GNU Linux-libre 4.14.266-gnu1
[releases.git] / mm / swap_state.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24
25 #include <asm/pgtable.h>
26 #include "internal.h"
27
28 /*
29  * swapper_space is a fiction, retained to simplify the path through
30  * vmscan's shrink_page_list.
31  */
32 static const struct address_space_operations swap_aops = {
33         .writepage      = swap_writepage,
34         .set_page_dirty = swap_set_page_dirty,
35 #ifdef CONFIG_MIGRATION
36         .migratepage    = migrate_page,
37 #endif
38 };
39
40 struct address_space *swapper_spaces[MAX_SWAPFILES];
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
42 bool swap_vma_readahead = true;
43
44 #define SWAP_RA_WIN_SHIFT       (PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK       ((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX        SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK        (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48
49 #define SWAP_RA_HITS(v)         ((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v)          (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v)         ((v) & PAGE_MASK)
52
53 #define SWAP_RA_VAL(addr, win, hits)                            \
54         (((addr) & PAGE_MASK) |                                 \
55          (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |    \
56          ((hits) & SWAP_RA_HITS_MASK))
57
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma)                                    \
60         (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61
62 #define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)
63 #define ADD_CACHE_INFO(x, nr)   do { swap_cache_info.x += (nr); } while (0)
64
65 static struct {
66         unsigned long add_total;
67         unsigned long del_total;
68         unsigned long find_success;
69         unsigned long find_total;
70 } swap_cache_info;
71
72 unsigned long total_swapcache_pages(void)
73 {
74         unsigned int i, j, nr;
75         unsigned long ret = 0;
76         struct address_space *spaces;
77
78         rcu_read_lock();
79         for (i = 0; i < MAX_SWAPFILES; i++) {
80                 /*
81                  * The corresponding entries in nr_swapper_spaces and
82                  * swapper_spaces will be reused only after at least
83                  * one grace period.  So it is impossible for them
84                  * belongs to different usage.
85                  */
86                 nr = nr_swapper_spaces[i];
87                 spaces = rcu_dereference(swapper_spaces[i]);
88                 if (!nr || !spaces)
89                         continue;
90                 for (j = 0; j < nr; j++)
91                         ret += spaces[j].nrpages;
92         }
93         rcu_read_unlock();
94         return ret;
95 }
96
97 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
98
99 void show_swap_cache_info(void)
100 {
101         printk("%lu pages in swap cache\n", total_swapcache_pages());
102         printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
103                 swap_cache_info.add_total, swap_cache_info.del_total,
104                 swap_cache_info.find_success, swap_cache_info.find_total);
105         printk("Free swap  = %ldkB\n",
106                 get_nr_swap_pages() << (PAGE_SHIFT - 10));
107         printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
108 }
109
110 /*
111  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
112  * but sets SwapCache flag and private instead of mapping and index.
113  */
114 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
115 {
116         int error, i, nr = hpage_nr_pages(page);
117         struct address_space *address_space;
118         pgoff_t idx = swp_offset(entry);
119
120         VM_BUG_ON_PAGE(!PageLocked(page), page);
121         VM_BUG_ON_PAGE(PageSwapCache(page), page);
122         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
123
124         page_ref_add(page, nr);
125         SetPageSwapCache(page);
126
127         address_space = swap_address_space(entry);
128         spin_lock_irq(&address_space->tree_lock);
129         for (i = 0; i < nr; i++) {
130                 set_page_private(page + i, entry.val + i);
131                 error = radix_tree_insert(&address_space->page_tree,
132                                           idx + i, page + i);
133                 if (unlikely(error))
134                         break;
135         }
136         if (likely(!error)) {
137                 address_space->nrpages += nr;
138                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
139                 ADD_CACHE_INFO(add_total, nr);
140         } else {
141                 /*
142                  * Only the context which have set SWAP_HAS_CACHE flag
143                  * would call add_to_swap_cache().
144                  * So add_to_swap_cache() doesn't returns -EEXIST.
145                  */
146                 VM_BUG_ON(error == -EEXIST);
147                 set_page_private(page + i, 0UL);
148                 while (i--) {
149                         radix_tree_delete(&address_space->page_tree, idx + i);
150                         set_page_private(page + i, 0UL);
151                 }
152                 ClearPageSwapCache(page);
153                 page_ref_sub(page, nr);
154         }
155         spin_unlock_irq(&address_space->tree_lock);
156
157         return error;
158 }
159
160
161 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
162 {
163         int error;
164
165         error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
166         if (!error) {
167                 error = __add_to_swap_cache(page, entry);
168                 radix_tree_preload_end();
169         }
170         return error;
171 }
172
173 /*
174  * This must be called only on pages that have
175  * been verified to be in the swap cache.
176  */
177 void __delete_from_swap_cache(struct page *page)
178 {
179         struct address_space *address_space;
180         int i, nr = hpage_nr_pages(page);
181         swp_entry_t entry;
182         pgoff_t idx;
183
184         VM_BUG_ON_PAGE(!PageLocked(page), page);
185         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
186         VM_BUG_ON_PAGE(PageWriteback(page), page);
187
188         entry.val = page_private(page);
189         address_space = swap_address_space(entry);
190         idx = swp_offset(entry);
191         for (i = 0; i < nr; i++) {
192                 radix_tree_delete(&address_space->page_tree, idx + i);
193                 set_page_private(page + i, 0);
194         }
195         ClearPageSwapCache(page);
196         address_space->nrpages -= nr;
197         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
198         ADD_CACHE_INFO(del_total, nr);
199 }
200
201 /**
202  * add_to_swap - allocate swap space for a page
203  * @page: page we want to move to swap
204  *
205  * Allocate swap space for the page and add the page to the
206  * swap cache.  Caller needs to hold the page lock. 
207  */
208 int add_to_swap(struct page *page)
209 {
210         swp_entry_t entry;
211         int err;
212
213         VM_BUG_ON_PAGE(!PageLocked(page), page);
214         VM_BUG_ON_PAGE(!PageUptodate(page), page);
215
216         entry = get_swap_page(page);
217         if (!entry.val)
218                 return 0;
219
220         if (mem_cgroup_try_charge_swap(page, entry))
221                 goto fail;
222
223         /*
224          * Radix-tree node allocations from PF_MEMALLOC contexts could
225          * completely exhaust the page allocator. __GFP_NOMEMALLOC
226          * stops emergency reserves from being allocated.
227          *
228          * TODO: this could cause a theoretical memory reclaim
229          * deadlock in the swap out path.
230          */
231         /*
232          * Add it to the swap cache.
233          */
234         err = add_to_swap_cache(page, entry,
235                         __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
236         /* -ENOMEM radix-tree allocation failure */
237         if (err)
238                 /*
239                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
240                  * clear SWAP_HAS_CACHE flag.
241                  */
242                 goto fail;
243         /*
244          * Normally the page will be dirtied in unmap because its pte should be
245          * dirty. A special case is MADV_FREE page. The page'e pte could have
246          * dirty bit cleared but the page's SwapBacked bit is still set because
247          * clearing the dirty bit and SwapBacked bit has no lock protected. For
248          * such page, unmap will not set dirty bit for it, so page reclaim will
249          * not write the page out. This can cause data corruption when the page
250          * is swap in later. Always setting the dirty bit for the page solves
251          * the problem.
252          */
253         set_page_dirty(page);
254
255         return 1;
256
257 fail:
258         put_swap_page(page, entry);
259         return 0;
260 }
261
262 /*
263  * This must be called only on pages that have
264  * been verified to be in the swap cache and locked.
265  * It will never put the page into the free list,
266  * the caller has a reference on the page.
267  */
268 void delete_from_swap_cache(struct page *page)
269 {
270         swp_entry_t entry;
271         struct address_space *address_space;
272
273         entry.val = page_private(page);
274
275         address_space = swap_address_space(entry);
276         spin_lock_irq(&address_space->tree_lock);
277         __delete_from_swap_cache(page);
278         spin_unlock_irq(&address_space->tree_lock);
279
280         put_swap_page(page, entry);
281         page_ref_sub(page, hpage_nr_pages(page));
282 }
283
284 /* 
285  * If we are the only user, then try to free up the swap cache. 
286  * 
287  * Its ok to check for PageSwapCache without the page lock
288  * here because we are going to recheck again inside
289  * try_to_free_swap() _with_ the lock.
290  *                                      - Marcelo
291  */
292 static inline void free_swap_cache(struct page *page)
293 {
294         if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
295                 try_to_free_swap(page);
296                 unlock_page(page);
297         }
298 }
299
300 /* 
301  * Perform a free_page(), also freeing any swap cache associated with
302  * this page if it is the last user of the page.
303  */
304 void free_page_and_swap_cache(struct page *page)
305 {
306         free_swap_cache(page);
307         if (!is_huge_zero_page(page))
308                 put_page(page);
309 }
310
311 /*
312  * Passed an array of pages, drop them all from swapcache and then release
313  * them.  They are removed from the LRU and freed if this is their last use.
314  */
315 void free_pages_and_swap_cache(struct page **pages, int nr)
316 {
317         struct page **pagep = pages;
318         int i;
319
320         lru_add_drain();
321         for (i = 0; i < nr; i++)
322                 free_swap_cache(pagep[i]);
323         release_pages(pagep, nr, false);
324 }
325
326 /*
327  * Lookup a swap entry in the swap cache. A found page will be returned
328  * unlocked and with its refcount incremented - we rely on the kernel
329  * lock getting page table operations atomic even if we drop the page
330  * lock before returning.
331  */
332 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
333                                unsigned long addr)
334 {
335         struct page *page;
336         unsigned long ra_info;
337         int win, hits, readahead;
338
339         page = find_get_page(swap_address_space(entry), swp_offset(entry));
340
341         INC_CACHE_INFO(find_total);
342         if (page) {
343                 INC_CACHE_INFO(find_success);
344                 if (unlikely(PageTransCompound(page)))
345                         return page;
346                 readahead = TestClearPageReadahead(page);
347                 if (vma) {
348                         ra_info = GET_SWAP_RA_VAL(vma);
349                         win = SWAP_RA_WIN(ra_info);
350                         hits = SWAP_RA_HITS(ra_info);
351                         if (readahead)
352                                 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
353                         atomic_long_set(&vma->swap_readahead_info,
354                                         SWAP_RA_VAL(addr, win, hits));
355                 }
356                 if (readahead) {
357                         count_vm_event(SWAP_RA_HIT);
358                         if (!vma)
359                                 atomic_inc(&swapin_readahead_hits);
360                 }
361         }
362         return page;
363 }
364
365 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
366                         struct vm_area_struct *vma, unsigned long addr,
367                         bool *new_page_allocated)
368 {
369         struct page *found_page, *new_page = NULL;
370         struct address_space *swapper_space = swap_address_space(entry);
371         int err;
372         *new_page_allocated = false;
373
374         do {
375                 /*
376                  * First check the swap cache.  Since this is normally
377                  * called after lookup_swap_cache() failed, re-calling
378                  * that would confuse statistics.
379                  */
380                 found_page = find_get_page(swapper_space, swp_offset(entry));
381                 if (found_page)
382                         break;
383
384                 /*
385                  * Just skip read ahead for unused swap slot.
386                  * During swap_off when swap_slot_cache is disabled,
387                  * we have to handle the race between putting
388                  * swap entry in swap cache and marking swap slot
389                  * as SWAP_HAS_CACHE.  That's done in later part of code or
390                  * else swap_off will be aborted if we return NULL.
391                  */
392                 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
393                         break;
394
395                 /*
396                  * Get a new page to read into from swap.
397                  */
398                 if (!new_page) {
399                         new_page = alloc_page_vma(gfp_mask, vma, addr);
400                         if (!new_page)
401                                 break;          /* Out of memory */
402                 }
403
404                 /*
405                  * call radix_tree_preload() while we can wait.
406                  */
407                 err = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
408                 if (err)
409                         break;
410
411                 /*
412                  * Swap entry may have been freed since our caller observed it.
413                  */
414                 err = swapcache_prepare(entry);
415                 if (err == -EEXIST) {
416                         radix_tree_preload_end();
417                         /*
418                          * We might race against get_swap_page() and stumble
419                          * across a SWAP_HAS_CACHE swap_map entry whose page
420                          * has not been brought into the swapcache yet.
421                          */
422                         cond_resched();
423                         continue;
424                 }
425                 if (err) {              /* swp entry is obsolete ? */
426                         radix_tree_preload_end();
427                         break;
428                 }
429
430                 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
431                 __SetPageLocked(new_page);
432                 __SetPageSwapBacked(new_page);
433                 err = __add_to_swap_cache(new_page, entry);
434                 if (likely(!err)) {
435                         radix_tree_preload_end();
436                         /*
437                          * Initiate read into locked page and return.
438                          */
439                         lru_cache_add_anon(new_page);
440                         *new_page_allocated = true;
441                         return new_page;
442                 }
443                 radix_tree_preload_end();
444                 __ClearPageLocked(new_page);
445                 /*
446                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
447                  * clear SWAP_HAS_CACHE flag.
448                  */
449                 put_swap_page(new_page, entry);
450         } while (err != -ENOMEM);
451
452         if (new_page)
453                 put_page(new_page);
454         return found_page;
455 }
456
457 /*
458  * Locate a page of swap in physical memory, reserving swap cache space
459  * and reading the disk if it is not already cached.
460  * A failure return means that either the page allocation failed or that
461  * the swap entry is no longer in use.
462  */
463 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
464                 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
465 {
466         bool page_was_allocated;
467         struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
468                         vma, addr, &page_was_allocated);
469
470         if (page_was_allocated)
471                 swap_readpage(retpage, do_poll);
472
473         return retpage;
474 }
475
476 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
477                                       unsigned long offset,
478                                       int hits,
479                                       int max_pages,
480                                       int prev_win)
481 {
482         unsigned int pages, last_ra;
483
484         /*
485          * This heuristic has been found to work well on both sequential and
486          * random loads, swapping to hard disk or to SSD: please don't ask
487          * what the "+ 2" means, it just happens to work well, that's all.
488          */
489         pages = hits + 2;
490         if (pages == 2) {
491                 /*
492                  * We can have no readahead hits to judge by: but must not get
493                  * stuck here forever, so check for an adjacent offset instead
494                  * (and don't even bother to check whether swap type is same).
495                  */
496                 if (offset != prev_offset + 1 && offset != prev_offset - 1)
497                         pages = 1;
498         } else {
499                 unsigned int roundup = 4;
500                 while (roundup < pages)
501                         roundup <<= 1;
502                 pages = roundup;
503         }
504
505         if (pages > max_pages)
506                 pages = max_pages;
507
508         /* Don't shrink readahead too fast */
509         last_ra = prev_win / 2;
510         if (pages < last_ra)
511                 pages = last_ra;
512
513         return pages;
514 }
515
516 static unsigned long swapin_nr_pages(unsigned long offset)
517 {
518         static unsigned long prev_offset;
519         unsigned int hits, pages, max_pages;
520         static atomic_t last_readahead_pages;
521
522         max_pages = 1 << READ_ONCE(page_cluster);
523         if (max_pages <= 1)
524                 return 1;
525
526         hits = atomic_xchg(&swapin_readahead_hits, 0);
527         pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
528                                   max_pages,
529                                   atomic_read(&last_readahead_pages));
530         if (!hits)
531                 WRITE_ONCE(prev_offset, offset);
532         atomic_set(&last_readahead_pages, pages);
533
534         return pages;
535 }
536
537 /**
538  * swapin_readahead - swap in pages in hope we need them soon
539  * @entry: swap entry of this memory
540  * @gfp_mask: memory allocation flags
541  * @vma: user vma this address belongs to
542  * @addr: target address for mempolicy
543  *
544  * Returns the struct page for entry and addr, after queueing swapin.
545  *
546  * Primitive swap readahead code. We simply read an aligned block of
547  * (1 << page_cluster) entries in the swap area. This method is chosen
548  * because it doesn't cost us any seek time.  We also make sure to queue
549  * the 'original' request together with the readahead ones...
550  *
551  * This has been extended to use the NUMA policies from the mm triggering
552  * the readahead.
553  *
554  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
555  */
556 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
557                         struct vm_area_struct *vma, unsigned long addr)
558 {
559         struct page *page;
560         unsigned long entry_offset = swp_offset(entry);
561         unsigned long offset = entry_offset;
562         unsigned long start_offset, end_offset;
563         unsigned long mask;
564         struct blk_plug plug;
565         bool do_poll = true, page_allocated;
566
567         mask = swapin_nr_pages(offset) - 1;
568         if (!mask)
569                 goto skip;
570
571         do_poll = false;
572         /* Read a page_cluster sized and aligned cluster around offset. */
573         start_offset = offset & ~mask;
574         end_offset = offset | mask;
575         if (!start_offset)      /* First page is swap header. */
576                 start_offset++;
577
578         blk_start_plug(&plug);
579         for (offset = start_offset; offset <= end_offset ; offset++) {
580                 /* Ok, do the async read-ahead now */
581                 page = __read_swap_cache_async(
582                         swp_entry(swp_type(entry), offset),
583                         gfp_mask, vma, addr, &page_allocated);
584                 if (!page)
585                         continue;
586                 if (page_allocated) {
587                         swap_readpage(page, false);
588                         if (offset != entry_offset &&
589                             likely(!PageTransCompound(page))) {
590                                 SetPageReadahead(page);
591                                 count_vm_event(SWAP_RA);
592                         }
593                 }
594                 put_page(page);
595         }
596         blk_finish_plug(&plug);
597
598         lru_add_drain();        /* Push any new pages onto the LRU now */
599 skip:
600         return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
601 }
602
603 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
604 {
605         struct address_space *spaces, *space;
606         unsigned int i, nr;
607
608         nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
609         spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
610         if (!spaces)
611                 return -ENOMEM;
612         for (i = 0; i < nr; i++) {
613                 space = spaces + i;
614                 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
615                 atomic_set(&space->i_mmap_writable, 0);
616                 space->a_ops = &swap_aops;
617                 /* swap cache doesn't use writeback related tags */
618                 mapping_set_no_writeback_tags(space);
619                 spin_lock_init(&space->tree_lock);
620         }
621         nr_swapper_spaces[type] = nr;
622         rcu_assign_pointer(swapper_spaces[type], spaces);
623
624         return 0;
625 }
626
627 void exit_swap_address_space(unsigned int type)
628 {
629         struct address_space *spaces;
630
631         spaces = swapper_spaces[type];
632         nr_swapper_spaces[type] = 0;
633         rcu_assign_pointer(swapper_spaces[type], NULL);
634         synchronize_rcu();
635         kvfree(spaces);
636 }
637
638 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
639                                      unsigned long faddr,
640                                      unsigned long lpfn,
641                                      unsigned long rpfn,
642                                      unsigned long *start,
643                                      unsigned long *end)
644 {
645         *start = max3(lpfn, PFN_DOWN(vma->vm_start),
646                       PFN_DOWN(faddr & PMD_MASK));
647         *end = min3(rpfn, PFN_DOWN(vma->vm_end),
648                     PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
649 }
650
651 struct page *swap_readahead_detect(struct vm_fault *vmf,
652                                    struct vma_swap_readahead *swap_ra)
653 {
654         struct vm_area_struct *vma = vmf->vma;
655         unsigned long swap_ra_info;
656         struct page *page;
657         swp_entry_t entry;
658         unsigned long faddr, pfn, fpfn;
659         unsigned long start, end;
660         pte_t *pte;
661         unsigned int max_win, hits, prev_win, win, left;
662 #ifndef CONFIG_64BIT
663         pte_t *tpte;
664 #endif
665
666         max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
667                              SWAP_RA_ORDER_CEILING);
668         if (max_win == 1) {
669                 swap_ra->win = 1;
670                 return NULL;
671         }
672
673         faddr = vmf->address;
674         entry = pte_to_swp_entry(vmf->orig_pte);
675         if ((unlikely(non_swap_entry(entry))))
676                 return NULL;
677         page = lookup_swap_cache(entry, vma, faddr);
678         if (page)
679                 return page;
680
681         fpfn = PFN_DOWN(faddr);
682         swap_ra_info = GET_SWAP_RA_VAL(vma);
683         pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info));
684         prev_win = SWAP_RA_WIN(swap_ra_info);
685         hits = SWAP_RA_HITS(swap_ra_info);
686         swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits,
687                                                max_win, prev_win);
688         atomic_long_set(&vma->swap_readahead_info,
689                         SWAP_RA_VAL(faddr, win, 0));
690
691         if (win == 1)
692                 return NULL;
693
694         /* Copy the PTEs because the page table may be unmapped */
695         if (fpfn == pfn + 1)
696                 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
697         else if (pfn == fpfn + 1)
698                 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
699                                   &start, &end);
700         else {
701                 left = (win - 1) / 2;
702                 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
703                                   &start, &end);
704         }
705         swap_ra->nr_pte = end - start;
706         swap_ra->offset = fpfn - start;
707         pte = vmf->pte - swap_ra->offset;
708 #ifdef CONFIG_64BIT
709         swap_ra->ptes = pte;
710 #else
711         tpte = swap_ra->ptes;
712         for (pfn = start; pfn != end; pfn++)
713                 *tpte++ = *pte++;
714 #endif
715
716         return NULL;
717 }
718
719 struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask,
720                                     struct vm_fault *vmf,
721                                     struct vma_swap_readahead *swap_ra)
722 {
723         struct blk_plug plug;
724         struct vm_area_struct *vma = vmf->vma;
725         struct page *page;
726         pte_t *pte, pentry;
727         swp_entry_t entry;
728         unsigned int i;
729         bool page_allocated;
730
731         if (swap_ra->win == 1)
732                 goto skip;
733
734         blk_start_plug(&plug);
735         for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte;
736              i++, pte++) {
737                 pentry = *pte;
738                 if (pte_none(pentry))
739                         continue;
740                 if (pte_present(pentry))
741                         continue;
742                 entry = pte_to_swp_entry(pentry);
743                 if (unlikely(non_swap_entry(entry)))
744                         continue;
745                 page = __read_swap_cache_async(entry, gfp_mask, vma,
746                                                vmf->address, &page_allocated);
747                 if (!page)
748                         continue;
749                 if (page_allocated) {
750                         swap_readpage(page, false);
751                         if (i != swap_ra->offset &&
752                             likely(!PageTransCompound(page))) {
753                                 SetPageReadahead(page);
754                                 count_vm_event(SWAP_RA);
755                         }
756                 }
757                 put_page(page);
758         }
759         blk_finish_plug(&plug);
760         lru_add_drain();
761 skip:
762         return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
763                                      swap_ra->win == 1);
764 }
765
766 #ifdef CONFIG_SYSFS
767 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
768                                      struct kobj_attribute *attr, char *buf)
769 {
770         return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false");
771 }
772 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
773                                       struct kobj_attribute *attr,
774                                       const char *buf, size_t count)
775 {
776         if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
777                 swap_vma_readahead = true;
778         else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
779                 swap_vma_readahead = false;
780         else
781                 return -EINVAL;
782
783         return count;
784 }
785 static struct kobj_attribute vma_ra_enabled_attr =
786         __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
787                vma_ra_enabled_store);
788
789 static struct attribute *swap_attrs[] = {
790         &vma_ra_enabled_attr.attr,
791         NULL,
792 };
793
794 static struct attribute_group swap_attr_group = {
795         .attrs = swap_attrs,
796 };
797
798 static int __init swap_init_sysfs(void)
799 {
800         int err;
801         struct kobject *swap_kobj;
802
803         swap_kobj = kobject_create_and_add("swap", mm_kobj);
804         if (!swap_kobj) {
805                 pr_err("failed to create swap kobject\n");
806                 return -ENOMEM;
807         }
808         err = sysfs_create_group(swap_kobj, &swap_attr_group);
809         if (err) {
810                 pr_err("failed to register swap group\n");
811                 goto delete_obj;
812         }
813         return 0;
814
815 delete_obj:
816         kobject_put(swap_kobj);
817         return err;
818 }
819 subsys_initcall(swap_init_sysfs);
820 #endif