsize) {
1025                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1026                         if (oldsize > holebegin)
1027                                 unmap_mapping_range(inode->i_mapping,
1028                                                         holebegin, 0, 1);
1029                         if (info->alloced)
1030                                 shmem_truncate_range(inode,
1031                                                         newsize, (loff_t)-1);
1032                         /* unmap again to remove racily COWed private pages */
1033                         if (oldsize > holebegin)
1034                                 unmap_mapping_range(inode->i_mapping,
1035                                                         holebegin, 0, 1);
1036
1037                         /*
1038                          * Part of the huge page can be beyond i_size: subject
1039                          * to shrink under memory pressure.
1040                          */
1041                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1042                                 spin_lock(&sbinfo->shrinklist_lock);
1043                                 /*
1044                                  * _careful to defend against unlocked access to
1045                                  * ->shrink_list in shmem_unused_huge_shrink()
1046                                  */
1047                                 if (list_empty_careful(&info->shrinklist)) {
1048                                         list_add_tail(&info->shrinklist,
1049                                                         &sbinfo->shrinklist);
1050                                         sbinfo->shrinklist_len++;
1051                                 }
1052                                 spin_unlock(&sbinfo->shrinklist_lock);
1053                         }
1054                 }
1055         }
1056
1057         setattr_copy(inode, attr);
1058         if (attr->ia_valid & ATTR_MODE)
1059                 error = posix_acl_chmod(inode, inode->i_mode);
1060         return error;
1061 }
1062
1063 static void shmem_evict_inode(struct inode *inode)
1064 {
1065         struct shmem_inode_info *info = SHMEM_I(inode);
1066         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1067
1068         if (inode->i_mapping->a_ops == &shmem_aops) {
1069                 shmem_unacct_size(info->flags, inode->i_size);
1070                 inode->i_size = 0;
1071                 shmem_truncate_range(inode, 0, (loff_t)-1);
1072                 if (!list_empty(&info->shrinklist)) {
1073                         spin_lock(&sbinfo->shrinklist_lock);
1074                         if (!list_empty(&info->shrinklist)) {
1075                                 list_del_init(&info->shrinklist);
1076                                 sbinfo->shrinklist_len--;
1077                         }
1078                         spin_unlock(&sbinfo->shrinklist_lock);
1079                 }
1080                 if (!list_empty(&info->swaplist)) {
1081                         mutex_lock(&shmem_swaplist_mutex);
1082                         list_del_init(&info->swaplist);
1083                         mutex_unlock(&shmem_swaplist_mutex);
1084                 }
1085         }
1086
1087         simple_xattrs_free(&info->xattrs);
1088         WARN_ON(inode->i_blocks);
1089         shmem_free_inode(inode->i_sb);
1090         clear_inode(inode);
1091 }
1092
1093 /*
1094  * If swap found in inode, free it and move page from swapcache to filecache.
1095  */
1096 static int shmem_unuse_inode(struct shmem_inode_info *info,
1097                              swp_entry_t swap, struct page **pagep)
1098 {
1099         struct address_space *mapping = info->vfs_inode.i_mapping;
1100         void *radswap;
1101         pgoff_t index;
1102         gfp_t gfp;
1103         int error = 0;
1104
1105         radswap = swp_to_radix_entry(swap);
1106         index = radix_tree_locate_item(&mapping->page_tree, radswap);
1107         if (index == -1)
1108                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1109
1110         /*
1111          * Move _head_ to start search for next from here.
1112          * But be careful: shmem_evict_inode checks list_empty without taking
1113          * mutex, and there's an instant in list_move_tail when info->swaplist
1114          * would appear empty, if it were the only one on shmem_swaplist.
1115          */
1116         if (shmem_swaplist.next != &info->swaplist)
1117                 list_move_tail(&shmem_swaplist, &info->swaplist);
1118
1119         gfp = mapping_gfp_mask(mapping);
1120         if (shmem_should_replace_page(*pagep, gfp)) {
1121                 mutex_unlock(&shmem_swaplist_mutex);
1122                 error = shmem_replace_page(pagep, gfp, info, index);
1123                 mutex_lock(&shmem_swaplist_mutex);
1124                 /*
1125                  * We needed to drop mutex to make that restrictive page
1126                  * allocation, but the inode might have been freed while we
1127                  * dropped it: although a racing shmem_evict_inode() cannot
1128                  * complete without emptying the radix_tree, our page lock
1129                  * on this swapcache page is not enough to prevent that -
1130                  * free_swap_and_cache() of our swap entry will only
1131                  * trylock_page(), removing swap from radix_tree whatever.
1132                  *
1133                  * We must not proceed to shmem_add_to_page_cache() if the
1134                  * inode has been freed, but of course we cannot rely on
1135                  * inode or mapping or info to check that.  However, we can
1136                  * safely check if our swap entry is still in use (and here
1137                  * it can't have got reused for another page): if it's still
1138                  * in use, then the inode cannot have been freed yet, and we
1139                  * can safely proceed (if it's no longer in use, that tells
1140                  * nothing about the inode, but we don't need to unuse swap).
1141                  */
1142                 if (!page_swapcount(*pagep))
1143                         error = -ENOENT;
1144         }
1145
1146         /*
1147          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1148          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1149          * beneath us (pagelock doesn't help until the page is in pagecache).
1150          */
1151         if (!error)
1152                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1153                                                 radswap);
1154         if (error != -ENOMEM) {
1155                 /*
1156                  * Truncation and eviction use free_swap_and_cache(), which
1157                  * only does trylock page: if we raced, best clean up here.
1158                  */
1159                 delete_from_swap_cache(*pagep);
1160                 set_page_dirty(*pagep);
1161                 if (!error) {
1162                         spin_lock_irq(&info->lock);
1163                         info->swapped--;
1164                         spin_unlock_irq(&info->lock);
1165                         swap_free(swap);
1166                 }
1167         }
1168         return error;
1169 }
1170
1171 /*
1172  * Search through swapped inodes to find and replace swap by page.
1173  */
1174 int shmem_unuse(swp_entry_t swap, struct page *page)
1175 {
1176         struct list_head *this, *next;
1177         struct shmem_inode_info *info;
1178         struct mem_cgroup *memcg;
1179         int error = 0;
1180
1181         /*
1182          * There's a faint possibility that swap page was replaced before
1183          * caller locked it: caller will come back later with the right page.
1184          */
1185         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1186                 goto out;
1187
1188         /*
1189          * Charge page using GFP_KERNEL while we can wait, before taking
1190          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1191          * Charged back to the user (not to caller) when swap account is used.
1192          */
1193         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1194                         false);
1195         if (error)
1196                 goto out;
1197         /* No radix_tree_preload: swap entry keeps a place for page in tree */
1198         error = -EAGAIN;
1199
1200         mutex_lock(&shmem_swaplist_mutex);
1201         list_for_each_safe(this, next, &shmem_swaplist) {
1202                 info = list_entry(this, struct shmem_inode_info, swaplist);
1203                 if (info->swapped)
1204                         error = shmem_unuse_inode(info, swap, &page);
1205                 else
1206                         list_del_init(&info->swaplist);
1207                 cond_resched();
1208                 if (error != -EAGAIN)
1209                         break;
1210                 /* found nothing in this: move on to search the next */
1211         }
1212         mutex_unlock(&shmem_swaplist_mutex);
1213
1214         if (error) {
1215                 if (error != -ENOMEM)
1216                         error = 0;
1217                 mem_cgroup_cancel_charge(page, memcg, false);
1218         } else
1219                 mem_cgroup_commit_charge(page, memcg, true, false);
1220 out:
1221         unlock_page(page);
1222         put_page(page);
1223         return error;
1224 }
1225
1226 /*
1227  * Move the page from the page cache to the swap cache.
1228  */
1229 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1230 {
1231         struct shmem_inode_info *info;
1232         struct address_space *mapping;
1233         struct inode *inode;
1234         swp_entry_t swap;
1235         pgoff_t index;
1236
1237         VM_BUG_ON_PAGE(PageCompound(page), page);
1238         BUG_ON(!PageLocked(page));
1239         mapping = page->mapping;
1240         index = page->index;
1241         inode = mapping->host;
1242         info = SHMEM_I(inode);
1243         if (info->flags & VM_LOCKED)
1244                 goto redirty;
1245         if (!total_swap_pages)
1246                 goto redirty;
1247
1248         /*
1249          * Our capabilities prevent regular writeback or sync from ever calling
1250          * shmem_writepage; but a stacking filesystem might use ->writepage of
1251          * its underlying filesystem, in which case tmpfs should write out to
1252          * swap only in response to memory pressure, and not for the writeback
1253          * threads or sync.
1254          */
1255         if (!wbc->for_reclaim) {
1256                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1257                 goto redirty;
1258         }
1259
1260         /*
1261          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1262          * value into swapfile.c, the only way we can correctly account for a
1263          * fallocated page arriving here is now to initialize it and write it.
1264          *
1265          * That's okay for a page already fallocated earlier, but if we have
1266          * not yet completed the fallocation, then (a) we want to keep track
1267          * of this page in case we have to undo it, and (b) it may not be a
1268          * good idea to continue anyway, once we're pushing into swap.  So
1269          * reactivate the page, and let shmem_fallocate() quit when too many.
1270          */
1271         if (!PageUptodate(page)) {
1272                 if (inode->i_private) {
1273                         struct shmem_falloc *shmem_falloc;
1274                         spin_lock(&inode->i_lock);
1275                         shmem_falloc = inode->i_private;
1276                         if (shmem_falloc &&
1277                             !shmem_falloc->waitq &&
1278                             index >= shmem_falloc->start &&
1279                             index < shmem_falloc->next)
1280                                 shmem_falloc->nr_unswapped++;
1281                         else
1282                                 shmem_falloc = NULL;
1283                         spin_unlock(&inode->i_lock);
1284                         if (shmem_falloc)
1285                                 goto redirty;
1286                 }
1287                 clear_highpage(page);
1288                 flush_dcache_page(page);
1289                 SetPageUptodate(page);
1290         }
1291
1292         swap = get_swap_page();
1293         if (!swap.val)
1294                 goto redirty;
1295
1296         if (mem_cgroup_try_charge_swap(page, swap))
1297                 goto free_swap;
1298
1299         /*
1300          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1301          * if it's not already there.  Do it now before the page is
1302          * moved to swap cache, when its pagelock no longer protects
1303          * the inode from eviction.  But don't unlock the mutex until
1304          * we've incremented swapped, because shmem_unuse_inode() will
1305          * prune a !swapped inode from the swaplist under this mutex.
1306          */
1307         mutex_lock(&shmem_swaplist_mutex);
1308         if (list_empty(&info->swaplist))
1309                 list_add_tail(&info->swaplist, &shmem_swaplist);
1310
1311         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1312                 spin_lock_irq(&info->lock);
1313                 shmem_recalc_inode(inode);
1314                 info->swapped++;
1315                 spin_unlock_irq(&info->lock);
1316
1317                 swap_shmem_alloc(swap);
1318                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1319
1320                 mutex_unlock(&shmem_swaplist_mutex);
1321                 BUG_ON(page_mapped(page));
1322                 swap_writepage(page, wbc);
1323                 return 0;
1324         }
1325
1326         mutex_unlock(&shmem_swaplist_mutex);
1327 free_swap:
1328         swapcache_free(swap);
1329 redirty:
1330         set_page_dirty(page);
1331         if (wbc->for_reclaim)
1332                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1333         unlock_page(page);
1334         return 0;
1335 }
1336
1337 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1338 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1339 {
1340         char buffer[64];
1341
1342         if (!mpol || mpol->mode == MPOL_DEFAULT)
1343                 return;         /* show nothing */
1344
1345         mpol_to_str(buffer, sizeof(buffer), mpol);
1346
1347         seq_printf(seq, ",mpol=%s", buffer);
1348 }
1349
1350 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1351 {
1352         struct mempolicy *mpol = NULL;
1353         if (sbinfo->mpol) {
1354                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1355                 mpol = sbinfo->mpol;
1356                 mpol_get(mpol);
1357                 spin_unlock(&sbinfo->stat_lock);
1358         }
1359         return mpol;
1360 }
1361 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1362 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1363 {
1364 }
1365 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1366 {
1367         return NULL;
1368 }
1369 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1370 #ifndef CONFIG_NUMA
1371 #define vm_policy vm_private_data
1372 #endif
1373
1374 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1375                 struct shmem_inode_info *info, pgoff_t index)
1376 {
1377         /* Create a pseudo vma that just contains the policy */
1378         vma->vm_start = 0;
1379         /* Bias interleave by inode number to distribute better across nodes */
1380         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1381         vma->vm_ops = NULL;
1382         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1383 }
1384
1385 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1386 {
1387         /* Drop reference taken by mpol_shared_policy_lookup() */
1388         mpol_cond_put(vma->vm_policy);
1389 }
1390
1391 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1392                         struct shmem_inode_info *info, pgoff_t index)
1393 {
1394         struct vm_area_struct pvma;
1395         struct page *page;
1396
1397         shmem_pseudo_vma_init(&pvma, info, index);
1398         page = swapin_readahead(swap, gfp, &pvma, 0);
1399         shmem_pseudo_vma_destroy(&pvma);
1400
1401         return page;
1402 }
1403
1404 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1405                 struct shmem_inode_info *info, pgoff_t index)
1406 {
1407         struct vm_area_struct pvma;
1408         struct inode *inode = &info->vfs_inode;
1409         struct address_space *mapping = inode->i_mapping;
1410         pgoff_t idx, hindex;
1411         void __rcu **results;
1412         struct page *page;
1413
1414         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1415                 return NULL;
1416
1417         hindex = round_down(index, HPAGE_PMD_NR);
1418         rcu_read_lock();
1419         if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1420                                 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1421                 rcu_read_unlock();
1422                 return NULL;
1423         }
1424         rcu_read_unlock();
1425
1426         shmem_pseudo_vma_init(&pvma, info, hindex);
1427         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1428                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1429         shmem_pseudo_vma_destroy(&pvma);
1430         if (page)
1431                 prep_transhuge_page(page);
1432         return page;
1433 }
1434
1435 static struct page *shmem_alloc_page(gfp_t gfp,
1436                         struct shmem_inode_info *info, pgoff_t index)
1437 {
1438         struct vm_area_struct pvma;
1439         struct page *page;
1440
1441         shmem_pseudo_vma_init(&pvma, info, index);
1442         page = alloc_page_vma(gfp, &pvma, 0);
1443         shmem_pseudo_vma_destroy(&pvma);
1444
1445         return page;
1446 }
1447
1448 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1449                 struct inode *inode,
1450                 pgoff_t index, bool huge)
1451 {
1452         struct shmem_inode_info *info = SHMEM_I(inode);
1453         struct page *page;
1454         int nr;
1455         int err = -ENOSPC;
1456
1457         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1458                 huge = false;
1459         nr = huge ? HPAGE_PMD_NR : 1;
1460
1461         if (!shmem_inode_acct_block(inode, nr))
1462                 goto failed;
1463
1464         if (huge)
1465                 page = shmem_alloc_hugepage(gfp, info, index);
1466         else
1467                 page = shmem_alloc_page(gfp, info, index);
1468         if (page) {
1469                 __SetPageLocked(page);
1470                 __SetPageSwapBacked(page);
1471                 return page;
1472         }
1473
1474         err = -ENOMEM;
1475         shmem_inode_unacct_blocks(inode, nr);
1476 failed:
1477         return ERR_PTR(err);
1478 }
1479
1480 /*
1481  * When a page is moved from swapcache to shmem filecache (either by the
1482  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1483  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1484  * ignorance of the mapping it belongs to.  If that mapping has special
1485  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1486  * we may need to copy to a suitable page before moving to filecache.
1487  *
1488  * In a future release, this may well be extended to respect cpuset and
1489  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1490  * but for now it is a simple matter of zone.
1491  */
1492 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1493 {
1494         return page_zonenum(page) > gfp_zone(gfp);
1495 }
1496
1497 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1498                                 struct shmem_inode_info *info, pgoff_t index)
1499 {
1500         struct page *oldpage, *newpage;
1501         struct address_space *swap_mapping;
1502         swp_entry_t entry;
1503         pgoff_t swap_index;
1504         int error;
1505
1506         oldpage = *pagep;
1507         entry.val = page_private(oldpage);
1508         swap_index = swp_offset(entry);
1509         swap_mapping = page_mapping(oldpage);
1510
1511         /*
1512          * We have arrived here because our zones are constrained, so don't
1513          * limit chance of success by further cpuset and node constraints.
1514          */
1515         gfp &= ~GFP_CONSTRAINT_MASK;
1516         newpage = shmem_alloc_page(gfp, info, index);
1517         if (!newpage)
1518                 return -ENOMEM;
1519
1520         get_page(newpage);
1521         copy_highpage(newpage, oldpage);
1522         flush_dcache_page(newpage);
1523
1524         __SetPageLocked(newpage);
1525         __SetPageSwapBacked(newpage);
1526         SetPageUptodate(newpage);
1527         set_page_private(newpage, entry.val);
1528         SetPageSwapCache(newpage);
1529
1530         /*
1531          * Our caller will very soon move newpage out of swapcache, but it's
1532          * a nice clean interface for us to replace oldpage by newpage there.
1533          */
1534         spin_lock_irq(&swap_mapping->tree_lock);
1535         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1536                                                                    newpage);
1537         if (!error) {
1538                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1539                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1540         }
1541         spin_unlock_irq(&swap_mapping->tree_lock);
1542
1543         if (unlikely(error)) {
1544                 /*
1545                  * Is this possible?  I think not, now that our callers check
1546                  * both PageSwapCache and page_private after getting page lock;
1547                  * but be defensive.  Reverse old to newpage for clear and free.
1548                  */
1549                 oldpage = newpage;
1550         } else {
1551                 mem_cgroup_migrate(oldpage, newpage);
1552                 lru_cache_add_anon(newpage);
1553                 *pagep = newpage;
1554         }
1555
1556         ClearPageSwapCache(oldpage);
1557         set_page_private(oldpage, 0);
1558
1559         unlock_page(oldpage);
1560         put_page(oldpage);
1561         put_page(oldpage);
1562         return error;
1563 }
1564
1565 /*
1566  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1567  *
1568  * If we allocate a new one we do not mark it dirty. That's up to the
1569  * vm. If we swap it in we mark it dirty since we also free the swap
1570  * entry since a page cannot live in both the swap and page cache.
1571  *
1572  * fault_mm and fault_type are only supplied by shmem_fault:
1573  * otherwise they are NULL.
1574  */
1575 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1576         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1577         struct mm_struct *fault_mm, int *fault_type)
1578 {
1579         struct address_space *mapping = inode->i_mapping;
1580         struct shmem_inode_info *info = SHMEM_I(inode);
1581         struct shmem_sb_info *sbinfo;
1582         struct mm_struct *charge_mm;
1583         struct mem_cgroup *memcg;
1584         struct page *page;
1585         swp_entry_t swap;
1586         enum sgp_type sgp_huge = sgp;
1587         pgoff_t hindex = index;
1588         int error;
1589         int once = 0;
1590         int alloced = 0;
1591
1592         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1593                 return -EFBIG;
1594         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1595                 sgp = SGP_CACHE;
1596 repeat:
1597         swap.val = 0;
1598         page = find_lock_entry(mapping, index);
1599         if (radix_tree_exceptional_entry(page)) {
1600                 swap = radix_to_swp_entry(page);
1601                 page = NULL;
1602         }
1603
1604         if (sgp <= SGP_CACHE &&
1605             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1606                 error = -EINVAL;
1607                 goto unlock;
1608         }
1609
1610         if (page && sgp == SGP_WRITE)
1611                 mark_page_accessed(page);
1612
1613         /* fallocated page? */
1614         if (page && !PageUptodate(page)) {
1615                 if (sgp != SGP_READ)
1616                         goto clear;
1617                 unlock_page(page);
1618                 put_page(page);
1619                 page = NULL;
1620         }
1621         if (page || (sgp == SGP_READ && !swap.val)) {
1622                 *pagep = page;
1623                 return 0;
1624         }
1625
1626         /*
1627          * Fast cache lookup did not find it:
1628          * bring it back from swap or allocate.
1629          */
1630         sbinfo = SHMEM_SB(inode->i_sb);
1631         charge_mm = fault_mm ? : current->mm;
1632
1633         if (swap.val) {
1634                 /* Look it up and read it in.. */
1635                 page = lookup_swap_cache(swap);
1636                 if (!page) {
1637                         /* Or update major stats only when swapin succeeds?? */
1638                         if (fault_type) {
1639                                 *fault_type |= VM_FAULT_MAJOR;
1640                                 count_vm_event(PGMAJFAULT);
1641                                 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1642                         }
1643                         /* Here we actually start the io */
1644                         page = shmem_swapin(swap, gfp, info, index);
1645                         if (!page) {
1646                                 error = -ENOMEM;
1647                                 goto failed;
1648                         }
1649                 }
1650
1651                 /* We have to do this with page locked to prevent races */
1652                 lock_page(page);
1653                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1654                     !shmem_confirm_swap(mapping, index, swap)) {
1655                         error = -EEXIST;        /* try again */
1656                         goto unlock;
1657                 }
1658                 if (!PageUptodate(page)) {
1659                         error = -EIO;
1660                         goto failed;
1661                 }
1662                 wait_on_page_writeback(page);
1663
1664                 if (shmem_should_replace_page(page, gfp)) {
1665                         error = shmem_replace_page(&page, gfp, info, index);
1666                         if (error)
1667                                 goto failed;
1668                 }
1669
1670                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1671                                 false);
1672                 if (!error) {
1673                         error = shmem_add_to_page_cache(page, mapping, index,
1674                                                 swp_to_radix_entry(swap));
1675                         /*
1676                          * We already confirmed swap under page lock, and make
1677                          * no memory allocation here, so usually no possibility
1678                          * of error; but free_swap_and_cache() only trylocks a
1679                          * page, so it is just possible that the entry has been
1680                          * truncated or holepunched since swap was confirmed.
1681                          * shmem_undo_range() will have done some of the
1682                          * unaccounting, now delete_from_swap_cache() will do
1683                          * the rest.
1684                          * Reset swap.val? No, leave it so "failed" goes back to
1685                          * "repeat": reading a hole and writing should succeed.
1686                          */
1687                         if (error) {
1688                                 mem_cgroup_cancel_charge(page, memcg, false);
1689                                 delete_from_swap_cache(page);
1690                         }
1691                 }
1692                 if (error)
1693                         goto failed;
1694
1695                 mem_cgroup_commit_charge(page, memcg, true, false);
1696
1697                 spin_lock_irq(&info->lock);
1698                 info->swapped--;
1699                 shmem_recalc_inode(inode);
1700                 spin_unlock_irq(&info->lock);
1701
1702                 if (sgp == SGP_WRITE)
1703                         mark_page_accessed(page);
1704
1705                 delete_from_swap_cache(page);
1706                 set_page_dirty(page);
1707                 swap_free(swap);
1708
1709         } else {
1710                 /* shmem_symlink() */
1711                 if (mapping->a_ops != &shmem_aops)
1712                         goto alloc_nohuge;
1713                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1714                         goto alloc_nohuge;
1715                 if (shmem_huge == SHMEM_HUGE_FORCE)
1716                         goto alloc_huge;
1717                 switch (sbinfo->huge) {
1718                         loff_t i_size;
1719                         pgoff_t off;
1720                 case SHMEM_HUGE_NEVER:
1721                         goto alloc_nohuge;
1722                 case SHMEM_HUGE_WITHIN_SIZE:
1723                         off = round_up(index, HPAGE_PMD_NR);
1724                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1725                         if (i_size >= HPAGE_PMD_SIZE &&
1726                                         i_size >> PAGE_SHIFT >= off)
1727                                 goto alloc_huge;
1728                         /* fallthrough */
1729                 case SHMEM_HUGE_ADVISE:
1730                         if (sgp_huge == SGP_HUGE)
1731                                 goto alloc_huge;
1732                         /* TODO: implement fadvise() hints */
1733                         goto alloc_nohuge;
1734                 }
1735
1736 alloc_huge:
1737                 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1738                 if (IS_ERR(page)) {
1739 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1740                                         index, false);
1741                 }
1742                 if (IS_ERR(page)) {
1743                         int retry = 5;
1744                         error = PTR_ERR(page);
1745                         page = NULL;
1746                         if (error != -ENOSPC)
1747                                 goto failed;
1748                         /*
1749                          * Try to reclaim some spece by splitting a huge page
1750                          * beyond i_size on the filesystem.
1751                          */
1752                         while (retry--) {
1753                                 int ret;
1754                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1755                                 if (ret == SHRINK_STOP)
1756                                         break;
1757                                 if (ret)
1758                                         goto alloc_nohuge;
1759                         }
1760                         goto failed;
1761                 }
1762
1763                 if (PageTransHuge(page))
1764                         hindex = round_down(index, HPAGE_PMD_NR);
1765                 else
1766                         hindex = index;
1767
1768                 if (sgp == SGP_WRITE)
1769                         __SetPageReferenced(page);
1770
1771                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1772                                 PageTransHuge(page));
1773                 if (error)
1774                         goto unacct;
1775                 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1776                                 compound_order(page));
1777                 if (!error) {
1778                         error = shmem_add_to_page_cache(page, mapping, hindex,
1779                                                         NULL);
1780                         radix_tree_preload_end();
1781                 }
1782                 if (error) {
1783                         mem_cgroup_cancel_charge(page, memcg,
1784                                         PageTransHuge(page));
1785                         goto unacct;
1786                 }
1787                 mem_cgroup_commit_charge(page, memcg, false,
1788                                 PageTransHuge(page));
1789                 lru_cache_add_anon(page);
1790
1791                 spin_lock_irq(&info->lock);
1792                 info->alloced += 1 << compound_order(page);
1793                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1794                 shmem_recalc_inode(inode);
1795                 spin_unlock_irq(&info->lock);
1796                 alloced = true;
1797
1798                 if (PageTransHuge(page) &&
1799                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1800                                 hindex + HPAGE_PMD_NR - 1) {
1801                         /*
1802                          * Part of the huge page is beyond i_size: subject
1803                          * to shrink under memory pressure.
1804                          */
1805                         spin_lock(&sbinfo->shrinklist_lock);
1806                         /*
1807                          * _careful to defend against unlocked access to
1808                          * ->shrink_list in shmem_unused_huge_shrink()
1809                          */
1810                         if (list_empty_careful(&info->shrinklist)) {
1811                                 list_add_tail(&info->shrinklist,
1812                                                 &sbinfo->shrinklist);
1813                                 sbinfo->shrinklist_len++;
1814                         }
1815                         spin_unlock(&sbinfo->shrinklist_lock);
1816                 }
1817
1818                 /*
1819                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1820                  */
1821                 if (sgp == SGP_FALLOC)
1822                         sgp = SGP_WRITE;
1823 clear:
1824                 /*
1825                  * Let SGP_WRITE caller clear ends if write does not fill page;
1826                  * but SGP_FALLOC on a page fallocated earlier must initialize
1827                  * it now, lest undo on failure cancel our earlier guarantee.
1828                  */
1829                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1830                         struct page *head = compound_head(page);
1831                         int i;
1832
1833                         for (i = 0; i < (1 << compound_order(head)); i++) {
1834                                 clear_highpage(head + i);
1835                                 flush_dcache_page(head + i);
1836                         }
1837                         SetPageUptodate(head);
1838                 }
1839         }
1840
1841         /* Perhaps the file has been truncated since we checked */
1842         if (sgp <= SGP_CACHE &&
1843             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1844                 if (alloced) {
1845                         ClearPageDirty(page);
1846                         delete_from_page_cache(page);
1847                         spin_lock_irq(&info->lock);
1848                         shmem_recalc_inode(inode);
1849                         spin_unlock_irq(&info->lock);
1850                 }
1851                 error = -EINVAL;
1852                 goto unlock;
1853         }
1854         *pagep = page + index - hindex;
1855         return 0;
1856
1857         /*
1858          * Error recovery.
1859          */
1860 unacct:
1861         shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1862
1863         if (PageTransHuge(page)) {
1864                 unlock_page(page);
1865                 put_page(page);
1866                 goto alloc_nohuge;
1867         }
1868 failed:
1869         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1870                 error = -EEXIST;
1871 unlock:
1872         if (page) {
1873                 unlock_page(page);
1874                 put_page(page);
1875         }
1876         if (error == -ENOSPC && !once++) {
1877                 spin_lock_irq(&info->lock);
1878                 shmem_recalc_inode(inode);
1879                 spin_unlock_irq(&info->lock);
1880                 goto repeat;
1881         }
1882         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1883                 goto repeat;
1884         return error;
1885 }
1886
1887 /*
1888  * This is like autoremove_wake_function, but it removes the wait queue
1889  * entry unconditionally - even if something else had already woken the
1890  * target.
1891  */
1892 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1893 {
1894         int ret = default_wake_function(wait, mode, sync, key);
1895         list_del_init(&wait->task_list);
1896         return ret;
1897 }
1898
1899 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1900 {
1901         struct inode *inode = file_inode(vma->vm_file);
1902         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1903         enum sgp_type sgp;
1904         int error;
1905         int ret = VM_FAULT_LOCKED;
1906
1907         /*
1908          * Trinity finds that probing a hole which tmpfs is punching can
1909          * prevent the hole-punch from ever completing: which in turn
1910          * locks writers out with its hold on i_mutex.  So refrain from
1911          * faulting pages into the hole while it's being punched.  Although
1912          * shmem_undo_range() does remove the additions, it may be unable to
1913          * keep up, as each new page needs its own unmap_mapping_range() call,
1914          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1915          *
1916          * It does not matter if we sometimes reach this check just before the
1917          * hole-punch begins, so that one fault then races with the punch:
1918          * we just need to make racing faults a rare case.
1919          *
1920          * The implementation below would be much simpler if we just used a
1921          * standard mutex or completion: but we cannot take i_mutex in fault,
1922          * and bloating every shmem inode for this unlikely case would be sad.
1923          */
1924         if (unlikely(inode->i_private)) {
1925                 struct shmem_falloc *shmem_falloc;
1926
1927                 spin_lock(&inode->i_lock);
1928                 shmem_falloc = inode->i_private;
1929                 if (shmem_falloc &&
1930                     shmem_falloc->waitq &&
1931                     vmf->pgoff >= shmem_falloc->start &&
1932                     vmf->pgoff < shmem_falloc->next) {
1933                         wait_queue_head_t *shmem_falloc_waitq;
1934                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1935
1936                         ret = VM_FAULT_NOPAGE;
1937                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1938                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1939                                 /* It's polite to up mmap_sem if we can */
1940                                 up_read(&vma->vm_mm->mmap_sem);
1941                                 ret = VM_FAULT_RETRY;
1942                         }
1943
1944                         shmem_falloc_waitq = shmem_falloc->waitq;
1945                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1946                                         TASK_UNINTERRUPTIBLE);
1947                         spin_unlock(&inode->i_lock);
1948                         schedule();
1949
1950                         /*
1951                          * shmem_falloc_waitq points into the shmem_fallocate()
1952                          * stack of the hole-punching task: shmem_falloc_waitq
1953                          * is usually invalid by the time we reach here, but
1954                          * finish_wait() does not dereference it in that case;
1955                          * though i_lock needed lest racing with wake_up_all().
1956                          */
1957                         spin_lock(&inode->i_lock);
1958                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1959                         spin_unlock(&inode->i_lock);
1960                         return ret;
1961                 }
1962                 spin_unlock(&inode->i_lock);
1963         }
1964
1965         sgp = SGP_CACHE;
1966         if (vma->vm_flags & VM_HUGEPAGE)
1967                 sgp = SGP_HUGE;
1968         else if (vma->vm_flags & VM_NOHUGEPAGE)
1969                 sgp = SGP_NOHUGE;
1970
1971         error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1972                                   gfp, vma->vm_mm, &ret);
1973         if (error)
1974                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1975         return ret;
1976 }
1977
1978 unsigned long shmem_get_unmapped_area(struct file *file,
1979                                       unsigned long uaddr, unsigned long len,
1980                                       unsigned long pgoff, unsigned long flags)
1981 {
1982         unsigned long (*get_area)(struct file *,
1983                 unsigned long, unsigned long, unsigned long, unsigned long);
1984         unsigned long addr;
1985         unsigned long offset;
1986         unsigned long inflated_len;
1987         unsigned long inflated_addr;
1988         unsigned long inflated_offset;
1989
1990         if (len > TASK_SIZE)
1991                 return -ENOMEM;
1992
1993         get_area = current->mm->get_unmapped_area;
1994         addr = get_area(file, uaddr, len, pgoff, flags);
1995
1996         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1997                 return addr;
1998         if (IS_ERR_VALUE(addr))
1999                 return addr;
2000         if (addr & ~PAGE_MASK)
2001                 return addr;
2002         if (addr > TASK_SIZE - len)
2003                 return addr;
2004
2005         if (shmem_huge == SHMEM_HUGE_DENY)
2006                 return addr;
2007         if (len < HPAGE_PMD_SIZE)
2008                 return addr;
2009         if (flags & MAP_FIXED)
2010                 return addr;
2011         /*
2012          * Our priority is to support MAP_SHARED mapped hugely;
2013          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2014          * But if caller specified an address hint, respect that as before.
2015          */
2016         if (uaddr)
2017                 return addr;
2018
2019         if (shmem_huge != SHMEM_HUGE_FORCE) {
2020                 struct super_block *sb;
2021
2022                 if (file) {
2023                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2024                         sb = file_inode(file)->i_sb;
2025                 } else {
2026                         /*
2027                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2028                          * for "/dev/zero", to create a shared anonymous object.
2029                          */
2030                         if (IS_ERR(shm_mnt))
2031                                 return addr;
2032                         sb = shm_mnt->mnt_sb;
2033                 }
2034                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2035                         return addr;
2036         }
2037
2038         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2039         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2040                 return addr;
2041         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2042                 return addr;
2043
2044         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2045         if (inflated_len > TASK_SIZE)
2046                 return addr;
2047         if (inflated_len < len)
2048                 return addr;
2049
2050         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2051         if (IS_ERR_VALUE(inflated_addr))
2052                 return addr;
2053         if (inflated_addr & ~PAGE_MASK)
2054                 return addr;
2055
2056         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2057         inflated_addr += offset - inflated_offset;
2058         if (inflated_offset > offset)
2059                 inflated_addr += HPAGE_PMD_SIZE;
2060
2061         if (inflated_addr > TASK_SIZE - len)
2062                 return addr;
2063         return inflated_addr;
2064 }
2065
2066 #ifdef CONFIG_NUMA
2067 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2068 {
2069         struct inode *inode = file_inode(vma->vm_file);
2070         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2071 }
2072
2073 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2074                                           unsigned long addr)
2075 {
2076         struct inode *inode = file_inode(vma->vm_file);
2077         pgoff_t index;
2078
2079         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2080         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2081 }
2082 #endif
2083
2084 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2085 {
2086         struct inode *inode = file_inode(file);
2087         struct shmem_inode_info *info = SHMEM_I(inode);
2088         int retval = -ENOMEM;
2089
2090         /*
2091          * What serializes the accesses to info->flags?
2092          * ipc_lock_object() when called from shmctl_do_lock(),
2093          * no serialization needed when called from shm_destroy().
2094          */
2095         if (lock && !(info->flags & VM_LOCKED)) {
2096                 if (!user_shm_lock(inode->i_size, user))
2097                         goto out_nomem;
2098                 info->flags |= VM_LOCKED;
2099                 mapping_set_unevictable(file->f_mapping);
2100         }
2101         if (!lock && (info->flags & VM_LOCKED) && user) {
2102                 user_shm_unlock(inode->i_size, user);
2103                 info->flags &= ~VM_LOCKED;
2104                 mapping_clear_unevictable(file->f_mapping);
2105         }
2106         retval = 0;
2107
2108 out_nomem:
2109         return retval;
2110 }
2111
2112 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2113 {
2114         file_accessed(file);
2115         vma->vm_ops = &shmem_vm_ops;
2116         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2117                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2118                         (vma->vm_end & HPAGE_PMD_MASK)) {
2119                 khugepaged_enter(vma, vma->vm_flags);
2120         }
2121         return 0;
2122 }
2123
2124 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2125                                      umode_t mode, dev_t dev, unsigned long flags)
2126 {
2127         struct inode *inode;
2128         struct shmem_inode_info *info;
2129         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2130
2131         if (shmem_reserve_inode(sb))
2132                 return NULL;
2133
2134         inode = new_inode(sb);
2135         if (inode) {
2136                 inode->i_ino = get_next_ino();
2137                 inode_init_owner(inode, dir, mode);
2138                 inode->i_blocks = 0;
2139                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2140                 inode->i_generation = get_seconds();
2141                 info = SHMEM_I(inode);
2142                 memset(info, 0, (char *)inode - (char *)info);
2143                 spin_lock_init(&info->lock);
2144                 info->seals = F_SEAL_SEAL;
2145                 info->flags = flags & VM_NORESERVE;
2146                 INIT_LIST_HEAD(&info->shrinklist);
2147                 INIT_LIST_HEAD(&info->swaplist);
2148                 simple_xattrs_init(&info->xattrs);
2149                 cache_no_acl(inode);
2150
2151                 switch (mode & S_IFMT) {
2152                 default:
2153                         inode->i_op = &shmem_special_inode_operations;
2154                         init_special_inode(inode, mode, dev);
2155                         break;
2156                 case S_IFREG:
2157                         inode->i_mapping->a_ops = &shmem_aops;
2158                         inode->i_op = &shmem_inode_operations;
2159                         inode->i_fop = &shmem_file_operations;
2160                         mpol_shared_policy_init(&info->policy,
2161                                                  shmem_get_sbmpol(sbinfo));
2162                         break;
2163                 case S_IFDIR:
2164                         inc_nlink(inode);
2165                         /* Some things misbehave if size == 0 on a directory */
2166                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2167                         inode->i_op = &shmem_dir_inode_operations;
2168                         inode->i_fop = &simple_dir_operations;
2169                         break;
2170                 case S_IFLNK:
2171                         /*
2172                          * Must not load anything in the rbtree,
2173                          * mpol_free_shared_policy will not be called.
2174                          */
2175                         mpol_shared_policy_init(&info->policy, NULL);
2176                         break;
2177                 }
2178
2179                 lockdep_annotate_inode_mutex_key(inode);
2180         } else
2181                 shmem_free_inode(sb);
2182         return inode;
2183 }
2184
2185 bool shmem_mapping(struct address_space *mapping)
2186 {
2187         if (!mapping->host)
2188                 return false;
2189
2190         return mapping->host->i_sb->s_op == &shmem_ops;
2191 }
2192
2193 #ifdef CONFIG_TMPFS
2194 static const struct inode_operations shmem_symlink_inode_operations;
2195 static const struct inode_operations shmem_short_symlink_operations;
2196
2197 #ifdef CONFIG_TMPFS_XATTR
2198 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2199 #else
2200 #define shmem_initxattrs NULL
2201 #endif
2202
2203 static int
2204 shmem_write_begin(struct file *file, struct address_space *mapping,
2205                         loff_t pos, unsigned len, unsigned flags,
2206                         struct page **pagep, void **fsdata)
2207 {
2208         struct inode *inode = mapping->host;
2209         struct shmem_inode_info *info = SHMEM_I(inode);
2210         pgoff_t index = pos >> PAGE_SHIFT;
2211
2212         /* i_mutex is held by caller */
2213         if (unlikely(info->seals)) {
2214                 if (info->seals & F_SEAL_WRITE)
2215                         return -EPERM;
2216                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2217                         return -EPERM;
2218         }
2219
2220         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2221 }
2222
2223 static int
2224 shmem_write_end(struct file *file, struct address_space *mapping,
2225                         loff_t pos, unsigned len, unsigned copied,
2226                         struct page *page, void *fsdata)
2227 {
2228         struct inode *inode = mapping->host;
2229
2230         if (pos + copied > inode->i_size)
2231                 i_size_write(inode, pos + copied);
2232
2233         if (!PageUptodate(page)) {
2234                 struct page *head = compound_head(page);
2235                 if (PageTransCompound(page)) {
2236                         int i;
2237
2238                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2239                                 if (head + i == page)
2240                                         continue;
2241                                 clear_highpage(head + i);
2242                                 flush_dcache_page(head + i);
2243                         }
2244                 }
2245                 if (copied < PAGE_SIZE) {
2246                         unsigned from = pos & (PAGE_SIZE - 1);
2247                         zero_user_segments(page, 0, from,
2248                                         from + copied, PAGE_SIZE);
2249                 }
2250                 SetPageUptodate(head);
2251         }
2252         set_page_dirty(page);
2253         unlock_page(page);
2254         put_page(page);
2255
2256         return copied;
2257 }
2258
2259 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2260 {
2261         struct file *file = iocb->ki_filp;
2262         struct inode *inode = file_inode(file);
2263         struct address_space *mapping = inode->i_mapping;
2264         pgoff_t index;
2265         unsigned long offset;
2266         enum sgp_type sgp = SGP_READ;
2267         int error = 0;
2268         ssize_t retval = 0;
2269         loff_t *ppos = &iocb->ki_pos;
2270
2271         /*
2272          * Might this read be for a stacking filesystem?  Then when reading
2273          * holes of a sparse file, we actually need to allocate those pages,
2274          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2275          */
2276         if (!iter_is_iovec(to))
2277                 sgp = SGP_CACHE;
2278
2279         index = *ppos >> PAGE_SHIFT;
2280         offset = *ppos & ~PAGE_MASK;
2281
2282         for (;;) {
2283                 struct page *page = NULL;
2284                 pgoff_t end_index;
2285                 unsigned long nr, ret;
2286                 loff_t i_size = i_size_read(inode);
2287
2288                 end_index = i_size >> PAGE_SHIFT;
2289                 if (index > end_index)
2290                         break;
2291                 if (index == end_index) {
2292                         nr = i_size & ~PAGE_MASK;
2293                         if (nr <= offset)
2294                                 break;
2295                 }
2296
2297                 error = shmem_getpage(inode, index, &page, sgp);
2298                 if (error) {
2299                         if (error == -EINVAL)
2300                                 error = 0;
2301                         break;
2302                 }
2303                 if (page) {
2304                         if (sgp == SGP_CACHE)
2305                                 set_page_dirty(page);
2306                         unlock_page(page);
2307                 }
2308
2309                 /*
2310                  * We must evaluate after, since reads (unlike writes)
2311                  * are called without i_mutex protection against truncate
2312                  */
2313                 nr = PAGE_SIZE;
2314                 i_size = i_size_read(inode);
2315                 end_index = i_size >> PAGE_SHIFT;
2316                 if (index == end_index) {
2317                         nr = i_size & ~PAGE_MASK;
2318                         if (nr <= offset) {
2319                                 if (page)
2320                                         put_page(page);
2321                                 break;
2322                         }
2323                 }
2324                 nr -= offset;
2325
2326                 if (page) {
2327                         /*
2328                          * If users can be writing to this page using arbitrary
2329                          * virtual addresses, take care about potential aliasing
2330                          * before reading the page on the kernel side.
2331                          */
2332                         if (mapping_writably_mapped(mapping))
2333                                 flush_dcache_page(page);
2334                         /*
2335                          * Mark the page accessed if we read the beginning.
2336                          */
2337                         if (!offset)
2338                                 mark_page_accessed(page);
2339                 } else {
2340                         page = ZERO_PAGE(0);
2341                         get_page(page);
2342                 }
2343
2344                 /*
2345                  * Ok, we have the page, and it's up-to-date, so
2346                  * now we can copy it to user space...
2347                  */
2348                 ret = copy_page_to_iter(page, offset, nr, to);
2349                 retval += ret;
2350                 offset += ret;
2351                 index += offset >> PAGE_SHIFT;
2352                 offset &= ~PAGE_MASK;
2353
2354                 put_page(page);
2355                 if (!iov_iter_count(to))
2356                         break;
2357                 if (ret < nr) {
2358                         error = -EFAULT;
2359                         break;
2360                 }
2361                 cond_resched();
2362         }
2363
2364         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2365         file_accessed(file);
2366         return retval ? retval : error;
2367 }
2368
2369 /*
2370  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2371  */
2372 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2373                                     pgoff_t index, pgoff_t end, int whence)
2374 {
2375         struct page *page;
2376         struct pagevec pvec;
2377         pgoff_t indices[PAGEVEC_SIZE];
2378         bool done = false;
2379         int i;
2380
2381         pagevec_init(&pvec, 0);
2382         pvec.nr = 1;            /* start small: we may be there already */
2383         while (!done) {
2384                 pvec.nr = find_get_entries(mapping, index,
2385                                         pvec.nr, pvec.pages, indices);
2386                 if (!pvec.nr) {
2387                         if (whence == SEEK_DATA)
2388                                 index = end;
2389                         break;
2390                 }
2391                 for (i = 0; i < pvec.nr; i++, index++) {
2392                         if (index < indices[i]) {
2393                                 if (whence == SEEK_HOLE) {
2394                                         done = true;
2395                                         break;
2396                                 }
2397                                 index = indices[i];
2398                         }
2399                         page = pvec.pages[i];
2400                         if (page && !radix_tree_exceptional_entry(page)) {
2401                                 if (!PageUptodate(page))
2402                                         page = NULL;
2403                         }
2404                         if (index >= end ||
2405                             (page && whence == SEEK_DATA) ||
2406                             (!page && whence == SEEK_HOLE)) {
2407                                 done = true;
2408                                 break;
2409                         }
2410                 }
2411                 pagevec_remove_exceptionals(&pvec);
2412                 pagevec_release(&pvec);
2413                 pvec.nr = PAGEVEC_SIZE;
2414                 cond_resched();
2415         }
2416         return index;
2417 }
2418
2419 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2420 {
2421         struct address_space *mapping = file->f_mapping;
2422         struct inode *inode = mapping->host;
2423         pgoff_t start, end;
2424         loff_t new_offset;
2425
2426         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2427                 return generic_file_llseek_size(file, offset, whence,
2428                                         MAX_LFS_FILESIZE, i_size_read(inode));
2429         inode_lock(inode);
2430         /* We're holding i_mutex so we can access i_size directly */
2431
2432         if (offset < 0 || offset >= inode->i_size)
2433                 offset = -ENXIO;
2434         else {
2435                 start = offset >> PAGE_SHIFT;
2436                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2437                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2438                 new_offset <<= PAGE_SHIFT;
2439                 if (new_offset > offset) {
2440                         if (new_offset < inode->i_size)
2441                                 offset = new_offset;
2442                         else if (whence == SEEK_DATA)
2443                                 offset = -ENXIO;
2444                         else
2445                                 offset = inode->i_size;
2446                 }
2447         }
2448
2449         if (offset >= 0)
2450                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2451         inode_unlock(inode);
2452         return offset;
2453 }
2454
2455 /*
2456  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2457  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2458  */
2459 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2460 #define LAST_SCAN               4       /* about 150ms max */
2461
2462 static void shmem_tag_pins(struct address_space *mapping)
2463 {
2464         struct radix_tree_iter iter;
2465         void **slot;
2466         pgoff_t start;
2467         struct page *page;
2468         unsigned int tagged = 0;
2469
2470         lru_add_drain();
2471         start = 0;
2472
2473         spin_lock_irq(&mapping->tree_lock);
2474         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2475                 page = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
2476                 if (!page || radix_tree_exception(page)) {
2477                         if (radix_tree_deref_retry(page)) {
2478                                 slot = radix_tree_iter_retry(&iter);
2479                                 continue;
2480                         }
2481                 } else if (!PageTail(page) && page_count(page) !=
2482                            hpage_nr_pages(page) + total_mapcount(page)) {
2483                         radix_tree_tag_set(&mapping->page_tree, iter.index,
2484                                            SHMEM_TAG_PINNED);
2485                 }
2486
2487                 if (++tagged % 1024)
2488                         continue;
2489
2490                 slot = radix_tree_iter_next(&iter);
2491                 spin_unlock_irq(&mapping->tree_lock);
2492                 cond_resched();
2493                 spin_lock_irq(&mapping->tree_lock);
2494         }
2495         spin_unlock_irq(&mapping->tree_lock);
2496 }
2497
2498 /*
2499  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2500  * via get_user_pages(), drivers might have some pending I/O without any active
2501  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2502  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2503  * them to be dropped.
2504  * The caller must guarantee that no new user will acquire writable references
2505  * to those pages to avoid races.
2506  */
2507 static int shmem_wait_for_pins(struct address_space *mapping)
2508 {
2509         struct radix_tree_iter iter;
2510         void **slot;
2511         pgoff_t start;
2512         struct page *page;
2513         int error, scan;
2514
2515         shmem_tag_pins(mapping);
2516
2517         error = 0;
2518         for (scan = 0; scan <= LAST_SCAN; scan++) {
2519                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2520                         break;
2521
2522                 if (!scan)
2523                         lru_add_drain_all();
2524                 else if (schedule_timeout_killable((HZ << scan) / 200))
2525                         scan = LAST_SCAN;
2526
2527                 start = 0;
2528                 rcu_read_lock();
2529                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2530                                            start, SHMEM_TAG_PINNED) {
2531
2532                         page = radix_tree_deref_slot(slot);
2533                         if (radix_tree_exception(page)) {
2534                                 if (radix_tree_deref_retry(page)) {
2535                                         slot = radix_tree_iter_retry(&iter);
2536                                         continue;
2537                                 }
2538
2539                                 page = NULL;
2540                         }
2541
2542                         if (page && page_count(page) !=
2543                             hpage_nr_pages(page) + total_mapcount(page)) {
2544                                 if (scan < LAST_SCAN)
2545                                         goto continue_resched;
2546
2547                                 /*
2548                                  * On the last scan, we clean up all those tags
2549                                  * we inserted; but make a note that we still
2550                                  * found pages pinned.
2551                                  */
2552                                 error = -EBUSY;
2553                         }
2554
2555                         spin_lock_irq(&mapping->tree_lock);
2556                         radix_tree_tag_clear(&mapping->page_tree,
2557                                              iter.index, SHMEM_TAG_PINNED);
2558                         spin_unlock_irq(&mapping->tree_lock);
2559 continue_resched:
2560                         if (need_resched()) {
2561                                 cond_resched_rcu();
2562                                 slot = radix_tree_iter_next(&iter);
2563                         }
2564                 }
2565                 rcu_read_unlock();
2566         }
2567
2568         return error;
2569 }
2570
2571 #define F_ALL_SEALS (F_SEAL_SEAL | \
2572                      F_SEAL_SHRINK | \
2573                      F_SEAL_GROW | \
2574                      F_SEAL_WRITE)
2575
2576 int shmem_add_seals(struct file *file, unsigned int seals)
2577 {
2578         struct inode *inode = file_inode(file);
2579         struct shmem_inode_info *info = SHMEM_I(inode);
2580         int error;
2581
2582         /*
2583          * SEALING
2584          * Sealing allows multiple parties to share a shmem-file but restrict
2585          * access to a specific subset of file operations. Seals can only be
2586          * added, but never removed. This way, mutually untrusted parties can
2587          * share common memory regions with a well-defined policy. A malicious
2588          * peer can thus never perform unwanted operations on a shared object.
2589          *
2590          * Seals are only supported on special shmem-files and always affect
2591          * the whole underlying inode. Once a seal is set, it may prevent some
2592          * kinds of access to the file. Currently, the following seals are
2593          * defined:
2594          *   SEAL_SEAL: Prevent further seals from being set on this file
2595          *   SEAL_SHRINK: Prevent the file from shrinking
2596          *   SEAL_GROW: Prevent the file from growing
2597          *   SEAL_WRITE: Prevent write access to the file
2598          *
2599          * As we don't require any trust relationship between two parties, we
2600          * must prevent seals from being removed. Therefore, sealing a file
2601          * only adds a given set of seals to the file, it never touches
2602          * existing seals. Furthermore, the "setting seals"-operation can be
2603          * sealed itself, which basically prevents any further seal from being
2604          * added.
2605          *
2606          * Semantics of sealing are only defined on volatile files. Only
2607          * anonymous shmem files support sealing. More importantly, seals are
2608          * never written to disk. Therefore, there's no plan to support it on
2609          * other file types.
2610          */
2611
2612         if (file->f_op != &shmem_file_operations)
2613                 return -EINVAL;
2614         if (!(file->f_mode & FMODE_WRITE))
2615                 return -EPERM;
2616         if (seals & ~(unsigned int)F_ALL_SEALS)
2617                 return -EINVAL;
2618
2619         inode_lock(inode);
2620
2621         if (info->seals & F_SEAL_SEAL) {
2622                 error = -EPERM;
2623                 goto unlock;
2624         }
2625
2626         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2627                 error = mapping_deny_writable(file->f_mapping);
2628                 if (error)
2629                         goto unlock;
2630
2631                 error = shmem_wait_for_pins(file->f_mapping);
2632                 if (error) {
2633                         mapping_allow_writable(file->f_mapping);
2634                         goto unlock;
2635                 }
2636         }
2637
2638         info->seals |= seals;
2639         error = 0;
2640
2641 unlock:
2642         inode_unlock(inode);
2643         return error;
2644 }
2645 EXPORT_SYMBOL_GPL(shmem_add_seals);
2646
2647 int shmem_get_seals(struct file *file)
2648 {
2649         if (file->f_op != &shmem_file_operations)
2650                 return -EINVAL;
2651
2652         return SHMEM_I(file_inode(file))->seals;
2653 }
2654 EXPORT_SYMBOL_GPL(shmem_get_seals);
2655
2656 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2657 {
2658         long error;
2659
2660         switch (cmd) {
2661         case F_ADD_SEALS:
2662                 /* disallow upper 32bit */
2663                 if (arg > UINT_MAX)
2664                         return -EINVAL;
2665
2666                 error = shmem_add_seals(file, arg);
2667                 break;
2668         case F_GET_SEALS:
2669                 error = shmem_get_seals(file);
2670                 break;
2671         default:
2672                 error = -EINVAL;
2673                 break;
2674         }
2675
2676         return error;
2677 }
2678
2679 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2680                                                          loff_t len)
2681 {
2682         struct inode *inode = file_inode(file);
2683         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2684         struct shmem_inode_info *info = SHMEM_I(inode);
2685         struct shmem_falloc shmem_falloc;
2686         pgoff_t start, index, end;
2687         int error;
2688
2689         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2690                 return -EOPNOTSUPP;
2691
2692         inode_lock(inode);
2693
2694         if (mode & FALLOC_FL_PUNCH_HOLE) {
2695                 struct address_space *mapping = file->f_mapping;
2696                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2697                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2698                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2699
2700                 /* protected by i_mutex */
2701                 if (info->seals & F_SEAL_WRITE) {
2702                         error = -EPERM;
2703                         goto out;
2704                 }
2705
2706                 shmem_falloc.waitq = &shmem_falloc_waitq;
2707                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2708                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2709                 spin_lock(&inode->i_lock);
2710                 inode->i_private = &shmem_falloc;
2711                 spin_unlock(&inode->i_lock);
2712
2713                 if ((u64)unmap_end > (u64)unmap_start)
2714                         unmap_mapping_range(mapping, unmap_start,
2715                                             1 + unmap_end - unmap_start, 0);
2716                 shmem_truncate_range(inode, offset, offset + len - 1);
2717                 /* No need to unmap again: hole-punching leaves COWed pages */
2718
2719                 spin_lock(&inode->i_lock);
2720                 inode->i_private = NULL;
2721                 wake_up_all(&shmem_falloc_waitq);
2722                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2723                 spin_unlock(&inode->i_lock);
2724                 error = 0;
2725                 goto out;
2726         }
2727
2728         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2729         error = inode_newsize_ok(inode, offset + len);
2730         if (error)
2731                 goto out;
2732
2733         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2734                 error = -EPERM;
2735                 goto out;
2736         }
2737
2738         start = offset >> PAGE_SHIFT;
2739         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2740         /* Try to avoid a swapstorm if len is impossible to satisfy */
2741         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2742                 error = -ENOSPC;
2743                 goto out;
2744         }
2745
2746         shmem_falloc.waitq = NULL;
2747         shmem_falloc.start = start;
2748         shmem_falloc.next  = start;
2749         shmem_falloc.nr_falloced = 0;
2750         shmem_falloc.nr_unswapped = 0;
2751         spin_lock(&inode->i_lock);
2752         inode->i_private = &shmem_falloc;
2753         spin_unlock(&inode->i_lock);
2754
2755         for (index = start; index < end; index++) {
2756                 struct page *page;
2757
2758                 /*
2759                  * Good, the fallocate(2) manpage permits EINTR: we may have
2760                  * been interrupted because we are using up too much memory.
2761                  */
2762                 if (signal_pending(current))
2763                         error = -EINTR;
2764                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2765                         error = -ENOMEM;
2766                 else
2767                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2768                 if (error) {
2769                         /* Remove the !PageUptodate pages we added */
2770                         if (index > start) {
2771                                 shmem_undo_range(inode,
2772                                     (loff_t)start << PAGE_SHIFT,
2773                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2774                         }
2775                         goto undone;
2776                 }
2777
2778                 /*
2779                  * Inform shmem_writepage() how far we have reached.
2780                  * No need for lock or barrier: we have the page lock.
2781                  */
2782                 shmem_falloc.next++;
2783                 if (!PageUptodate(page))
2784                         shmem_falloc.nr_falloced++;
2785
2786                 /*
2787                  * If !PageUptodate, leave it that way so that freeable pages
2788                  * can be recognized if we need to rollback on error later.
2789                  * But set_page_dirty so that memory pressure will swap rather
2790                  * than free the pages we are allocating (and SGP_CACHE pages
2791                  * might still be clean: we now need to mark those dirty too).
2792                  */
2793                 set_page_dirty(page);
2794                 unlock_page(page);
2795                 put_page(page);
2796                 cond_resched();
2797         }
2798
2799         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2800                 i_size_write(inode, offset + len);
2801         inode->i_ctime = current_time(inode);
2802 undone:
2803         spin_lock(&inode->i_lock);
2804         inode->i_private = NULL;
2805         spin_unlock(&inode->i_lock);
2806 out:
2807         inode_unlock(inode);
2808         return error;
2809 }
2810
2811 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2812 {
2813         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2814
2815         buf->f_type = TMPFS_MAGIC;
2816         buf->f_bsize = PAGE_SIZE;
2817         buf->f_namelen = NAME_MAX;
2818         if (sbinfo->max_blocks) {
2819                 buf->f_blocks = sbinfo->max_blocks;
2820                 buf->f_bavail =
2821                 buf->f_bfree  = sbinfo->max_blocks -
2822                                 percpu_counter_sum(&sbinfo->used_blocks);
2823         }
2824         if (sbinfo->max_inodes) {
2825                 buf->f_files = sbinfo->max_inodes;
2826                 buf->f_ffree = sbinfo->free_inodes;
2827         }
2828         /* else leave those fields 0 like simple_statfs */
2829         return 0;
2830 }
2831
2832 /*
2833  * File creation. Allocate an inode, and we're done..
2834  */
2835 static int
2836 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2837 {
2838         struct inode *inode;
2839         int error = -ENOSPC;
2840
2841         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2842         if (inode) {
2843                 error = simple_acl_create(dir, inode);
2844                 if (error)
2845                         goto out_iput;
2846                 error = security_inode_init_security(inode, dir,
2847                                                      &dentry->d_name,
2848                                                      shmem_initxattrs, NULL);
2849                 if (error && error != -EOPNOTSUPP)
2850                         goto out_iput;
2851
2852                 error = 0;
2853                 dir->i_size += BOGO_DIRENT_SIZE;
2854                 dir->i_ctime = dir->i_mtime = current_time(dir);
2855                 d_instantiate(dentry, inode);
2856                 dget(dentry); /* Extra count - pin the dentry in core */
2857         }
2858         return error;
2859 out_iput:
2860         iput(inode);
2861         return error;
2862 }
2863
2864 static int
2865 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2866 {
2867         struct inode *inode;
2868         int error = -ENOSPC;
2869
2870         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2871         if (inode) {
2872                 error = security_inode_init_security(inode, dir,
2873                                                      NULL,
2874                                                      shmem_initxattrs, NULL);
2875                 if (error && error != -EOPNOTSUPP)
2876                         goto out_iput;
2877                 error = simple_acl_create(dir, inode);
2878                 if (error)
2879                         goto out_iput;
2880                 d_tmpfile(dentry, inode);
2881         }
2882         return error;
2883 out_iput:
2884         iput(inode);
2885         return error;
2886 }
2887
2888 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2889 {
2890         int error;
2891
2892         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2893                 return error;
2894         inc_nlink(dir);
2895         return 0;
2896 }
2897
2898 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2899                 bool excl)
2900 {
2901         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2902 }
2903
2904 /*
2905  * Link a file..
2906  */
2907 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2908 {
2909         struct inode *inode = d_inode(old_dentry);
2910         int ret = 0;
2911
2912         /*
2913          * No ordinary (disk based) filesystem counts links as inodes;
2914          * but each new link needs a new dentry, pinning lowmem, and
2915          * tmpfs dentries cannot be pruned until they are unlinked.
2916          * But if an O_TMPFILE file is linked into the tmpfs, the
2917          * first link must skip that, to get the accounting right.
2918          */
2919         if (inode->i_nlink) {
2920                 ret = shmem_reserve_inode(inode->i_sb);
2921                 if (ret)
2922                         goto out;
2923         }
2924
2925         dir->i_size += BOGO_DIRENT_SIZE;
2926         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2927         inc_nlink(inode);
2928         ihold(inode);   /* New dentry reference */
2929         dget(dentry);           /* Extra pinning count for the created dentry */
2930         d_instantiate(dentry, inode);
2931 out:
2932         return ret;
2933 }
2934
2935 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2936 {
2937         struct inode *inode = d_inode(dentry);
2938
2939         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2940                 shmem_free_inode(inode->i_sb);
2941
2942         dir->i_size -= BOGO_DIRENT_SIZE;
2943         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2944         drop_nlink(inode);
2945         dput(dentry);   /* Undo the count from "create" - this does all the work */
2946         return 0;
2947 }
2948
2949 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2950 {
2951         if (!simple_empty(dentry))
2952                 return -ENOTEMPTY;
2953
2954         drop_nlink(d_inode(dentry));
2955         drop_nlink(dir);
2956         return shmem_unlink(dir, dentry);
2957 }
2958
2959 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2960 {
2961         bool old_is_dir = d_is_dir(old_dentry);
2962         bool new_is_dir = d_is_dir(new_dentry);
2963
2964         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2965                 if (old_is_dir) {
2966                         drop_nlink(old_dir);
2967                         inc_nlink(new_dir);
2968                 } else {
2969                         drop_nlink(new_dir);
2970                         inc_nlink(old_dir);
2971                 }
2972         }
2973         old_dir->i_ctime = old_dir->i_mtime =
2974         new_dir->i_ctime = new_dir->i_mtime =
2975         d_inode(old_dentry)->i_ctime =
2976         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2977
2978         return 0;
2979 }
2980
2981 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2982 {
2983         struct dentry *whiteout;
2984         int error;
2985
2986         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2987         if (!whiteout)
2988                 return -ENOMEM;
2989
2990         error = shmem_mknod(old_dir, whiteout,
2991                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2992         dput(whiteout);
2993         if (error)
2994                 return error;
2995
2996         /*
2997          * Cheat and hash the whiteout while the old dentry is still in
2998          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2999          *
3000          * d_lookup() will consistently find one of them at this point,
3001          * not sure which one, but that isn't even important.
3002          */
3003         d_rehash(whiteout);
3004         return 0;
3005 }
3006
3007 /*
3008  * The VFS layer already does all the dentry stuff for rename,
3009  * we just have to decrement the usage count for the target if
3010  * it exists so that the VFS layer correctly free's it when it
3011  * gets overwritten.
3012  */
3013 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3014 {
3015         struct inode *inode = d_inode(old_dentry);
3016         int they_are_dirs = S_ISDIR(inode->i_mode);
3017
3018         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3019                 return -EINVAL;
3020
3021         if (flags & RENAME_EXCHANGE)
3022                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3023
3024         if (!simple_empty(new_dentry))
3025                 return -ENOTEMPTY;
3026
3027         if (flags & RENAME_WHITEOUT) {
3028                 int error;
3029
3030                 error = shmem_whiteout(old_dir, old_dentry);
3031                 if (error)
3032                         return error;
3033         }
3034
3035         if (d_really_is_positive(new_dentry)) {
3036                 (void) shmem_unlink(new_dir, new_dentry);
3037                 if (they_are_dirs) {
3038                         drop_nlink(d_inode(new_dentry));
3039                         drop_nlink(old_dir);
3040                 }
3041         } else if (they_are_dirs) {
3042                 drop_nlink(old_dir);
3043                 inc_nlink(new_dir);
3044         }
3045
3046         old_dir->i_size -= BOGO_DIRENT_SIZE;
3047         new_dir->i_size += BOGO_DIRENT_SIZE;
3048         old_dir->i_ctime = old_dir->i_mtime =
3049         new_dir->i_ctime = new_dir->i_mtime =
3050         inode->i_ctime = current_time(old_dir);
3051         return 0;
3052 }
3053
3054 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3055 {
3056         int error;
3057         int len;
3058         struct inode *inode;
3059         struct page *page;
3060         struct shmem_inode_info *info;
3061
3062         len = strlen(symname) + 1;
3063         if (len > PAGE_SIZE)
3064                 return -ENAMETOOLONG;
3065
3066         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3067         if (!inode)
3068                 return -ENOSPC;
3069
3070         error = security_inode_init_security(inode, dir, &dentry->d_name,
3071                                              shmem_initxattrs, NULL);
3072         if (error) {
3073                 if (error != -EOPNOTSUPP) {
3074                         iput(inode);
3075                         return error;
3076                 }
3077                 error = 0;
3078         }
3079
3080         info = SHMEM_I(inode);
3081         inode->i_size = len-1;
3082         if (len <= SHORT_SYMLINK_LEN) {
3083                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3084                 if (!inode->i_link) {
3085                         iput(inode);
3086                         return -ENOMEM;
3087                 }
3088                 inode->i_op = &shmem_short_symlink_operations;
3089         } else {
3090                 inode_nohighmem(inode);
3091                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3092                 if (error) {
3093                         iput(inode);
3094                         return error;
3095                 }
3096                 inode->i_mapping->a_ops = &shmem_aops;
3097                 inode->i_op = &shmem_symlink_inode_operations;
3098                 memcpy(page_address(page), symname, len);
3099                 SetPageUptodate(page);
3100                 set_page_dirty(page);
3101                 unlock_page(page);
3102                 put_page(page);
3103         }
3104         dir->i_size += BOGO_DIRENT_SIZE;
3105         dir->i_ctime = dir->i_mtime = current_time(dir);
3106         d_instantiate(dentry, inode);
3107         dget(dentry);
3108         return 0;
3109 }
3110
3111 static void shmem_put_link(void *arg)
3112 {
3113         mark_page_accessed(arg);
3114         put_page(arg);
3115 }
3116
3117 static const char *shmem_get_link(struct dentry *dentry,
3118                                   struct inode *inode,
3119                                   struct delayed_call *done)
3120 {
3121         struct page *page = NULL;
3122         int error;
3123         if (!dentry) {
3124                 page = find_get_page(inode->i_mapping, 0);
3125                 if (!page)
3126                         return ERR_PTR(-ECHILD);
3127                 if (!PageUptodate(page)) {
3128                         put_page(page);
3129                         return ERR_PTR(-ECHILD);
3130                 }
3131         } else {
3132                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3133                 if (error)
3134                         return ERR_PTR(error);
3135                 unlock_page(page);
3136         }
3137         set_delayed_call(done, shmem_put_link, page);
3138         return page_address(page);
3139 }
3140
3141 #ifdef CONFIG_TMPFS_XATTR
3142 /*
3143  * Superblocks without xattr inode operations may get some security.* xattr
3144  * support from the LSM "for free". As soon as we have any other xattrs
3145  * like ACLs, we also need to implement the security.* handlers at
3146  * filesystem level, though.
3147  */
3148
3149 /*
3150  * Callback for security_inode_init_security() for acquiring xattrs.
3151  */
3152 static int shmem_initxattrs(struct inode *inode,
3153                             const struct xattr *xattr_array,
3154                             void *fs_info)
3155 {
3156         struct shmem_inode_info *info = SHMEM_I(inode);
3157         const struct xattr *xattr;
3158         struct simple_xattr *new_xattr;
3159         size_t len;
3160
3161         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3162                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3163                 if (!new_xattr)
3164                         return -ENOMEM;
3165
3166                 len = strlen(xattr->name) + 1;
3167                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3168                                           GFP_KERNEL);
3169                 if (!new_xattr->name) {
3170                         kfree(new_xattr);
3171                         return -ENOMEM;
3172                 }
3173
3174                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3175                        XATTR_SECURITY_PREFIX_LEN);
3176                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3177                        xattr->name, len);
3178
3179                 simple_xattr_list_add(&info->xattrs, new_xattr);
3180         }
3181
3182         return 0;
3183 }
3184
3185 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3186                                    struct dentry *unused, struct inode *inode,
3187                                    const char *name, void *buffer, size_t size)
3188 {
3189         struct shmem_inode_info *info = SHMEM_I(inode);
3190
3191         name = xattr_full_name(handler, name);
3192         return simple_xattr_get(&info->xattrs, name, buffer, size);
3193 }
3194
3195 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3196                                    struct dentry *unused, struct inode *inode,
3197                                    const char *name, const void *value,
3198                                    size_t size, int flags)
3199 {
3200         struct shmem_inode_info *info = SHMEM_I(inode);
3201
3202         name = xattr_full_name(handler, name);
3203         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3204 }
3205
3206 static const struct xattr_handler shmem_security_xattr_handler = {
3207         .prefix = XATTR_SECURITY_PREFIX,
3208         .get = shmem_xattr_handler_get,
3209         .set = shmem_xattr_handler_set,
3210 };
3211
3212 static const struct xattr_handler shmem_trusted_xattr_handler = {
3213         .prefix = XATTR_TRUSTED_PREFIX,
3214         .get = shmem_xattr_handler_get,
3215         .set = shmem_xattr_handler_set,
3216 };
3217
3218 static const struct xattr_handler *shmem_xattr_handlers[] = {
3219 #ifdef CONFIG_TMPFS_POSIX_ACL
3220         &posix_acl_access_xattr_handler,
3221         &posix_acl_default_xattr_handler,
3222 #endif
3223         &shmem_security_xattr_handler,
3224         &shmem_trusted_xattr_handler,
3225         NULL
3226 };
3227
3228 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3229 {
3230         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3231         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3232 }
3233 #endif /* CONFIG_TMPFS_XATTR */
3234
3235 static const struct inode_operations shmem_short_symlink_operations = {
3236         .readlink       = generic_readlink,
3237         .get_link       = simple_get_link,
3238 #ifdef CONFIG_TMPFS_XATTR
3239         .listxattr      = shmem_listxattr,
3240 #endif
3241 };
3242
3243 static const struct inode_operations shmem_symlink_inode_operations = {
3244         .readlink       = generic_readlink,
3245         .get_link       = shmem_get_link,
3246 #ifdef CONFIG_TMPFS_XATTR
3247         .listxattr      = shmem_listxattr,
3248 #endif
3249 };
3250
3251 static struct dentry *shmem_get_parent(struct dentry *child)
3252 {
3253         return ERR_PTR(-ESTALE);
3254 }
3255
3256 static int shmem_match(struct inode *ino, void *vfh)
3257 {
3258         __u32 *fh = vfh;
3259         __u64 inum = fh[2];
3260         inum = (inum << 32) | fh[1];
3261         return ino->i_ino == inum && fh[0] == ino->i_generation;
3262 }
3263
3264 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3265                 struct fid *fid, int fh_len, int fh_type)
3266 {
3267         struct inode *inode;
3268         struct dentry *dentry = NULL;
3269         u64 inum;
3270
3271         if (fh_len < 3)
3272                 return NULL;
3273
3274         inum = fid->raw[2];
3275         inum = (inum << 32) | fid->raw[1];
3276
3277         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3278                         shmem_match, fid->raw);
3279         if (inode) {
3280                 dentry = d_find_alias(inode);
3281                 iput(inode);
3282         }
3283
3284         return dentry;
3285 }
3286
3287 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3288                                 struct inode *parent)
3289 {
3290         if (*len < 3) {
3291                 *len = 3;
3292                 return FILEID_INVALID;
3293         }
3294
3295         if (inode_unhashed(inode)) {
3296                 /* Unfortunately insert_inode_hash is not idempotent,
3297                  * so as we hash inodes here rather than at creation
3298                  * time, we need a lock to ensure we only try
3299                  * to do it once
3300                  */
3301                 static DEFINE_SPINLOCK(lock);
3302                 spin_lock(&lock);
3303                 if (inode_unhashed(inode))
3304                         __insert_inode_hash(inode,
3305                                             inode->i_ino + inode->i_generation);
3306                 spin_unlock(&lock);
3307         }
3308
3309         fh[0] = inode->i_generation;
3310         fh[1] = inode->i_ino;
3311         fh[2] = ((__u64)inode->i_ino) >> 32;
3312
3313         *len = 3;
3314         return 1;
3315 }
3316
3317 static const struct export_operations shmem_export_ops = {
3318         .get_parent     = shmem_get_parent,
3319         .encode_fh      = shmem_encode_fh,
3320         .fh_to_dentry   = shmem_fh_to_dentry,
3321 };
3322
3323 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3324                                bool remount)
3325 {
3326         char *this_char, *value, *rest;
3327         struct mempolicy *mpol = NULL;
3328         uid_t uid;
3329         gid_t gid;
3330
3331         while (options != NULL) {
3332                 this_char = options;
3333                 for (;;) {
3334                         /*
3335                          * NUL-terminate this option: unfortunately,
3336                          * mount options form a comma-separated list,
3337                          * but mpol's nodelist may also contain commas.
3338                          */
3339                         options = strchr(options, ',');
3340                         if (options == NULL)
3341                                 break;
3342                         options++;
3343                         if (!isdigit(*options)) {
3344                                 options[-1] = '\0';
3345                                 break;
3346                         }
3347                 }
3348                 if (!*this_char)
3349                         continue;
3350                 if ((value = strchr(this_char,'=')) != NULL) {
3351                         *value++ = 0;
3352                 } else {
3353                         pr_err("tmpfs: No value for mount option '%s'\n",
3354                                this_char);
3355                         goto error;
3356                 }
3357
3358                 if (!strcmp(this_char,"size")) {
3359                         unsigned long long size;
3360                         size = memparse(value,&rest);
3361                         if (*rest == '%') {
3362                                 size <<= PAGE_SHIFT;
3363                                 size *= totalram_pages;
3364                                 do_div(size, 100);
3365                                 rest++;
3366                         }
3367                         if (*rest)
3368                                 goto bad_val;
3369                         sbinfo->max_blocks =
3370                                 DIV_ROUND_UP(size, PAGE_SIZE);
3371                 } else if (!strcmp(this_char,"nr_blocks")) {
3372                         sbinfo->max_blocks = memparse(value, &rest);
3373                         if (*rest)
3374                                 goto bad_val;
3375                 } else if (!strcmp(this_char,"nr_inodes")) {
3376                         sbinfo->max_inodes = memparse(value, &rest);
3377                         if (*rest)
3378                                 goto bad_val;
3379                 } else if (!strcmp(this_char,"mode")) {
3380                         if (remount)
3381                                 continue;
3382                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3383                         if (*rest)
3384                                 goto bad_val;
3385                 } else if (!strcmp(this_char,"uid")) {
3386                         if (remount)
3387                                 continue;
3388                         uid = simple_strtoul(value, &rest, 0);
3389                         if (*rest)
3390                                 goto bad_val;
3391                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3392                         if (!uid_valid(sbinfo->uid))
3393                                 goto bad_val;
3394                 } else if (!strcmp(this_char,"gid")) {
3395                         if (remount)
3396                                 continue;
3397                         gid = simple_strtoul(value, &rest, 0);
3398                         if (*rest)
3399                                 goto bad_val;
3400                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3401                         if (!gid_valid(sbinfo->gid))
3402                                 goto bad_val;
3403 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3404                 } else if (!strcmp(this_char, "huge")) {
3405                         int huge;
3406                         huge = shmem_parse_huge(value);
3407                         if (huge < 0)
3408                                 goto bad_val;
3409                         if (!has_transparent_hugepage() &&
3410                                         huge != SHMEM_HUGE_NEVER)
3411                                 goto bad_val;
3412                         sbinfo->huge = huge;
3413 #endif
3414 #ifdef CONFIG_NUMA
3415                 } else if (!strcmp(this_char,"mpol")) {
3416                         mpol_put(mpol);
3417                         mpol = NULL;
3418                         if (mpol_parse_str(value, &mpol))
3419                                 goto bad_val;
3420 #endif
3421                 } else {
3422                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3423                         goto error;
3424                 }
3425         }
3426         sbinfo->mpol = mpol;
3427         return 0;
3428
3429 bad_val:
3430         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3431                value, this_char);
3432 error:
3433         mpol_put(mpol);
3434         return 1;
3435
3436 }
3437
3438 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3439 {
3440         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3441         struct shmem_sb_info config = *sbinfo;
3442         unsigned long inodes;
3443         int error = -EINVAL;
3444
3445         config.mpol = NULL;
3446         if (shmem_parse_options(data, &config, true))
3447                 return error;
3448
3449         spin_lock(&sbinfo->stat_lock);
3450         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3451         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3452                 goto out;
3453         if (config.max_inodes < inodes)
3454                 goto out;
3455         /*
3456          * Those tests disallow limited->unlimited while any are in use;
3457          * but we must separately disallow unlimited->limited, because
3458          * in that case we have no record of how much is already in use.
3459          */
3460         if (config.max_blocks && !sbinfo->max_blocks)
3461                 goto out;
3462         if (config.max_inodes && !sbinfo->max_inodes)
3463                 goto out;
3464
3465         error = 0;
3466         sbinfo->huge = config.huge;
3467         sbinfo->max_blocks  = config.max_blocks;
3468         sbinfo->max_inodes  = config.max_inodes;
3469         sbinfo->free_inodes = config.max_inodes - inodes;
3470
3471         /*
3472          * Preserve previous mempolicy unless mpol remount option was specified.
3473          */
3474         if (config.mpol) {
3475                 mpol_put(sbinfo->mpol);
3476                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3477         }
3478 out:
3479         spin_unlock(&sbinfo->stat_lock);
3480         return error;
3481 }
3482
3483 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3484 {
3485         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3486
3487         if (sbinfo->max_blocks != shmem_default_max_blocks())
3488                 seq_printf(seq, ",size=%luk",
3489                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3490         if (sbinfo->max_inodes != shmem_default_max_inodes())
3491                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3492         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3493                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3494         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3495                 seq_printf(seq, ",uid=%u",
3496                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3497         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3498                 seq_printf(seq, ",gid=%u",
3499                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3500 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3501         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3502         if (sbinfo->huge)
3503                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3504 #endif
3505         shmem_show_mpol(seq, sbinfo->mpol);
3506         return 0;
3507 }
3508
3509 #define MFD_NAME_PREFIX "memfd:"
3510 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3511 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3512
3513 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3514
3515 SYSCALL_DEFINE2(memfd_create,
3516                 const char __user *, uname,
3517                 unsigned int, flags)
3518 {
3519         struct shmem_inode_info *info;
3520         struct file *file;
3521         int fd, error;
3522         char *name;
3523         long len;
3524
3525         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3526                 return -EINVAL;
3527
3528         /* length includes terminating zero */
3529         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3530         if (len <= 0)
3531                 return -EFAULT;
3532         if (len > MFD_NAME_MAX_LEN + 1)
3533                 return -EINVAL;
3534
3535         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3536         if (!name)
3537                 return -ENOMEM;
3538
3539         strcpy(name, MFD_NAME_PREFIX);
3540         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3541                 error = -EFAULT;
3542                 goto err_name;
3543         }
3544
3545         /* terminating-zero may have changed after strnlen_user() returned */
3546         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3547                 error = -EFAULT;
3548                 goto err_name;
3549         }
3550
3551         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3552         if (fd < 0) {
3553                 error = fd;
3554                 goto err_name;
3555         }
3556
3557         file = shmem_file_setup(name, 0, VM_NORESERVE);
3558         if (IS_ERR(file)) {
3559                 error = PTR_ERR(file);
3560                 goto err_fd;
3561         }
3562         info = SHMEM_I(file_inode(file));
3563         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3564         file->f_flags |= O_RDWR | O_LARGEFILE;
3565         if (flags & MFD_ALLOW_SEALING)
3566                 info->seals &= ~F_SEAL_SEAL;
3567
3568         fd_install(fd, file);
3569         kfree(name);
3570         return fd;
3571
3572 err_fd:
3573         put_unused_fd(fd);
3574 err_name:
3575         kfree(name);
3576         return error;
3577 }
3578
3579 #endif /* CONFIG_TMPFS */
3580
3581 static void shmem_put_super(struct super_block *sb)
3582 {
3583         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3584
3585         percpu_counter_destroy(&sbinfo->used_blocks);
3586         mpol_put(sbinfo->mpol);
3587         kfree(sbinfo);
3588         sb->s_fs_info = NULL;
3589 }
3590
3591 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3592 {
3593         struct inode *inode;
3594         struct shmem_sb_info *sbinfo;
3595         int err = -ENOMEM;
3596
3597         /* Round up to L1_CACHE_BYTES to resist false sharing */
3598         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3599                                 L1_CACHE_BYTES), GFP_KERNEL);
3600         if (!sbinfo)
3601                 return -ENOMEM;
3602
3603         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3604         sbinfo->uid = current_fsuid();
3605         sbinfo->gid = current_fsgid();
3606         sb->s_fs_info = sbinfo;
3607
3608 #ifdef CONFIG_TMPFS
3609         /*
3610          * Per default we only allow half of the physical ram per
3611          * tmpfs instance, limiting inodes to one per page of lowmem;
3612          * but the internal instance is left unlimited.
3613          */
3614         if (!(sb->s_flags & MS_KERNMOUNT)) {
3615                 sbinfo->max_blocks = shmem_default_max_blocks();
3616                 sbinfo->max_inodes = shmem_default_max_inodes();
3617                 if (shmem_parse_options(data, sbinfo, false)) {
3618                         err = -EINVAL;
3619                         goto failed;
3620                 }
3621         } else {
3622                 sb->s_flags |= MS_NOUSER;
3623         }
3624         sb->s_export_op = &shmem_export_ops;
3625         sb->s_flags |= MS_NOSEC;
3626 #else
3627         sb->s_flags |= MS_NOUSER;
3628 #endif
3629
3630         spin_lock_init(&sbinfo->stat_lock);
3631         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3632                 goto failed;
3633         sbinfo->free_inodes = sbinfo->max_inodes;
3634         spin_lock_init(&sbinfo->shrinklist_lock);
3635         INIT_LIST_HEAD(&sbinfo->shrinklist);
3636
3637         sb->s_maxbytes = MAX_LFS_FILESIZE;
3638         sb->s_blocksize = PAGE_SIZE;
3639         sb->s_blocksize_bits = PAGE_SHIFT;
3640         sb->s_magic = TMPFS_MAGIC;
3641         sb->s_op = &shmem_ops;
3642         sb->s_time_gran = 1;
3643 #ifdef CONFIG_TMPFS_XATTR
3644         sb->s_xattr = shmem_xattr_handlers;
3645 #endif
3646 #ifdef CONFIG_TMPFS_POSIX_ACL
3647         sb->s_flags |= MS_POSIXACL;
3648 #endif
3649
3650         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3651         if (!inode)
3652                 goto failed;
3653         inode->i_uid = sbinfo->uid;
3654         inode->i_gid = sbinfo->gid;
3655         sb->s_root = d_make_root(inode);
3656         if (!sb->s_root)
3657                 goto failed;
3658         return 0;
3659
3660 failed:
3661         shmem_put_super(sb);
3662         return err;
3663 }
3664
3665 static struct kmem_cache *shmem_inode_cachep;
3666
3667 static struct inode *shmem_alloc_inode(struct super_block *sb)
3668 {
3669         struct shmem_inode_info *info;
3670         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3671         if (!info)
3672                 return NULL;
3673         return &info->vfs_inode;
3674 }
3675
3676 static void shmem_destroy_callback(struct rcu_head *head)
3677 {
3678         struct inode *inode = container_of(head, struct inode, i_rcu);
3679         if (S_ISLNK(inode->i_mode))
3680                 kfree(inode->i_link);
3681         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3682 }
3683
3684 static void shmem_destroy_inode(struct inode *inode)
3685 {
3686         if (S_ISREG(inode->i_mode))
3687                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3688         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3689 }
3690
3691 static void shmem_init_inode(void *foo)
3692 {
3693         struct shmem_inode_info *info = foo;
3694         inode_init_once(&info->vfs_inode);
3695 }
3696
3697 static int shmem_init_inodecache(void)
3698 {
3699         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3700                                 sizeof(struct shmem_inode_info),
3701                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3702         return 0;
3703 }
3704
3705 static void shmem_destroy_inodecache(void)
3706 {
3707         kmem_cache_destroy(shmem_inode_cachep);
3708 }
3709
3710 static const struct address_space_operations shmem_aops = {
3711         .writepage      = shmem_writepage,
3712         .set_page_dirty = __set_page_dirty_no_writeback,
3713 #ifdef CONFIG_TMPFS
3714         .write_begin    = shmem_write_begin,
3715         .write_end      = shmem_write_end,
3716 #endif
3717 #ifdef CONFIG_MIGRATION
3718         .migratepage    = migrate_page,
3719 #endif
3720         .error_remove_page = generic_error_remove_page,
3721 };
3722
3723 static const struct file_operations shmem_file_operations = {
3724         .mmap           = shmem_mmap,
3725         .get_unmapped_area = shmem_get_unmapped_area,
3726 #ifdef CONFIG_TMPFS
3727         .llseek         = shmem_file_llseek,
3728         .read_iter      = shmem_file_read_iter,
3729         .write_iter     = generic_file_write_iter,
3730         .fsync          = noop_fsync,
3731         .splice_read    = generic_file_splice_read,
3732         .splice_write   = iter_file_splice_write,
3733         .fallocate      = shmem_fallocate,
3734 #endif
3735 };
3736
3737 static const struct inode_operations shmem_inode_operations = {
3738         .getattr        = shmem_getattr,
3739         .setattr        = shmem_setattr,
3740 #ifdef CONFIG_TMPFS_XATTR
3741         .listxattr      = shmem_listxattr,
3742         .set_acl        = simple_set_acl,
3743 #endif
3744 };
3745
3746 static const struct inode_operations shmem_dir_inode_operations = {
3747 #ifdef CONFIG_TMPFS
3748         .create         = shmem_create,
3749         .lookup         = simple_lookup,
3750         .link           = shmem_link,
3751         .unlink         = shmem_unlink,
3752         .symlink        = shmem_symlink,
3753         .mkdir          = shmem_mkdir,
3754         .rmdir          = shmem_rmdir,
3755         .mknod          = shmem_mknod,
3756         .rename         = shmem_rename2,
3757         .tmpfile        = shmem_tmpfile,
3758 #endif
3759 #ifdef CONFIG_TMPFS_XATTR
3760         .listxattr      = shmem_listxattr,
3761 #endif
3762 #ifdef CONFIG_TMPFS_POSIX_ACL
3763         .setattr        = shmem_setattr,
3764         .set_acl        = simple_set_acl,
3765 #endif
3766 };
3767
3768 static const struct inode_operations shmem_special_inode_operations = {
3769 #ifdef CONFIG_TMPFS_XATTR
3770         .listxattr      = shmem_listxattr,
3771 #endif
3772 #ifdef CONFIG_TMPFS_POSIX_ACL
3773         .setattr        = shmem_setattr,
3774         .set_acl        = simple_set_acl,
3775 #endif
3776 };
3777
3778 static const struct super_operations shmem_ops = {
3779         .alloc_inode    = shmem_alloc_inode,
3780         .destroy_inode  = shmem_destroy_inode,
3781 #ifdef CONFIG_TMPFS
3782         .statfs         = shmem_statfs,
3783         .remount_fs     = shmem_remount_fs,
3784         .show_options   = shmem_show_options,
3785 #endif
3786         .evict_inode    = shmem_evict_inode,
3787         .drop_inode     = generic_delete_inode,
3788         .put_super      = shmem_put_super,
3789 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3790         .nr_cached_objects      = shmem_unused_huge_count,
3791         .free_cached_objects    = shmem_unused_huge_scan,
3792 #endif
3793 };
3794
3795 static const struct vm_operations_struct shmem_vm_ops = {
3796         .fault          = shmem_fault,
3797         .map_pages      = filemap_map_pages,
3798 #ifdef CONFIG_NUMA
3799         .set_policy     = shmem_set_policy,
3800         .get_policy     = shmem_get_policy,
3801 #endif
3802 };
3803
3804 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3805         int flags, const char *dev_name, void *data)
3806 {
3807         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3808 }
3809
3810 static struct file_system_type shmem_fs_type = {
3811         .owner          = THIS_MODULE,
3812         .name           = "tmpfs",
3813         .mount          = shmem_mount,
3814         .kill_sb        = kill_litter_super,
3815         .fs_flags       = FS_USERNS_MOUNT,
3816 };
3817
3818 int __init shmem_init(void)
3819 {
3820         int error;
3821
3822         /* If rootfs called this, don't re-init */
3823         if (shmem_inode_cachep)
3824                 return 0;
3825
3826         error = shmem_init_inodecache();
3827         if (error)
3828                 goto out3;
3829
3830         error = register_filesystem(&shmem_fs_type);
3831         if (error) {
3832                 pr_err("Could not register tmpfs\n");
3833                 goto out2;
3834         }
3835
3836         shm_mnt = kern_mount(&shmem_fs_type);
3837         if (IS_ERR(shm_mnt)) {
3838                 error = PTR_ERR(shm_mnt);
3839                 pr_err("Could not kern_mount tmpfs\n");
3840                 goto out1;
3841         }
3842
3843 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3844         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3845                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3846         else
3847                 shmem_huge = 0; /* just in case it was patched */
3848 #endif
3849         return 0;
3850
3851 out1:
3852         unregister_filesystem(&shmem_fs_type);
3853 out2:
3854         shmem_destroy_inodecache();
3855 out3:
3856         shm_mnt = ERR_PTR(error);
3857         return error;
3858 }
3859
3860 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3861 static ssize_t shmem_enabled_show(struct kobject *kobj,
3862                 struct kobj_attribute *attr, char *buf)
3863 {
3864         int values[] = {
3865                 SHMEM_HUGE_ALWAYS,
3866                 SHMEM_HUGE_WITHIN_SIZE,
3867                 SHMEM_HUGE_ADVISE,
3868                 SHMEM_HUGE_NEVER,
3869                 SHMEM_HUGE_DENY,
3870                 SHMEM_HUGE_FORCE,
3871         };
3872         int i, count;
3873
3874         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3875                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3876
3877                 count += sprintf(buf + count, fmt,
3878                                 shmem_format_huge(values[i]));
3879         }
3880         buf[count - 1] = '\n';
3881         return count;
3882 }
3883
3884 static ssize_t shmem_enabled_store(struct kobject *kobj,
3885                 struct kobj_attribute *attr, const char *buf, size_t count)
3886 {
3887         char tmp[16];
3888         int huge;
3889
3890         if (count + 1 > sizeof(tmp))
3891                 return -EINVAL;
3892         memcpy(tmp, buf, count);
3893         tmp[count] = '\0';
3894         if (count && tmp[count - 1] == '\n')
3895                 tmp[count - 1] = '\0';
3896
3897         huge = shmem_parse_huge(tmp);
3898         if (huge == -EINVAL)
3899                 return -EINVAL;
3900         if (!has_transparent_hugepage() &&
3901                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3902                 return -EINVAL;
3903
3904         shmem_huge = huge;
3905         if (shmem_huge > SHMEM_HUGE_DENY)
3906                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3907         return count;
3908 }
3909
3910 struct kobj_attribute shmem_enabled_attr =
3911         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3912 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3913
3914 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3915 bool shmem_huge_enabled(struct vm_area_struct *vma)
3916 {
3917         struct inode *inode = file_inode(vma->vm_file);
3918         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3919         loff_t i_size;
3920         pgoff_t off;
3921
3922         if (shmem_huge == SHMEM_HUGE_FORCE)
3923                 return true;
3924         if (shmem_huge == SHMEM_HUGE_DENY)
3925                 return false;
3926         switch (sbinfo->huge) {
3927                 case SHMEM_HUGE_NEVER:
3928                         return false;
3929                 case SHMEM_HUGE_ALWAYS:
3930                         return true;
3931                 case SHMEM_HUGE_WITHIN_SIZE:
3932                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3933                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3934                         if (i_size >= HPAGE_PMD_SIZE &&
3935                                         i_size >> PAGE_SHIFT >= off)
3936                                 return true;
3937                 case SHMEM_HUGE_ADVISE:
3938                         /* TODO: implement fadvise() hints */
3939                         return (vma->vm_flags & VM_HUGEPAGE);
3940                 default:
3941                         VM_BUG_ON(1);
3942                         return false;
3943         }
3944 }
3945 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3946
3947 #else /* !CONFIG_SHMEM */
3948
3949 /*
3950  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3951  *
3952  * This is intended for small system where the benefits of the full
3953  * shmem code (swap-backed and resource-limited) are outweighed by
3954  * their complexity. On systems without swap this code should be
3955  * effectively equivalent, but much lighter weight.
3956  */
3957
3958 static struct file_system_type shmem_fs_type = {
3959         .name           = "tmpfs",
3960         .mount          = ramfs_mount,
3961         .kill_sb        = kill_litter_super,
3962         .fs_flags       = FS_USERNS_MOUNT,
3963 };
3964
3965 int __init shmem_init(void)
3966 {
3967         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3968
3969         shm_mnt = kern_mount(&shmem_fs_type);
3970         BUG_ON(IS_ERR(shm_mnt));
3971
3972         return 0;
3973 }
3974
3975 int shmem_unuse(swp_entry_t swap, struct page *page)
3976 {
3977         return 0;
3978 }
3979
3980 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3981 {
3982         return 0;
3983 }
3984
3985 void shmem_unlock_mapping(struct address_space *mapping)
3986 {
3987 }
3988
3989 #ifdef CONFIG_MMU
3990 unsigned long shmem_get_unmapped_area(struct file *file,
3991                                       unsigned long addr, unsigned long len,
3992                                       unsigned long pgoff, unsigned long flags)
3993 {
3994         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3995 }
3996 #endif
3997
3998 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3999 {
4000         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4001 }
4002 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4003
4004 #define shmem_vm_ops                            generic_file_vm_ops
4005 #define shmem_file_operations                   ramfs_file_operations
4006 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4007 #define shmem_acct_size(flags, size)            0
4008 #define shmem_unacct_size(flags, size)          do {} while (0)
4009
4010 #endif /* CONFIG_SHMEM */
4011
4012 /* common code */
4013
4014 static const struct dentry_operations anon_ops = {
4015         .d_dname = simple_dname
4016 };
4017
4018 static struct file *__shmem_file_setup(const char *name, loff_t size,
4019                                        unsigned long flags, unsigned int i_flags)
4020 {
4021         struct file *res;
4022         struct inode *inode;
4023         struct path path;
4024         struct super_block *sb;
4025         struct qstr this;
4026
4027         if (IS_ERR(shm_mnt))
4028                 return ERR_CAST(shm_mnt);
4029
4030         if (size < 0 || size > MAX_LFS_FILESIZE)
4031                 return ERR_PTR(-EINVAL);
4032
4033         if (shmem_acct_size(flags, size))
4034                 return ERR_PTR(-ENOMEM);
4035
4036         res = ERR_PTR(-ENOMEM);
4037         this.name = name;
4038         this.len = strlen(name);
4039         this.hash = 0; /* will go */
4040         sb = shm_mnt->mnt_sb;
4041         path.mnt = mntget(shm_mnt);
4042         path.dentry = d_alloc_pseudo(sb, &this);
4043         if (!path.dentry)
4044                 goto put_memory;
4045         d_set_d_op(path.dentry, &anon_ops);
4046
4047         res = ERR_PTR(-ENOSPC);
4048         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4049         if (!inode)
4050                 goto put_memory;
4051
4052         inode->i_flags |= i_flags;
4053         d_instantiate(path.dentry, inode);
4054         inode->i_size = size;
4055         clear_nlink(inode);     /* It is unlinked */
4056         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4057         if (IS_ERR(res))
4058                 goto put_path;
4059
4060         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4061                   &shmem_file_operations);
4062         if (IS_ERR(res))
4063                 goto put_path;
4064
4065         return res;
4066
4067 put_memory:
4068         shmem_unacct_size(flags, size);
4069 put_path:
4070         path_put(&path);
4071         return res;
4072 }
4073
4074 /**
4075  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4076  *      kernel internal.  There will be NO LSM permission checks against the
4077  *      underlying inode.  So users of this interface must do LSM checks at a
4078  *      higher layer.  The users are the big_key and shm implementations.  LSM
4079  *      checks are provided at the key or shm level rather than the inode.
4080  * @name: name for dentry (to be seen in /proc/<pid>/maps
4081  * @size: size to be set for the file
4082  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4083  */
4084 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4085 {
4086         return __shmem_file_setup(name, size, flags, S_PRIVATE);
4087 }
4088
4089 /**
4090  * shmem_file_setup - get an unlinked file living in tmpfs
4091  * @name: name for dentry (to be seen in /proc/<pid>/maps
4092  * @size: size to be set for the file
4093  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4094  */
4095 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4096 {
4097         return __shmem_file_setup(name, size, flags, 0);
4098 }
4099 EXPORT_SYMBOL_GPL(shmem_file_setup);
4100
4101 /**
4102  * shmem_zero_setup - setup a shared anonymous mapping
4103  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4104  */
4105 int shmem_zero_setup(struct vm_area_struct *vma)
4106 {
4107         struct file *file;
4108         loff_t size = vma->vm_end - vma->vm_start;
4109
4110         /*
4111          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4112          * between XFS directory reading and selinux: since this file is only
4113          * accessible to the user through its mapping, use S_PRIVATE flag to
4114          * bypass file security, in the same way as shmem_kernel_file_setup().
4115          */
4116         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4117         if (IS_ERR(file))
4118                 return PTR_ERR(file);
4119
4120         if (vma->vm_file)
4121                 fput(vma->vm_file);
4122         vma->vm_file = file;
4123         vma->vm_ops = &shmem_vm_ops;
4124
4125         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4126                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4127                         (vma->vm_end & HPAGE_PMD_MASK)) {
4128                 khugepaged_enter(vma, vma->vm_flags);
4129         }
4130
4131         return 0;
4132 }
4133
4134 /**
4135  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4136  * @mapping:    the page's address_space
4137  * @index:      the page index
4138  * @gfp:        the page allocator flags to use if allocating
4139  *
4140  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4141  * with any new page allocations done using the specified allocation flags.
4142  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4143  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4144  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4145  *
4146  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4147  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4148  */
4149 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4150                                          pgoff_t index, gfp_t gfp)
4151 {
4152 #ifdef CONFIG_SHMEM
4153         struct inode *inode = mapping->host;
4154         struct page *page;
4155         int error;
4156
4157         BUG_ON(mapping->a_ops != &shmem_aops);
4158         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4159                                   gfp, NULL, NULL);
4160         if (error)
4161                 page = ERR_PTR(error);
4162         else
4163                 unlock_page(page);
4164         return page;
4165 #else
4166         /*
4167          * The tiny !SHMEM case uses ramfs without swap
4168          */
4169         return read_cache_page_gfp(mapping, index, gfp);
4170 #endif
4171 }
4172 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);