GNU Linux-libre 4.9.309-gnu1
[releases.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_private2: identifies the last component page
28  *      PG_owner_priv_1: indentifies the huge component page
29  *
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/sched.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/wait.h>
56 #include <linux/pagemap.h>
57
58 #define ZSPAGE_MAGIC    0x58
59
60 /*
61  * This must be power of 2 and greater than of equal to sizeof(link_free).
62  * These two conditions ensure that any 'struct link_free' itself doesn't
63  * span more than 1 page which avoids complex case of mapping 2 pages simply
64  * to restore link_free pointer values.
65  */
66 #define ZS_ALIGN                8
67
68 /*
69  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
70  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
71  */
72 #define ZS_MAX_ZSPAGE_ORDER 2
73 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
74
75 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
76
77 /*
78  * Object location (<PFN>, <obj_idx>) is encoded as
79  * as single (unsigned long) handle value.
80  *
81  * Note that object index <obj_idx> starts from 0.
82  *
83  * This is made more complicated by various memory models and PAE.
84  */
85
86 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
87 #ifdef MAX_PHYSMEM_BITS
88 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
89 #else
90 /*
91  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
92  * be PAGE_SHIFT
93  */
94 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
95 #endif
96 #endif
97
98 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
99
100 /*
101  * Memory for allocating for handle keeps object position by
102  * encoding <page, obj_idx> and the encoded value has a room
103  * in least bit(ie, look at obj_to_location).
104  * We use the bit to synchronize between object access by
105  * user and migration.
106  */
107 #define HANDLE_PIN_BIT  0
108
109 /*
110  * Head in allocated object should have OBJ_ALLOCATED_TAG
111  * to identify the object was allocated or not.
112  * It's okay to add the status bit in the least bit because
113  * header keeps handle which is 4byte-aligned address so we
114  * have room for two bit at least.
115  */
116 #define OBJ_ALLOCATED_TAG 1
117 #define OBJ_TAG_BITS 1
118 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
119 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120
121 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
122 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
123 #define ZS_MIN_ALLOC_SIZE \
124         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
125 /* each chunk includes extra space to keep handle */
126 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
127
128 /*
129  * On systems with 4K page size, this gives 255 size classes! There is a
130  * trader-off here:
131  *  - Large number of size classes is potentially wasteful as free page are
132  *    spread across these classes
133  *  - Small number of size classes causes large internal fragmentation
134  *  - Probably its better to use specific size classes (empirically
135  *    determined). NOTE: all those class sizes must be set as multiple of
136  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
137  *
138  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
139  *  (reason above)
140  */
141 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
142
143 enum fullness_group {
144         ZS_EMPTY,
145         ZS_ALMOST_EMPTY,
146         ZS_ALMOST_FULL,
147         ZS_FULL,
148         NR_ZS_FULLNESS,
149 };
150
151 enum zs_stat_type {
152         CLASS_EMPTY,
153         CLASS_ALMOST_EMPTY,
154         CLASS_ALMOST_FULL,
155         CLASS_FULL,
156         OBJ_ALLOCATED,
157         OBJ_USED,
158         NR_ZS_STAT_TYPE,
159 };
160
161 struct zs_size_stat {
162         unsigned long objs[NR_ZS_STAT_TYPE];
163 };
164
165 #ifdef CONFIG_ZSMALLOC_STAT
166 static struct dentry *zs_stat_root;
167 #endif
168
169 #ifdef CONFIG_COMPACTION
170 static struct vfsmount *zsmalloc_mnt;
171 #endif
172
173 /*
174  * number of size_classes
175  */
176 static int zs_size_classes;
177
178 /*
179  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
180  *      n <= N / f, where
181  * n = number of allocated objects
182  * N = total number of objects zspage can store
183  * f = fullness_threshold_frac
184  *
185  * Similarly, we assign zspage to:
186  *      ZS_ALMOST_FULL  when n > N / f
187  *      ZS_EMPTY        when n == 0
188  *      ZS_FULL         when n == N
189  *
190  * (see: fix_fullness_group())
191  */
192 static const int fullness_threshold_frac = 4;
193
194 struct size_class {
195         spinlock_t lock;
196         struct list_head fullness_list[NR_ZS_FULLNESS];
197         /*
198          * Size of objects stored in this class. Must be multiple
199          * of ZS_ALIGN.
200          */
201         int size;
202         int objs_per_zspage;
203         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204         int pages_per_zspage;
205
206         unsigned int index;
207         struct zs_size_stat stats;
208 };
209
210 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
211 static void SetPageHugeObject(struct page *page)
212 {
213         SetPageOwnerPriv1(page);
214 }
215
216 static void ClearPageHugeObject(struct page *page)
217 {
218         ClearPageOwnerPriv1(page);
219 }
220
221 static int PageHugeObject(struct page *page)
222 {
223         return PageOwnerPriv1(page);
224 }
225
226 /*
227  * Placed within free objects to form a singly linked list.
228  * For every zspage, zspage->freeobj gives head of this list.
229  *
230  * This must be power of 2 and less than or equal to ZS_ALIGN
231  */
232 struct link_free {
233         union {
234                 /*
235                  * Free object index;
236                  * It's valid for non-allocated object
237                  */
238                 unsigned long next;
239                 /*
240                  * Handle of allocated object.
241                  */
242                 unsigned long handle;
243         };
244 };
245
246 struct zs_pool {
247         const char *name;
248
249         struct size_class **size_class;
250         struct kmem_cache *handle_cachep;
251         struct kmem_cache *zspage_cachep;
252
253         atomic_long_t pages_allocated;
254
255         struct zs_pool_stats stats;
256
257         /* Compact classes */
258         struct shrinker shrinker;
259         /*
260          * To signify that register_shrinker() was successful
261          * and unregister_shrinker() will not Oops.
262          */
263         bool shrinker_enabled;
264 #ifdef CONFIG_ZSMALLOC_STAT
265         struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268         struct inode *inode;
269         struct work_struct free_work;
270         /* A wait queue for when migration races with async_free_zspage() */
271         wait_queue_head_t migration_wait;
272         atomic_long_t isolated_pages;
273         bool destroying;
274 #endif
275 };
276
277 /*
278  * A zspage's class index and fullness group
279  * are encoded in its (first)page->mapping
280  */
281 #define FULLNESS_BITS   2
282 #define CLASS_BITS      8
283 #define ISOLATED_BITS   3
284 #define MAGIC_VAL_BITS  8
285
286 struct zspage {
287         struct {
288                 unsigned int fullness:FULLNESS_BITS;
289                 unsigned int class:CLASS_BITS + 1;
290                 unsigned int isolated:ISOLATED_BITS;
291                 unsigned int magic:MAGIC_VAL_BITS;
292         };
293         unsigned int inuse;
294         unsigned int freeobj;
295         struct page *first_page;
296         struct list_head list; /* fullness list */
297 #ifdef CONFIG_COMPACTION
298         rwlock_t lock;
299 #endif
300 };
301
302 struct mapping_area {
303 #ifdef CONFIG_PGTABLE_MAPPING
304         struct vm_struct *vm; /* vm area for mapping object that span pages */
305 #else
306         char *vm_buf; /* copy buffer for objects that span pages */
307 #endif
308         char *vm_addr; /* address of kmap_atomic()'ed pages */
309         enum zs_mapmode vm_mm; /* mapping mode */
310 };
311
312 #ifdef CONFIG_COMPACTION
313 static int zs_register_migration(struct zs_pool *pool);
314 static void zs_unregister_migration(struct zs_pool *pool);
315 static void migrate_lock_init(struct zspage *zspage);
316 static void migrate_read_lock(struct zspage *zspage);
317 static void migrate_read_unlock(struct zspage *zspage);
318 static void kick_deferred_free(struct zs_pool *pool);
319 static void init_deferred_free(struct zs_pool *pool);
320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
321 #else
322 static int zsmalloc_mount(void) { return 0; }
323 static void zsmalloc_unmount(void) {}
324 static int zs_register_migration(struct zs_pool *pool) { return 0; }
325 static void zs_unregister_migration(struct zs_pool *pool) {}
326 static void migrate_lock_init(struct zspage *zspage) {}
327 static void migrate_read_lock(struct zspage *zspage) {}
328 static void migrate_read_unlock(struct zspage *zspage) {}
329 static void kick_deferred_free(struct zs_pool *pool) {}
330 static void init_deferred_free(struct zs_pool *pool) {}
331 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
332 #endif
333
334 static int create_cache(struct zs_pool *pool)
335 {
336         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
337                                         0, 0, NULL);
338         if (!pool->handle_cachep)
339                 return 1;
340
341         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
342                                         0, 0, NULL);
343         if (!pool->zspage_cachep) {
344                 kmem_cache_destroy(pool->handle_cachep);
345                 pool->handle_cachep = NULL;
346                 return 1;
347         }
348
349         return 0;
350 }
351
352 static void destroy_cache(struct zs_pool *pool)
353 {
354         kmem_cache_destroy(pool->handle_cachep);
355         kmem_cache_destroy(pool->zspage_cachep);
356 }
357
358 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
359 {
360         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
361                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 }
363
364 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
365 {
366         kmem_cache_free(pool->handle_cachep, (void *)handle);
367 }
368
369 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
370 {
371         return kmem_cache_alloc(pool->zspage_cachep,
372                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
373 };
374
375 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
376 {
377         kmem_cache_free(pool->zspage_cachep, zspage);
378 }
379
380 static void record_obj(unsigned long handle, unsigned long obj)
381 {
382         /*
383          * lsb of @obj represents handle lock while other bits
384          * represent object value the handle is pointing so
385          * updating shouldn't do store tearing.
386          */
387         WRITE_ONCE(*(unsigned long *)handle, obj);
388 }
389
390 /* zpool driver */
391
392 #ifdef CONFIG_ZPOOL
393
394 static void *zs_zpool_create(const char *name, gfp_t gfp,
395                              const struct zpool_ops *zpool_ops,
396                              struct zpool *zpool)
397 {
398         /*
399          * Ignore global gfp flags: zs_malloc() may be invoked from
400          * different contexts and its caller must provide a valid
401          * gfp mask.
402          */
403         return zs_create_pool(name);
404 }
405
406 static void zs_zpool_destroy(void *pool)
407 {
408         zs_destroy_pool(pool);
409 }
410
411 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
412                         unsigned long *handle)
413 {
414         *handle = zs_malloc(pool, size, gfp);
415         return *handle ? 0 : -1;
416 }
417 static void zs_zpool_free(void *pool, unsigned long handle)
418 {
419         zs_free(pool, handle);
420 }
421
422 static int zs_zpool_shrink(void *pool, unsigned int pages,
423                         unsigned int *reclaimed)
424 {
425         return -EINVAL;
426 }
427
428 static void *zs_zpool_map(void *pool, unsigned long handle,
429                         enum zpool_mapmode mm)
430 {
431         enum zs_mapmode zs_mm;
432
433         switch (mm) {
434         case ZPOOL_MM_RO:
435                 zs_mm = ZS_MM_RO;
436                 break;
437         case ZPOOL_MM_WO:
438                 zs_mm = ZS_MM_WO;
439                 break;
440         case ZPOOL_MM_RW: /* fallthru */
441         default:
442                 zs_mm = ZS_MM_RW;
443                 break;
444         }
445
446         return zs_map_object(pool, handle, zs_mm);
447 }
448 static void zs_zpool_unmap(void *pool, unsigned long handle)
449 {
450         zs_unmap_object(pool, handle);
451 }
452
453 static u64 zs_zpool_total_size(void *pool)
454 {
455         return zs_get_total_pages(pool) << PAGE_SHIFT;
456 }
457
458 static struct zpool_driver zs_zpool_driver = {
459         .type =         "zsmalloc",
460         .owner =        THIS_MODULE,
461         .create =       zs_zpool_create,
462         .destroy =      zs_zpool_destroy,
463         .malloc =       zs_zpool_malloc,
464         .free =         zs_zpool_free,
465         .shrink =       zs_zpool_shrink,
466         .map =          zs_zpool_map,
467         .unmap =        zs_zpool_unmap,
468         .total_size =   zs_zpool_total_size,
469 };
470
471 MODULE_ALIAS("zpool-zsmalloc");
472 #endif /* CONFIG_ZPOOL */
473
474 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
475 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
476
477 static bool is_zspage_isolated(struct zspage *zspage)
478 {
479         return zspage->isolated;
480 }
481
482 static __maybe_unused int is_first_page(struct page *page)
483 {
484         return PagePrivate(page);
485 }
486
487 /* Protected by class->lock */
488 static inline int get_zspage_inuse(struct zspage *zspage)
489 {
490         return zspage->inuse;
491 }
492
493 static inline void set_zspage_inuse(struct zspage *zspage, int val)
494 {
495         zspage->inuse = val;
496 }
497
498 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
499 {
500         zspage->inuse += val;
501 }
502
503 static inline struct page *get_first_page(struct zspage *zspage)
504 {
505         struct page *first_page = zspage->first_page;
506
507         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
508         return first_page;
509 }
510
511 static inline int get_first_obj_offset(struct page *page)
512 {
513         return page->units;
514 }
515
516 static inline void set_first_obj_offset(struct page *page, int offset)
517 {
518         page->units = offset;
519 }
520
521 static inline unsigned int get_freeobj(struct zspage *zspage)
522 {
523         return zspage->freeobj;
524 }
525
526 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
527 {
528         zspage->freeobj = obj;
529 }
530
531 static void get_zspage_mapping(struct zspage *zspage,
532                                 unsigned int *class_idx,
533                                 enum fullness_group *fullness)
534 {
535         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
536
537         *fullness = zspage->fullness;
538         *class_idx = zspage->class;
539 }
540
541 static void set_zspage_mapping(struct zspage *zspage,
542                                 unsigned int class_idx,
543                                 enum fullness_group fullness)
544 {
545         zspage->class = class_idx;
546         zspage->fullness = fullness;
547 }
548
549 /*
550  * zsmalloc divides the pool into various size classes where each
551  * class maintains a list of zspages where each zspage is divided
552  * into equal sized chunks. Each allocation falls into one of these
553  * classes depending on its size. This function returns index of the
554  * size class which has chunk size big enough to hold the give size.
555  */
556 static int get_size_class_index(int size)
557 {
558         int idx = 0;
559
560         if (likely(size > ZS_MIN_ALLOC_SIZE))
561                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
562                                 ZS_SIZE_CLASS_DELTA);
563
564         return min(zs_size_classes - 1, idx);
565 }
566
567 /* type can be of enum type zs_stat_type or fullness_group */
568 static inline void zs_stat_inc(struct size_class *class,
569                                 int type, unsigned long cnt)
570 {
571         class->stats.objs[type] += cnt;
572 }
573
574 /* type can be of enum type zs_stat_type or fullness_group */
575 static inline void zs_stat_dec(struct size_class *class,
576                                 int type, unsigned long cnt)
577 {
578         class->stats.objs[type] -= cnt;
579 }
580
581 /* type can be of enum type zs_stat_type or fullness_group */
582 static inline unsigned long zs_stat_get(struct size_class *class,
583                                 int type)
584 {
585         return class->stats.objs[type];
586 }
587
588 #ifdef CONFIG_ZSMALLOC_STAT
589
590 static void __init zs_stat_init(void)
591 {
592         if (!debugfs_initialized()) {
593                 pr_warn("debugfs not available, stat dir not created\n");
594                 return;
595         }
596
597         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
598         if (!zs_stat_root)
599                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
600 }
601
602 static void __exit zs_stat_exit(void)
603 {
604         debugfs_remove_recursive(zs_stat_root);
605 }
606
607 static unsigned long zs_can_compact(struct size_class *class);
608
609 static int zs_stats_size_show(struct seq_file *s, void *v)
610 {
611         int i;
612         struct zs_pool *pool = s->private;
613         struct size_class *class;
614         int objs_per_zspage;
615         unsigned long class_almost_full, class_almost_empty;
616         unsigned long obj_allocated, obj_used, pages_used, freeable;
617         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
618         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
619         unsigned long total_freeable = 0;
620
621         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
622                         "class", "size", "almost_full", "almost_empty",
623                         "obj_allocated", "obj_used", "pages_used",
624                         "pages_per_zspage", "freeable");
625
626         for (i = 0; i < zs_size_classes; i++) {
627                 class = pool->size_class[i];
628
629                 if (class->index != i)
630                         continue;
631
632                 spin_lock(&class->lock);
633                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
634                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
635                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
636                 obj_used = zs_stat_get(class, OBJ_USED);
637                 freeable = zs_can_compact(class);
638                 spin_unlock(&class->lock);
639
640                 objs_per_zspage = class->objs_per_zspage;
641                 pages_used = obj_allocated / objs_per_zspage *
642                                 class->pages_per_zspage;
643
644                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
645                                 " %10lu %10lu %16d %8lu\n",
646                         i, class->size, class_almost_full, class_almost_empty,
647                         obj_allocated, obj_used, pages_used,
648                         class->pages_per_zspage, freeable);
649
650                 total_class_almost_full += class_almost_full;
651                 total_class_almost_empty += class_almost_empty;
652                 total_objs += obj_allocated;
653                 total_used_objs += obj_used;
654                 total_pages += pages_used;
655                 total_freeable += freeable;
656         }
657
658         seq_puts(s, "\n");
659         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
660                         "Total", "", total_class_almost_full,
661                         total_class_almost_empty, total_objs,
662                         total_used_objs, total_pages, "", total_freeable);
663
664         return 0;
665 }
666
667 static int zs_stats_size_open(struct inode *inode, struct file *file)
668 {
669         return single_open(file, zs_stats_size_show, inode->i_private);
670 }
671
672 static const struct file_operations zs_stat_size_ops = {
673         .open           = zs_stats_size_open,
674         .read           = seq_read,
675         .llseek         = seq_lseek,
676         .release        = single_release,
677 };
678
679 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
680 {
681         struct dentry *entry;
682
683         if (!zs_stat_root) {
684                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
685                 return;
686         }
687
688         entry = debugfs_create_dir(name, zs_stat_root);
689         if (!entry) {
690                 pr_warn("debugfs dir <%s> creation failed\n", name);
691                 return;
692         }
693         pool->stat_dentry = entry;
694
695         entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
696                         pool->stat_dentry, pool, &zs_stat_size_ops);
697         if (!entry) {
698                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
699                                 name, "classes");
700                 debugfs_remove_recursive(pool->stat_dentry);
701                 pool->stat_dentry = NULL;
702         }
703 }
704
705 static void zs_pool_stat_destroy(struct zs_pool *pool)
706 {
707         debugfs_remove_recursive(pool->stat_dentry);
708 }
709
710 #else /* CONFIG_ZSMALLOC_STAT */
711 static void __init zs_stat_init(void)
712 {
713 }
714
715 static void __exit zs_stat_exit(void)
716 {
717 }
718
719 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
720 {
721 }
722
723 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
724 {
725 }
726 #endif
727
728
729 /*
730  * For each size class, zspages are divided into different groups
731  * depending on how "full" they are. This was done so that we could
732  * easily find empty or nearly empty zspages when we try to shrink
733  * the pool (not yet implemented). This function returns fullness
734  * status of the given page.
735  */
736 static enum fullness_group get_fullness_group(struct size_class *class,
737                                                 struct zspage *zspage)
738 {
739         int inuse, objs_per_zspage;
740         enum fullness_group fg;
741
742         inuse = get_zspage_inuse(zspage);
743         objs_per_zspage = class->objs_per_zspage;
744
745         if (inuse == 0)
746                 fg = ZS_EMPTY;
747         else if (inuse == objs_per_zspage)
748                 fg = ZS_FULL;
749         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
750                 fg = ZS_ALMOST_EMPTY;
751         else
752                 fg = ZS_ALMOST_FULL;
753
754         return fg;
755 }
756
757 /*
758  * Each size class maintains various freelists and zspages are assigned
759  * to one of these freelists based on the number of live objects they
760  * have. This functions inserts the given zspage into the freelist
761  * identified by <class, fullness_group>.
762  */
763 static void insert_zspage(struct size_class *class,
764                                 struct zspage *zspage,
765                                 enum fullness_group fullness)
766 {
767         struct zspage *head;
768
769         zs_stat_inc(class, fullness, 1);
770         head = list_first_entry_or_null(&class->fullness_list[fullness],
771                                         struct zspage, list);
772         /*
773          * We want to see more ZS_FULL pages and less almost empty/full.
774          * Put pages with higher ->inuse first.
775          */
776         if (head) {
777                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
778                         list_add(&zspage->list, &head->list);
779                         return;
780                 }
781         }
782         list_add(&zspage->list, &class->fullness_list[fullness]);
783 }
784
785 /*
786  * This function removes the given zspage from the freelist identified
787  * by <class, fullness_group>.
788  */
789 static void remove_zspage(struct size_class *class,
790                                 struct zspage *zspage,
791                                 enum fullness_group fullness)
792 {
793         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
794         VM_BUG_ON(is_zspage_isolated(zspage));
795
796         list_del_init(&zspage->list);
797         zs_stat_dec(class, fullness, 1);
798 }
799
800 /*
801  * Each size class maintains zspages in different fullness groups depending
802  * on the number of live objects they contain. When allocating or freeing
803  * objects, the fullness status of the page can change, say, from ALMOST_FULL
804  * to ALMOST_EMPTY when freeing an object. This function checks if such
805  * a status change has occurred for the given page and accordingly moves the
806  * page from the freelist of the old fullness group to that of the new
807  * fullness group.
808  */
809 static enum fullness_group fix_fullness_group(struct size_class *class,
810                                                 struct zspage *zspage)
811 {
812         int class_idx;
813         enum fullness_group currfg, newfg;
814
815         get_zspage_mapping(zspage, &class_idx, &currfg);
816         newfg = get_fullness_group(class, zspage);
817         if (newfg == currfg)
818                 goto out;
819
820         if (!is_zspage_isolated(zspage)) {
821                 remove_zspage(class, zspage, currfg);
822                 insert_zspage(class, zspage, newfg);
823         }
824
825         set_zspage_mapping(zspage, class_idx, newfg);
826
827 out:
828         return newfg;
829 }
830
831 /*
832  * We have to decide on how many pages to link together
833  * to form a zspage for each size class. This is important
834  * to reduce wastage due to unusable space left at end of
835  * each zspage which is given as:
836  *     wastage = Zp % class_size
837  *     usage = Zp - wastage
838  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
839  *
840  * For example, for size class of 3/8 * PAGE_SIZE, we should
841  * link together 3 PAGE_SIZE sized pages to form a zspage
842  * since then we can perfectly fit in 8 such objects.
843  */
844 static int get_pages_per_zspage(int class_size)
845 {
846         int i, max_usedpc = 0;
847         /* zspage order which gives maximum used size per KB */
848         int max_usedpc_order = 1;
849
850         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
851                 int zspage_size;
852                 int waste, usedpc;
853
854                 zspage_size = i * PAGE_SIZE;
855                 waste = zspage_size % class_size;
856                 usedpc = (zspage_size - waste) * 100 / zspage_size;
857
858                 if (usedpc > max_usedpc) {
859                         max_usedpc = usedpc;
860                         max_usedpc_order = i;
861                 }
862         }
863
864         return max_usedpc_order;
865 }
866
867 static struct zspage *get_zspage(struct page *page)
868 {
869         struct zspage *zspage = (struct zspage *)page->private;
870
871         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
872         return zspage;
873 }
874
875 static struct page *get_next_page(struct page *page)
876 {
877         if (unlikely(PageHugeObject(page)))
878                 return NULL;
879
880         return page->freelist;
881 }
882
883 /**
884  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
885  * @page: page object resides in zspage
886  * @obj_idx: object index
887  */
888 static void obj_to_location(unsigned long obj, struct page **page,
889                                 unsigned int *obj_idx)
890 {
891         obj >>= OBJ_TAG_BITS;
892         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
893         *obj_idx = (obj & OBJ_INDEX_MASK);
894 }
895
896 /**
897  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
898  * @page: page object resides in zspage
899  * @obj_idx: object index
900  */
901 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
902 {
903         unsigned long obj;
904
905         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
906         obj |= obj_idx & OBJ_INDEX_MASK;
907         obj <<= OBJ_TAG_BITS;
908
909         return obj;
910 }
911
912 static unsigned long handle_to_obj(unsigned long handle)
913 {
914         return *(unsigned long *)handle;
915 }
916
917 static unsigned long obj_to_head(struct page *page, void *obj)
918 {
919         if (unlikely(PageHugeObject(page))) {
920                 VM_BUG_ON_PAGE(!is_first_page(page), page);
921                 return page->index;
922         } else
923                 return *(unsigned long *)obj;
924 }
925
926 static inline int testpin_tag(unsigned long handle)
927 {
928         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
929 }
930
931 static inline int trypin_tag(unsigned long handle)
932 {
933         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
934 }
935
936 static void pin_tag(unsigned long handle)
937 {
938         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
939 }
940
941 static void unpin_tag(unsigned long handle)
942 {
943         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
944 }
945
946 static void reset_page(struct page *page)
947 {
948         __ClearPageMovable(page);
949         ClearPagePrivate(page);
950         ClearPagePrivate2(page);
951         set_page_private(page, 0);
952         page_mapcount_reset(page);
953         ClearPageHugeObject(page);
954         page->freelist = NULL;
955 }
956
957 /*
958  * To prevent zspage destroy during migration, zspage freeing should
959  * hold locks of all pages in the zspage.
960  */
961 void lock_zspage(struct zspage *zspage)
962 {
963         struct page *page = get_first_page(zspage);
964
965         do {
966                 lock_page(page);
967         } while ((page = get_next_page(page)) != NULL);
968 }
969
970 int trylock_zspage(struct zspage *zspage)
971 {
972         struct page *cursor, *fail;
973
974         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
975                                         get_next_page(cursor)) {
976                 if (!trylock_page(cursor)) {
977                         fail = cursor;
978                         goto unlock;
979                 }
980         }
981
982         return 1;
983 unlock:
984         for (cursor = get_first_page(zspage); cursor != fail; cursor =
985                                         get_next_page(cursor))
986                 unlock_page(cursor);
987
988         return 0;
989 }
990
991 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
992                                 struct zspage *zspage)
993 {
994         struct page *page, *next;
995         enum fullness_group fg;
996         unsigned int class_idx;
997
998         get_zspage_mapping(zspage, &class_idx, &fg);
999
1000         assert_spin_locked(&class->lock);
1001
1002         VM_BUG_ON(get_zspage_inuse(zspage));
1003         VM_BUG_ON(fg != ZS_EMPTY);
1004
1005         next = page = get_first_page(zspage);
1006         do {
1007                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1008                 next = get_next_page(page);
1009                 reset_page(page);
1010                 unlock_page(page);
1011                 dec_zone_page_state(page, NR_ZSPAGES);
1012                 put_page(page);
1013                 page = next;
1014         } while (page != NULL);
1015
1016         cache_free_zspage(pool, zspage);
1017
1018         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1019         atomic_long_sub(class->pages_per_zspage,
1020                                         &pool->pages_allocated);
1021 }
1022
1023 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1024                                 struct zspage *zspage)
1025 {
1026         VM_BUG_ON(get_zspage_inuse(zspage));
1027         VM_BUG_ON(list_empty(&zspage->list));
1028
1029         if (!trylock_zspage(zspage)) {
1030                 kick_deferred_free(pool);
1031                 return;
1032         }
1033
1034         remove_zspage(class, zspage, ZS_EMPTY);
1035         __free_zspage(pool, class, zspage);
1036 }
1037
1038 /* Initialize a newly allocated zspage */
1039 static void init_zspage(struct size_class *class, struct zspage *zspage)
1040 {
1041         unsigned int freeobj = 1;
1042         unsigned long off = 0;
1043         struct page *page = get_first_page(zspage);
1044
1045         while (page) {
1046                 struct page *next_page;
1047                 struct link_free *link;
1048                 void *vaddr;
1049
1050                 set_first_obj_offset(page, off);
1051
1052                 vaddr = kmap_atomic(page);
1053                 link = (struct link_free *)vaddr + off / sizeof(*link);
1054
1055                 while ((off += class->size) < PAGE_SIZE) {
1056                         link->next = freeobj++ << OBJ_TAG_BITS;
1057                         link += class->size / sizeof(*link);
1058                 }
1059
1060                 /*
1061                  * We now come to the last (full or partial) object on this
1062                  * page, which must point to the first object on the next
1063                  * page (if present)
1064                  */
1065                 next_page = get_next_page(page);
1066                 if (next_page) {
1067                         link->next = freeobj++ << OBJ_TAG_BITS;
1068                 } else {
1069                         /*
1070                          * Reset OBJ_TAG_BITS bit to last link to tell
1071                          * whether it's allocated object or not.
1072                          */
1073                         link->next = -1 << OBJ_TAG_BITS;
1074                 }
1075                 kunmap_atomic(vaddr);
1076                 page = next_page;
1077                 off %= PAGE_SIZE;
1078         }
1079
1080         set_freeobj(zspage, 0);
1081 }
1082
1083 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1084                                 struct page *pages[])
1085 {
1086         int i;
1087         struct page *page;
1088         struct page *prev_page = NULL;
1089         int nr_pages = class->pages_per_zspage;
1090
1091         /*
1092          * Allocate individual pages and link them together as:
1093          * 1. all pages are linked together using page->freelist
1094          * 2. each sub-page point to zspage using page->private
1095          *
1096          * we set PG_private to identify the first page (i.e. no other sub-page
1097          * has this flag set) and PG_private_2 to identify the last page.
1098          */
1099         for (i = 0; i < nr_pages; i++) {
1100                 page = pages[i];
1101                 set_page_private(page, (unsigned long)zspage);
1102                 page->freelist = NULL;
1103                 if (i == 0) {
1104                         zspage->first_page = page;
1105                         SetPagePrivate(page);
1106                         if (unlikely(class->objs_per_zspage == 1 &&
1107                                         class->pages_per_zspage == 1))
1108                                 SetPageHugeObject(page);
1109                 } else {
1110                         prev_page->freelist = page;
1111                 }
1112                 if (i == nr_pages - 1)
1113                         SetPagePrivate2(page);
1114                 prev_page = page;
1115         }
1116 }
1117
1118 /*
1119  * Allocate a zspage for the given size class
1120  */
1121 static struct zspage *alloc_zspage(struct zs_pool *pool,
1122                                         struct size_class *class,
1123                                         gfp_t gfp)
1124 {
1125         int i;
1126         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1127         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1128
1129         if (!zspage)
1130                 return NULL;
1131
1132         memset(zspage, 0, sizeof(struct zspage));
1133         zspage->magic = ZSPAGE_MAGIC;
1134         migrate_lock_init(zspage);
1135
1136         for (i = 0; i < class->pages_per_zspage; i++) {
1137                 struct page *page;
1138
1139                 page = alloc_page(gfp);
1140                 if (!page) {
1141                         while (--i >= 0) {
1142                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1143                                 __free_page(pages[i]);
1144                         }
1145                         cache_free_zspage(pool, zspage);
1146                         return NULL;
1147                 }
1148
1149                 inc_zone_page_state(page, NR_ZSPAGES);
1150                 pages[i] = page;
1151         }
1152
1153         create_page_chain(class, zspage, pages);
1154         init_zspage(class, zspage);
1155
1156         return zspage;
1157 }
1158
1159 static struct zspage *find_get_zspage(struct size_class *class)
1160 {
1161         int i;
1162         struct zspage *zspage;
1163
1164         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1165                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1166                                 struct zspage, list);
1167                 if (zspage)
1168                         break;
1169         }
1170
1171         return zspage;
1172 }
1173
1174 #ifdef CONFIG_PGTABLE_MAPPING
1175 static inline int __zs_cpu_up(struct mapping_area *area)
1176 {
1177         /*
1178          * Make sure we don't leak memory if a cpu UP notification
1179          * and zs_init() race and both call zs_cpu_up() on the same cpu
1180          */
1181         if (area->vm)
1182                 return 0;
1183         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1184         if (!area->vm)
1185                 return -ENOMEM;
1186         return 0;
1187 }
1188
1189 static inline void __zs_cpu_down(struct mapping_area *area)
1190 {
1191         if (area->vm)
1192                 free_vm_area(area->vm);
1193         area->vm = NULL;
1194 }
1195
1196 static inline void *__zs_map_object(struct mapping_area *area,
1197                                 struct page *pages[2], int off, int size)
1198 {
1199         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1200         area->vm_addr = area->vm->addr;
1201         return area->vm_addr + off;
1202 }
1203
1204 static inline void __zs_unmap_object(struct mapping_area *area,
1205                                 struct page *pages[2], int off, int size)
1206 {
1207         unsigned long addr = (unsigned long)area->vm_addr;
1208
1209         unmap_kernel_range(addr, PAGE_SIZE * 2);
1210 }
1211
1212 #else /* CONFIG_PGTABLE_MAPPING */
1213
1214 static inline int __zs_cpu_up(struct mapping_area *area)
1215 {
1216         /*
1217          * Make sure we don't leak memory if a cpu UP notification
1218          * and zs_init() race and both call zs_cpu_up() on the same cpu
1219          */
1220         if (area->vm_buf)
1221                 return 0;
1222         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1223         if (!area->vm_buf)
1224                 return -ENOMEM;
1225         return 0;
1226 }
1227
1228 static inline void __zs_cpu_down(struct mapping_area *area)
1229 {
1230         kfree(area->vm_buf);
1231         area->vm_buf = NULL;
1232 }
1233
1234 static void *__zs_map_object(struct mapping_area *area,
1235                         struct page *pages[2], int off, int size)
1236 {
1237         int sizes[2];
1238         void *addr;
1239         char *buf = area->vm_buf;
1240
1241         /* disable page faults to match kmap_atomic() return conditions */
1242         pagefault_disable();
1243
1244         /* no read fastpath */
1245         if (area->vm_mm == ZS_MM_WO)
1246                 goto out;
1247
1248         sizes[0] = PAGE_SIZE - off;
1249         sizes[1] = size - sizes[0];
1250
1251         /* copy object to per-cpu buffer */
1252         addr = kmap_atomic(pages[0]);
1253         memcpy(buf, addr + off, sizes[0]);
1254         kunmap_atomic(addr);
1255         addr = kmap_atomic(pages[1]);
1256         memcpy(buf + sizes[0], addr, sizes[1]);
1257         kunmap_atomic(addr);
1258 out:
1259         return area->vm_buf;
1260 }
1261
1262 static void __zs_unmap_object(struct mapping_area *area,
1263                         struct page *pages[2], int off, int size)
1264 {
1265         int sizes[2];
1266         void *addr;
1267         char *buf;
1268
1269         /* no write fastpath */
1270         if (area->vm_mm == ZS_MM_RO)
1271                 goto out;
1272
1273         buf = area->vm_buf;
1274         buf = buf + ZS_HANDLE_SIZE;
1275         size -= ZS_HANDLE_SIZE;
1276         off += ZS_HANDLE_SIZE;
1277
1278         sizes[0] = PAGE_SIZE - off;
1279         sizes[1] = size - sizes[0];
1280
1281         /* copy per-cpu buffer to object */
1282         addr = kmap_atomic(pages[0]);
1283         memcpy(addr + off, buf, sizes[0]);
1284         kunmap_atomic(addr);
1285         addr = kmap_atomic(pages[1]);
1286         memcpy(addr, buf + sizes[0], sizes[1]);
1287         kunmap_atomic(addr);
1288
1289 out:
1290         /* enable page faults to match kunmap_atomic() return conditions */
1291         pagefault_enable();
1292 }
1293
1294 #endif /* CONFIG_PGTABLE_MAPPING */
1295
1296 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1297                                 void *pcpu)
1298 {
1299         int ret, cpu = (long)pcpu;
1300         struct mapping_area *area;
1301
1302         switch (action) {
1303         case CPU_UP_PREPARE:
1304                 area = &per_cpu(zs_map_area, cpu);
1305                 ret = __zs_cpu_up(area);
1306                 if (ret)
1307                         return notifier_from_errno(ret);
1308                 break;
1309         case CPU_DEAD:
1310         case CPU_UP_CANCELED:
1311                 area = &per_cpu(zs_map_area, cpu);
1312                 __zs_cpu_down(area);
1313                 break;
1314         }
1315
1316         return NOTIFY_OK;
1317 }
1318
1319 static struct notifier_block zs_cpu_nb = {
1320         .notifier_call = zs_cpu_notifier
1321 };
1322
1323 static int zs_register_cpu_notifier(void)
1324 {
1325         int cpu, uninitialized_var(ret);
1326
1327         cpu_notifier_register_begin();
1328
1329         __register_cpu_notifier(&zs_cpu_nb);
1330         for_each_online_cpu(cpu) {
1331                 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1332                 if (notifier_to_errno(ret))
1333                         break;
1334         }
1335
1336         cpu_notifier_register_done();
1337         return notifier_to_errno(ret);
1338 }
1339
1340 static void zs_unregister_cpu_notifier(void)
1341 {
1342         int cpu;
1343
1344         cpu_notifier_register_begin();
1345
1346         for_each_online_cpu(cpu)
1347                 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1348         __unregister_cpu_notifier(&zs_cpu_nb);
1349
1350         cpu_notifier_register_done();
1351 }
1352
1353 static void __init init_zs_size_classes(void)
1354 {
1355         int nr;
1356
1357         nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1358         if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1359                 nr += 1;
1360
1361         zs_size_classes = nr;
1362 }
1363
1364 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1365                                         int objs_per_zspage)
1366 {
1367         if (prev->pages_per_zspage == pages_per_zspage &&
1368                 prev->objs_per_zspage == objs_per_zspage)
1369                 return true;
1370
1371         return false;
1372 }
1373
1374 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1375 {
1376         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1377 }
1378
1379 unsigned long zs_get_total_pages(struct zs_pool *pool)
1380 {
1381         return atomic_long_read(&pool->pages_allocated);
1382 }
1383 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1384
1385 /**
1386  * zs_map_object - get address of allocated object from handle.
1387  * @pool: pool from which the object was allocated
1388  * @handle: handle returned from zs_malloc
1389  *
1390  * Before using an object allocated from zs_malloc, it must be mapped using
1391  * this function. When done with the object, it must be unmapped using
1392  * zs_unmap_object.
1393  *
1394  * Only one object can be mapped per cpu at a time. There is no protection
1395  * against nested mappings.
1396  *
1397  * This function returns with preemption and page faults disabled.
1398  */
1399 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1400                         enum zs_mapmode mm)
1401 {
1402         struct zspage *zspage;
1403         struct page *page;
1404         unsigned long obj, off;
1405         unsigned int obj_idx;
1406
1407         unsigned int class_idx;
1408         enum fullness_group fg;
1409         struct size_class *class;
1410         struct mapping_area *area;
1411         struct page *pages[2];
1412         void *ret;
1413
1414         /*
1415          * Because we use per-cpu mapping areas shared among the
1416          * pools/users, we can't allow mapping in interrupt context
1417          * because it can corrupt another users mappings.
1418          */
1419         BUG_ON(in_interrupt());
1420
1421         /* From now on, migration cannot move the object */
1422         pin_tag(handle);
1423
1424         obj = handle_to_obj(handle);
1425         obj_to_location(obj, &page, &obj_idx);
1426         zspage = get_zspage(page);
1427
1428         /* migration cannot move any subpage in this zspage */
1429         migrate_read_lock(zspage);
1430
1431         get_zspage_mapping(zspage, &class_idx, &fg);
1432         class = pool->size_class[class_idx];
1433         off = (class->size * obj_idx) & ~PAGE_MASK;
1434
1435         area = &get_cpu_var(zs_map_area);
1436         area->vm_mm = mm;
1437         if (off + class->size <= PAGE_SIZE) {
1438                 /* this object is contained entirely within a page */
1439                 area->vm_addr = kmap_atomic(page);
1440                 ret = area->vm_addr + off;
1441                 goto out;
1442         }
1443
1444         /* this object spans two pages */
1445         pages[0] = page;
1446         pages[1] = get_next_page(page);
1447         BUG_ON(!pages[1]);
1448
1449         ret = __zs_map_object(area, pages, off, class->size);
1450 out:
1451         if (likely(!PageHugeObject(page)))
1452                 ret += ZS_HANDLE_SIZE;
1453
1454         return ret;
1455 }
1456 EXPORT_SYMBOL_GPL(zs_map_object);
1457
1458 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1459 {
1460         struct zspage *zspage;
1461         struct page *page;
1462         unsigned long obj, off;
1463         unsigned int obj_idx;
1464
1465         unsigned int class_idx;
1466         enum fullness_group fg;
1467         struct size_class *class;
1468         struct mapping_area *area;
1469
1470         obj = handle_to_obj(handle);
1471         obj_to_location(obj, &page, &obj_idx);
1472         zspage = get_zspage(page);
1473         get_zspage_mapping(zspage, &class_idx, &fg);
1474         class = pool->size_class[class_idx];
1475         off = (class->size * obj_idx) & ~PAGE_MASK;
1476
1477         area = this_cpu_ptr(&zs_map_area);
1478         if (off + class->size <= PAGE_SIZE)
1479                 kunmap_atomic(area->vm_addr);
1480         else {
1481                 struct page *pages[2];
1482
1483                 pages[0] = page;
1484                 pages[1] = get_next_page(page);
1485                 BUG_ON(!pages[1]);
1486
1487                 __zs_unmap_object(area, pages, off, class->size);
1488         }
1489         put_cpu_var(zs_map_area);
1490
1491         migrate_read_unlock(zspage);
1492         unpin_tag(handle);
1493 }
1494 EXPORT_SYMBOL_GPL(zs_unmap_object);
1495
1496 static unsigned long obj_malloc(struct size_class *class,
1497                                 struct zspage *zspage, unsigned long handle)
1498 {
1499         int i, nr_page, offset;
1500         unsigned long obj;
1501         struct link_free *link;
1502
1503         struct page *m_page;
1504         unsigned long m_offset;
1505         void *vaddr;
1506
1507         handle |= OBJ_ALLOCATED_TAG;
1508         obj = get_freeobj(zspage);
1509
1510         offset = obj * class->size;
1511         nr_page = offset >> PAGE_SHIFT;
1512         m_offset = offset & ~PAGE_MASK;
1513         m_page = get_first_page(zspage);
1514
1515         for (i = 0; i < nr_page; i++)
1516                 m_page = get_next_page(m_page);
1517
1518         vaddr = kmap_atomic(m_page);
1519         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1520         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1521         if (likely(!PageHugeObject(m_page)))
1522                 /* record handle in the header of allocated chunk */
1523                 link->handle = handle;
1524         else
1525                 /* record handle to page->index */
1526                 zspage->first_page->index = handle;
1527
1528         kunmap_atomic(vaddr);
1529         mod_zspage_inuse(zspage, 1);
1530         zs_stat_inc(class, OBJ_USED, 1);
1531
1532         obj = location_to_obj(m_page, obj);
1533
1534         return obj;
1535 }
1536
1537
1538 /**
1539  * zs_malloc - Allocate block of given size from pool.
1540  * @pool: pool to allocate from
1541  * @size: size of block to allocate
1542  * @gfp: gfp flags when allocating object
1543  *
1544  * On success, handle to the allocated object is returned,
1545  * otherwise 0.
1546  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1547  */
1548 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1549 {
1550         unsigned long handle, obj;
1551         struct size_class *class;
1552         enum fullness_group newfg;
1553         struct zspage *zspage;
1554
1555         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1556                 return 0;
1557
1558         handle = cache_alloc_handle(pool, gfp);
1559         if (!handle)
1560                 return 0;
1561
1562         /* extra space in chunk to keep the handle */
1563         size += ZS_HANDLE_SIZE;
1564         class = pool->size_class[get_size_class_index(size)];
1565
1566         spin_lock(&class->lock);
1567         zspage = find_get_zspage(class);
1568         if (likely(zspage)) {
1569                 obj = obj_malloc(class, zspage, handle);
1570                 /* Now move the zspage to another fullness group, if required */
1571                 fix_fullness_group(class, zspage);
1572                 record_obj(handle, obj);
1573                 spin_unlock(&class->lock);
1574
1575                 return handle;
1576         }
1577
1578         spin_unlock(&class->lock);
1579
1580         zspage = alloc_zspage(pool, class, gfp);
1581         if (!zspage) {
1582                 cache_free_handle(pool, handle);
1583                 return 0;
1584         }
1585
1586         spin_lock(&class->lock);
1587         obj = obj_malloc(class, zspage, handle);
1588         newfg = get_fullness_group(class, zspage);
1589         insert_zspage(class, zspage, newfg);
1590         set_zspage_mapping(zspage, class->index, newfg);
1591         record_obj(handle, obj);
1592         atomic_long_add(class->pages_per_zspage,
1593                                 &pool->pages_allocated);
1594         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1595
1596         /* We completely set up zspage so mark them as movable */
1597         SetZsPageMovable(pool, zspage);
1598         spin_unlock(&class->lock);
1599
1600         return handle;
1601 }
1602 EXPORT_SYMBOL_GPL(zs_malloc);
1603
1604 static void obj_free(struct size_class *class, unsigned long obj)
1605 {
1606         struct link_free *link;
1607         struct zspage *zspage;
1608         struct page *f_page;
1609         unsigned long f_offset;
1610         unsigned int f_objidx;
1611         void *vaddr;
1612
1613         obj &= ~OBJ_ALLOCATED_TAG;
1614         obj_to_location(obj, &f_page, &f_objidx);
1615         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1616         zspage = get_zspage(f_page);
1617
1618         vaddr = kmap_atomic(f_page);
1619
1620         /* Insert this object in containing zspage's freelist */
1621         link = (struct link_free *)(vaddr + f_offset);
1622         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1623         kunmap_atomic(vaddr);
1624         set_freeobj(zspage, f_objidx);
1625         mod_zspage_inuse(zspage, -1);
1626         zs_stat_dec(class, OBJ_USED, 1);
1627 }
1628
1629 void zs_free(struct zs_pool *pool, unsigned long handle)
1630 {
1631         struct zspage *zspage;
1632         struct page *f_page;
1633         unsigned long obj;
1634         unsigned int f_objidx;
1635         int class_idx;
1636         struct size_class *class;
1637         enum fullness_group fullness;
1638         bool isolated;
1639
1640         if (unlikely(!handle))
1641                 return;
1642
1643         pin_tag(handle);
1644         obj = handle_to_obj(handle);
1645         obj_to_location(obj, &f_page, &f_objidx);
1646         zspage = get_zspage(f_page);
1647
1648         migrate_read_lock(zspage);
1649
1650         get_zspage_mapping(zspage, &class_idx, &fullness);
1651         class = pool->size_class[class_idx];
1652
1653         spin_lock(&class->lock);
1654         obj_free(class, obj);
1655         fullness = fix_fullness_group(class, zspage);
1656         if (fullness != ZS_EMPTY) {
1657                 migrate_read_unlock(zspage);
1658                 goto out;
1659         }
1660
1661         isolated = is_zspage_isolated(zspage);
1662         migrate_read_unlock(zspage);
1663         /* If zspage is isolated, zs_page_putback will free the zspage */
1664         if (likely(!isolated))
1665                 free_zspage(pool, class, zspage);
1666 out:
1667
1668         spin_unlock(&class->lock);
1669         unpin_tag(handle);
1670         cache_free_handle(pool, handle);
1671 }
1672 EXPORT_SYMBOL_GPL(zs_free);
1673
1674 static void zs_object_copy(struct size_class *class, unsigned long dst,
1675                                 unsigned long src)
1676 {
1677         struct page *s_page, *d_page;
1678         unsigned int s_objidx, d_objidx;
1679         unsigned long s_off, d_off;
1680         void *s_addr, *d_addr;
1681         int s_size, d_size, size;
1682         int written = 0;
1683
1684         s_size = d_size = class->size;
1685
1686         obj_to_location(src, &s_page, &s_objidx);
1687         obj_to_location(dst, &d_page, &d_objidx);
1688
1689         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1690         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1691
1692         if (s_off + class->size > PAGE_SIZE)
1693                 s_size = PAGE_SIZE - s_off;
1694
1695         if (d_off + class->size > PAGE_SIZE)
1696                 d_size = PAGE_SIZE - d_off;
1697
1698         s_addr = kmap_atomic(s_page);
1699         d_addr = kmap_atomic(d_page);
1700
1701         while (1) {
1702                 size = min(s_size, d_size);
1703                 memcpy(d_addr + d_off, s_addr + s_off, size);
1704                 written += size;
1705
1706                 if (written == class->size)
1707                         break;
1708
1709                 s_off += size;
1710                 s_size -= size;
1711                 d_off += size;
1712                 d_size -= size;
1713
1714                 if (s_off >= PAGE_SIZE) {
1715                         kunmap_atomic(d_addr);
1716                         kunmap_atomic(s_addr);
1717                         s_page = get_next_page(s_page);
1718                         s_addr = kmap_atomic(s_page);
1719                         d_addr = kmap_atomic(d_page);
1720                         s_size = class->size - written;
1721                         s_off = 0;
1722                 }
1723
1724                 if (d_off >= PAGE_SIZE) {
1725                         kunmap_atomic(d_addr);
1726                         d_page = get_next_page(d_page);
1727                         d_addr = kmap_atomic(d_page);
1728                         d_size = class->size - written;
1729                         d_off = 0;
1730                 }
1731         }
1732
1733         kunmap_atomic(d_addr);
1734         kunmap_atomic(s_addr);
1735 }
1736
1737 /*
1738  * Find alloced object in zspage from index object and
1739  * return handle.
1740  */
1741 static unsigned long find_alloced_obj(struct size_class *class,
1742                                         struct page *page, int *obj_idx)
1743 {
1744         unsigned long head;
1745         int offset = 0;
1746         int index = *obj_idx;
1747         unsigned long handle = 0;
1748         void *addr = kmap_atomic(page);
1749
1750         offset = get_first_obj_offset(page);
1751         offset += class->size * index;
1752
1753         while (offset < PAGE_SIZE) {
1754                 head = obj_to_head(page, addr + offset);
1755                 if (head & OBJ_ALLOCATED_TAG) {
1756                         handle = head & ~OBJ_ALLOCATED_TAG;
1757                         if (trypin_tag(handle))
1758                                 break;
1759                         handle = 0;
1760                 }
1761
1762                 offset += class->size;
1763                 index++;
1764         }
1765
1766         kunmap_atomic(addr);
1767
1768         *obj_idx = index;
1769
1770         return handle;
1771 }
1772
1773 struct zs_compact_control {
1774         /* Source spage for migration which could be a subpage of zspage */
1775         struct page *s_page;
1776         /* Destination page for migration which should be a first page
1777          * of zspage. */
1778         struct page *d_page;
1779          /* Starting object index within @s_page which used for live object
1780           * in the subpage. */
1781         int obj_idx;
1782 };
1783
1784 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1785                                 struct zs_compact_control *cc)
1786 {
1787         unsigned long used_obj, free_obj;
1788         unsigned long handle;
1789         struct page *s_page = cc->s_page;
1790         struct page *d_page = cc->d_page;
1791         int obj_idx = cc->obj_idx;
1792         int ret = 0;
1793
1794         while (1) {
1795                 handle = find_alloced_obj(class, s_page, &obj_idx);
1796                 if (!handle) {
1797                         s_page = get_next_page(s_page);
1798                         if (!s_page)
1799                                 break;
1800                         obj_idx = 0;
1801                         continue;
1802                 }
1803
1804                 /* Stop if there is no more space */
1805                 if (zspage_full(class, get_zspage(d_page))) {
1806                         unpin_tag(handle);
1807                         ret = -ENOMEM;
1808                         break;
1809                 }
1810
1811                 used_obj = handle_to_obj(handle);
1812                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1813                 zs_object_copy(class, free_obj, used_obj);
1814                 obj_idx++;
1815                 /*
1816                  * record_obj updates handle's value to free_obj and it will
1817                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1818                  * breaks synchronization using pin_tag(e,g, zs_free) so
1819                  * let's keep the lock bit.
1820                  */
1821                 free_obj |= BIT(HANDLE_PIN_BIT);
1822                 record_obj(handle, free_obj);
1823                 unpin_tag(handle);
1824                 obj_free(class, used_obj);
1825         }
1826
1827         /* Remember last position in this iteration */
1828         cc->s_page = s_page;
1829         cc->obj_idx = obj_idx;
1830
1831         return ret;
1832 }
1833
1834 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1835 {
1836         int i;
1837         struct zspage *zspage;
1838         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1839
1840         if (!source) {
1841                 fg[0] = ZS_ALMOST_FULL;
1842                 fg[1] = ZS_ALMOST_EMPTY;
1843         }
1844
1845         for (i = 0; i < 2; i++) {
1846                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1847                                                         struct zspage, list);
1848                 if (zspage) {
1849                         VM_BUG_ON(is_zspage_isolated(zspage));
1850                         remove_zspage(class, zspage, fg[i]);
1851                         return zspage;
1852                 }
1853         }
1854
1855         return zspage;
1856 }
1857
1858 /*
1859  * putback_zspage - add @zspage into right class's fullness list
1860  * @class: destination class
1861  * @zspage: target page
1862  *
1863  * Return @zspage's fullness_group
1864  */
1865 static enum fullness_group putback_zspage(struct size_class *class,
1866                         struct zspage *zspage)
1867 {
1868         enum fullness_group fullness;
1869
1870         VM_BUG_ON(is_zspage_isolated(zspage));
1871
1872         fullness = get_fullness_group(class, zspage);
1873         insert_zspage(class, zspage, fullness);
1874         set_zspage_mapping(zspage, class->index, fullness);
1875
1876         return fullness;
1877 }
1878
1879 #ifdef CONFIG_COMPACTION
1880 static struct dentry *zs_mount(struct file_system_type *fs_type,
1881                                 int flags, const char *dev_name, void *data)
1882 {
1883         static const struct dentry_operations ops = {
1884                 .d_dname = simple_dname,
1885         };
1886
1887         return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1888 }
1889
1890 static struct file_system_type zsmalloc_fs = {
1891         .name           = "zsmalloc",
1892         .mount          = zs_mount,
1893         .kill_sb        = kill_anon_super,
1894 };
1895
1896 static int zsmalloc_mount(void)
1897 {
1898         int ret = 0;
1899
1900         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1901         if (IS_ERR(zsmalloc_mnt))
1902                 ret = PTR_ERR(zsmalloc_mnt);
1903
1904         return ret;
1905 }
1906
1907 static void zsmalloc_unmount(void)
1908 {
1909         kern_unmount(zsmalloc_mnt);
1910 }
1911
1912 static void migrate_lock_init(struct zspage *zspage)
1913 {
1914         rwlock_init(&zspage->lock);
1915 }
1916
1917 static void migrate_read_lock(struct zspage *zspage)
1918 {
1919         read_lock(&zspage->lock);
1920 }
1921
1922 static void migrate_read_unlock(struct zspage *zspage)
1923 {
1924         read_unlock(&zspage->lock);
1925 }
1926
1927 static void migrate_write_lock(struct zspage *zspage)
1928 {
1929         write_lock(&zspage->lock);
1930 }
1931
1932 static void migrate_write_unlock(struct zspage *zspage)
1933 {
1934         write_unlock(&zspage->lock);
1935 }
1936
1937 /* Number of isolated subpage for *page migration* in this zspage */
1938 static void inc_zspage_isolation(struct zspage *zspage)
1939 {
1940         zspage->isolated++;
1941 }
1942
1943 static void dec_zspage_isolation(struct zspage *zspage)
1944 {
1945         zspage->isolated--;
1946 }
1947
1948 static void putback_zspage_deferred(struct zs_pool *pool,
1949                                     struct size_class *class,
1950                                     struct zspage *zspage)
1951 {
1952         enum fullness_group fg;
1953
1954         fg = putback_zspage(class, zspage);
1955         if (fg == ZS_EMPTY)
1956                 schedule_work(&pool->free_work);
1957
1958 }
1959
1960 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1961 {
1962         VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1963         atomic_long_dec(&pool->isolated_pages);
1964         /*
1965          * Checking pool->destroying must happen after atomic_long_dec()
1966          * for pool->isolated_pages above. Paired with the smp_mb() in
1967          * zs_unregister_migration().
1968          */
1969         smp_mb__after_atomic();
1970         if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1971                 wake_up_all(&pool->migration_wait);
1972 }
1973
1974 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1975                                 struct page *newpage, struct page *oldpage)
1976 {
1977         struct page *page;
1978         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1979         int idx = 0;
1980
1981         page = get_first_page(zspage);
1982         do {
1983                 if (page == oldpage)
1984                         pages[idx] = newpage;
1985                 else
1986                         pages[idx] = page;
1987                 idx++;
1988         } while ((page = get_next_page(page)) != NULL);
1989
1990         create_page_chain(class, zspage, pages);
1991         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1992         if (unlikely(PageHugeObject(oldpage)))
1993                 newpage->index = oldpage->index;
1994         __SetPageMovable(newpage, page_mapping(oldpage));
1995 }
1996
1997 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1998 {
1999         struct zs_pool *pool;
2000         struct size_class *class;
2001         int class_idx;
2002         enum fullness_group fullness;
2003         struct zspage *zspage;
2004         struct address_space *mapping;
2005
2006         /*
2007          * Page is locked so zspage couldn't be destroyed. For detail, look at
2008          * lock_zspage in free_zspage.
2009          */
2010         VM_BUG_ON_PAGE(!PageMovable(page), page);
2011         VM_BUG_ON_PAGE(PageIsolated(page), page);
2012
2013         zspage = get_zspage(page);
2014
2015         /*
2016          * Without class lock, fullness could be stale while class_idx is okay
2017          * because class_idx is constant unless page is freed so we should get
2018          * fullness again under class lock.
2019          */
2020         get_zspage_mapping(zspage, &class_idx, &fullness);
2021         mapping = page_mapping(page);
2022         pool = mapping->private_data;
2023         class = pool->size_class[class_idx];
2024
2025         spin_lock(&class->lock);
2026         if (get_zspage_inuse(zspage) == 0) {
2027                 spin_unlock(&class->lock);
2028                 return false;
2029         }
2030
2031         /* zspage is isolated for object migration */
2032         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2033                 spin_unlock(&class->lock);
2034                 return false;
2035         }
2036
2037         /*
2038          * If this is first time isolation for the zspage, isolate zspage from
2039          * size_class to prevent further object allocation from the zspage.
2040          */
2041         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2042                 get_zspage_mapping(zspage, &class_idx, &fullness);
2043                 atomic_long_inc(&pool->isolated_pages);
2044                 remove_zspage(class, zspage, fullness);
2045         }
2046
2047         inc_zspage_isolation(zspage);
2048         spin_unlock(&class->lock);
2049
2050         return true;
2051 }
2052
2053 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2054                 struct page *page, enum migrate_mode mode)
2055 {
2056         struct zs_pool *pool;
2057         struct size_class *class;
2058         int class_idx;
2059         enum fullness_group fullness;
2060         struct zspage *zspage;
2061         struct page *dummy;
2062         void *s_addr, *d_addr, *addr;
2063         int offset, pos;
2064         unsigned long handle, head;
2065         unsigned long old_obj, new_obj;
2066         unsigned int obj_idx;
2067         int ret = -EAGAIN;
2068
2069         VM_BUG_ON_PAGE(!PageMovable(page), page);
2070         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2071
2072         zspage = get_zspage(page);
2073
2074         /* Concurrent compactor cannot migrate any subpage in zspage */
2075         migrate_write_lock(zspage);
2076         get_zspage_mapping(zspage, &class_idx, &fullness);
2077         pool = mapping->private_data;
2078         class = pool->size_class[class_idx];
2079         offset = get_first_obj_offset(page);
2080
2081         spin_lock(&class->lock);
2082         if (!get_zspage_inuse(zspage)) {
2083                 ret = -EBUSY;
2084                 goto unlock_class;
2085         }
2086
2087         pos = offset;
2088         s_addr = kmap_atomic(page);
2089         while (pos < PAGE_SIZE) {
2090                 head = obj_to_head(page, s_addr + pos);
2091                 if (head & OBJ_ALLOCATED_TAG) {
2092                         handle = head & ~OBJ_ALLOCATED_TAG;
2093                         if (!trypin_tag(handle))
2094                                 goto unpin_objects;
2095                 }
2096                 pos += class->size;
2097         }
2098
2099         /*
2100          * Here, any user cannot access all objects in the zspage so let's move.
2101          */
2102         d_addr = kmap_atomic(newpage);
2103         memcpy(d_addr, s_addr, PAGE_SIZE);
2104         kunmap_atomic(d_addr);
2105
2106         for (addr = s_addr + offset; addr < s_addr + pos;
2107                                         addr += class->size) {
2108                 head = obj_to_head(page, addr);
2109                 if (head & OBJ_ALLOCATED_TAG) {
2110                         handle = head & ~OBJ_ALLOCATED_TAG;
2111                         if (!testpin_tag(handle))
2112                                 BUG();
2113
2114                         old_obj = handle_to_obj(handle);
2115                         obj_to_location(old_obj, &dummy, &obj_idx);
2116                         new_obj = (unsigned long)location_to_obj(newpage,
2117                                                                 obj_idx);
2118                         new_obj |= BIT(HANDLE_PIN_BIT);
2119                         record_obj(handle, new_obj);
2120                 }
2121         }
2122
2123         replace_sub_page(class, zspage, newpage, page);
2124         get_page(newpage);
2125
2126         dec_zspage_isolation(zspage);
2127
2128         /*
2129          * Page migration is done so let's putback isolated zspage to
2130          * the list if @page is final isolated subpage in the zspage.
2131          */
2132         if (!is_zspage_isolated(zspage)) {
2133                 /*
2134                  * We cannot race with zs_destroy_pool() here because we wait
2135                  * for isolation to hit zero before we start destroying.
2136                  * Also, we ensure that everyone can see pool->destroying before
2137                  * we start waiting.
2138                  */
2139                 putback_zspage_deferred(pool, class, zspage);
2140                 zs_pool_dec_isolated(pool);
2141         }
2142
2143         if (page_zone(newpage) != page_zone(page)) {
2144                 dec_zone_page_state(page, NR_ZSPAGES);
2145                 inc_zone_page_state(newpage, NR_ZSPAGES);
2146         }
2147
2148         reset_page(page);
2149         put_page(page);
2150         page = newpage;
2151
2152         ret = MIGRATEPAGE_SUCCESS;
2153 unpin_objects:
2154         for (addr = s_addr + offset; addr < s_addr + pos;
2155                                                 addr += class->size) {
2156                 head = obj_to_head(page, addr);
2157                 if (head & OBJ_ALLOCATED_TAG) {
2158                         handle = head & ~OBJ_ALLOCATED_TAG;
2159                         if (!testpin_tag(handle))
2160                                 BUG();
2161                         unpin_tag(handle);
2162                 }
2163         }
2164         kunmap_atomic(s_addr);
2165 unlock_class:
2166         spin_unlock(&class->lock);
2167         migrate_write_unlock(zspage);
2168
2169         return ret;
2170 }
2171
2172 void zs_page_putback(struct page *page)
2173 {
2174         struct zs_pool *pool;
2175         struct size_class *class;
2176         int class_idx;
2177         enum fullness_group fg;
2178         struct address_space *mapping;
2179         struct zspage *zspage;
2180
2181         VM_BUG_ON_PAGE(!PageMovable(page), page);
2182         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2183
2184         zspage = get_zspage(page);
2185         get_zspage_mapping(zspage, &class_idx, &fg);
2186         mapping = page_mapping(page);
2187         pool = mapping->private_data;
2188         class = pool->size_class[class_idx];
2189
2190         spin_lock(&class->lock);
2191         dec_zspage_isolation(zspage);
2192         if (!is_zspage_isolated(zspage)) {
2193                 /*
2194                  * Due to page_lock, we cannot free zspage immediately
2195                  * so let's defer.
2196                  */
2197                 putback_zspage_deferred(pool, class, zspage);
2198                 zs_pool_dec_isolated(pool);
2199         }
2200         spin_unlock(&class->lock);
2201 }
2202
2203 const struct address_space_operations zsmalloc_aops = {
2204         .isolate_page = zs_page_isolate,
2205         .migratepage = zs_page_migrate,
2206         .putback_page = zs_page_putback,
2207 };
2208
2209 static int zs_register_migration(struct zs_pool *pool)
2210 {
2211         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2212         if (IS_ERR(pool->inode)) {
2213                 pool->inode = NULL;
2214                 return 1;
2215         }
2216
2217         pool->inode->i_mapping->private_data = pool;
2218         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2219         return 0;
2220 }
2221
2222 static bool pool_isolated_are_drained(struct zs_pool *pool)
2223 {
2224         return atomic_long_read(&pool->isolated_pages) == 0;
2225 }
2226
2227 /* Function for resolving migration */
2228 static void wait_for_isolated_drain(struct zs_pool *pool)
2229 {
2230
2231         /*
2232          * We're in the process of destroying the pool, so there are no
2233          * active allocations. zs_page_isolate() fails for completely free
2234          * zspages, so we need only wait for the zs_pool's isolated
2235          * count to hit zero.
2236          */
2237         wait_event(pool->migration_wait,
2238                    pool_isolated_are_drained(pool));
2239 }
2240
2241 static void zs_unregister_migration(struct zs_pool *pool)
2242 {
2243         pool->destroying = true;
2244         /*
2245          * We need a memory barrier here to ensure global visibility of
2246          * pool->destroying. Thus pool->isolated pages will either be 0 in which
2247          * case we don't care, or it will be > 0 and pool->destroying will
2248          * ensure that we wake up once isolation hits 0.
2249          */
2250         smp_mb();
2251         wait_for_isolated_drain(pool); /* This can block */
2252         flush_work(&pool->free_work);
2253         iput(pool->inode);
2254 }
2255
2256 /*
2257  * Caller should hold page_lock of all pages in the zspage
2258  * In here, we cannot use zspage meta data.
2259  */
2260 static void async_free_zspage(struct work_struct *work)
2261 {
2262         int i;
2263         struct size_class *class;
2264         unsigned int class_idx;
2265         enum fullness_group fullness;
2266         struct zspage *zspage, *tmp;
2267         LIST_HEAD(free_pages);
2268         struct zs_pool *pool = container_of(work, struct zs_pool,
2269                                         free_work);
2270
2271         for (i = 0; i < zs_size_classes; i++) {
2272                 class = pool->size_class[i];
2273                 if (class->index != i)
2274                         continue;
2275
2276                 spin_lock(&class->lock);
2277                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2278                 spin_unlock(&class->lock);
2279         }
2280
2281
2282         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2283                 list_del(&zspage->list);
2284                 lock_zspage(zspage);
2285
2286                 get_zspage_mapping(zspage, &class_idx, &fullness);
2287                 VM_BUG_ON(fullness != ZS_EMPTY);
2288                 class = pool->size_class[class_idx];
2289                 spin_lock(&class->lock);
2290                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2291                 spin_unlock(&class->lock);
2292         }
2293 };
2294
2295 static void kick_deferred_free(struct zs_pool *pool)
2296 {
2297         schedule_work(&pool->free_work);
2298 }
2299
2300 static void init_deferred_free(struct zs_pool *pool)
2301 {
2302         INIT_WORK(&pool->free_work, async_free_zspage);
2303 }
2304
2305 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2306 {
2307         struct page *page = get_first_page(zspage);
2308
2309         do {
2310                 WARN_ON(!trylock_page(page));
2311                 __SetPageMovable(page, pool->inode->i_mapping);
2312                 unlock_page(page);
2313         } while ((page = get_next_page(page)) != NULL);
2314 }
2315 #endif
2316
2317 /*
2318  *
2319  * Based on the number of unused allocated objects calculate
2320  * and return the number of pages that we can free.
2321  */
2322 static unsigned long zs_can_compact(struct size_class *class)
2323 {
2324         unsigned long obj_wasted;
2325         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2326         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2327
2328         if (obj_allocated <= obj_used)
2329                 return 0;
2330
2331         obj_wasted = obj_allocated - obj_used;
2332         obj_wasted /= class->objs_per_zspage;
2333
2334         return obj_wasted * class->pages_per_zspage;
2335 }
2336
2337 static unsigned long __zs_compact(struct zs_pool *pool,
2338                                   struct size_class *class)
2339 {
2340         struct zs_compact_control cc;
2341         struct zspage *src_zspage;
2342         struct zspage *dst_zspage = NULL;
2343         unsigned long pages_freed = 0;
2344
2345         spin_lock(&class->lock);
2346         while ((src_zspage = isolate_zspage(class, true))) {
2347
2348                 if (!zs_can_compact(class))
2349                         break;
2350
2351                 cc.obj_idx = 0;
2352                 cc.s_page = get_first_page(src_zspage);
2353
2354                 while ((dst_zspage = isolate_zspage(class, false))) {
2355                         cc.d_page = get_first_page(dst_zspage);
2356                         /*
2357                          * If there is no more space in dst_page, resched
2358                          * and see if anyone had allocated another zspage.
2359                          */
2360                         if (!migrate_zspage(pool, class, &cc))
2361                                 break;
2362
2363                         putback_zspage(class, dst_zspage);
2364                 }
2365
2366                 /* Stop if we couldn't find slot */
2367                 if (dst_zspage == NULL)
2368                         break;
2369
2370                 putback_zspage(class, dst_zspage);
2371                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2372                         free_zspage(pool, class, src_zspage);
2373                         pages_freed += class->pages_per_zspage;
2374                 }
2375                 spin_unlock(&class->lock);
2376                 cond_resched();
2377                 spin_lock(&class->lock);
2378         }
2379
2380         if (src_zspage)
2381                 putback_zspage(class, src_zspage);
2382
2383         spin_unlock(&class->lock);
2384
2385         return pages_freed;
2386 }
2387
2388 unsigned long zs_compact(struct zs_pool *pool)
2389 {
2390         int i;
2391         struct size_class *class;
2392         unsigned long pages_freed = 0;
2393
2394         for (i = zs_size_classes - 1; i >= 0; i--) {
2395                 class = pool->size_class[i];
2396                 if (!class)
2397                         continue;
2398                 if (class->index != i)
2399                         continue;
2400                 pages_freed += __zs_compact(pool, class);
2401         }
2402         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2403
2404         return pages_freed;
2405 }
2406 EXPORT_SYMBOL_GPL(zs_compact);
2407
2408 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2409 {
2410         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2411 }
2412 EXPORT_SYMBOL_GPL(zs_pool_stats);
2413
2414 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2415                 struct shrink_control *sc)
2416 {
2417         unsigned long pages_freed;
2418         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2419                         shrinker);
2420
2421         /*
2422          * Compact classes and calculate compaction delta.
2423          * Can run concurrently with a manually triggered
2424          * (by user) compaction.
2425          */
2426         pages_freed = zs_compact(pool);
2427
2428         return pages_freed ? pages_freed : SHRINK_STOP;
2429 }
2430
2431 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2432                 struct shrink_control *sc)
2433 {
2434         int i;
2435         struct size_class *class;
2436         unsigned long pages_to_free = 0;
2437         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2438                         shrinker);
2439
2440         for (i = zs_size_classes - 1; i >= 0; i--) {
2441                 class = pool->size_class[i];
2442                 if (!class)
2443                         continue;
2444                 if (class->index != i)
2445                         continue;
2446
2447                 pages_to_free += zs_can_compact(class);
2448         }
2449
2450         return pages_to_free;
2451 }
2452
2453 static void zs_unregister_shrinker(struct zs_pool *pool)
2454 {
2455         if (pool->shrinker_enabled) {
2456                 unregister_shrinker(&pool->shrinker);
2457                 pool->shrinker_enabled = false;
2458         }
2459 }
2460
2461 static int zs_register_shrinker(struct zs_pool *pool)
2462 {
2463         pool->shrinker.scan_objects = zs_shrinker_scan;
2464         pool->shrinker.count_objects = zs_shrinker_count;
2465         pool->shrinker.batch = 0;
2466         pool->shrinker.seeks = DEFAULT_SEEKS;
2467
2468         return register_shrinker(&pool->shrinker);
2469 }
2470
2471 /**
2472  * zs_create_pool - Creates an allocation pool to work from.
2473  * @name: pool name to be created
2474  *
2475  * This function must be called before anything when using
2476  * the zsmalloc allocator.
2477  *
2478  * On success, a pointer to the newly created pool is returned,
2479  * otherwise NULL.
2480  */
2481 struct zs_pool *zs_create_pool(const char *name)
2482 {
2483         int i;
2484         struct zs_pool *pool;
2485         struct size_class *prev_class = NULL;
2486
2487         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2488         if (!pool)
2489                 return NULL;
2490
2491         init_deferred_free(pool);
2492         pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2493                         GFP_KERNEL);
2494         if (!pool->size_class) {
2495                 kfree(pool);
2496                 return NULL;
2497         }
2498
2499         pool->name = kstrdup(name, GFP_KERNEL);
2500         if (!pool->name)
2501                 goto err;
2502
2503 #ifdef CONFIG_COMPACTION
2504         init_waitqueue_head(&pool->migration_wait);
2505 #endif
2506
2507         if (create_cache(pool))
2508                 goto err;
2509
2510         /*
2511          * Iterate reversly, because, size of size_class that we want to use
2512          * for merging should be larger or equal to current size.
2513          */
2514         for (i = zs_size_classes - 1; i >= 0; i--) {
2515                 int size;
2516                 int pages_per_zspage;
2517                 int objs_per_zspage;
2518                 struct size_class *class;
2519                 int fullness = 0;
2520
2521                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2522                 if (size > ZS_MAX_ALLOC_SIZE)
2523                         size = ZS_MAX_ALLOC_SIZE;
2524                 pages_per_zspage = get_pages_per_zspage(size);
2525                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2526
2527                 /*
2528                  * size_class is used for normal zsmalloc operation such
2529                  * as alloc/free for that size. Although it is natural that we
2530                  * have one size_class for each size, there is a chance that we
2531                  * can get more memory utilization if we use one size_class for
2532                  * many different sizes whose size_class have same
2533                  * characteristics. So, we makes size_class point to
2534                  * previous size_class if possible.
2535                  */
2536                 if (prev_class) {
2537                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2538                                 pool->size_class[i] = prev_class;
2539                                 continue;
2540                         }
2541                 }
2542
2543                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2544                 if (!class)
2545                         goto err;
2546
2547                 class->size = size;
2548                 class->index = i;
2549                 class->pages_per_zspage = pages_per_zspage;
2550                 class->objs_per_zspage = objs_per_zspage;
2551                 spin_lock_init(&class->lock);
2552                 pool->size_class[i] = class;
2553                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2554                                                         fullness++)
2555                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2556
2557                 prev_class = class;
2558         }
2559
2560         /* debug only, don't abort if it fails */
2561         zs_pool_stat_create(pool, name);
2562
2563         if (zs_register_migration(pool))
2564                 goto err;
2565
2566         /*
2567          * Not critical, we still can use the pool
2568          * and user can trigger compaction manually.
2569          */
2570         if (zs_register_shrinker(pool) == 0)
2571                 pool->shrinker_enabled = true;
2572         return pool;
2573
2574 err:
2575         zs_destroy_pool(pool);
2576         return NULL;
2577 }
2578 EXPORT_SYMBOL_GPL(zs_create_pool);
2579
2580 void zs_destroy_pool(struct zs_pool *pool)
2581 {
2582         int i;
2583
2584         zs_unregister_shrinker(pool);
2585         zs_unregister_migration(pool);
2586         zs_pool_stat_destroy(pool);
2587
2588         for (i = 0; i < zs_size_classes; i++) {
2589                 int fg;
2590                 struct size_class *class = pool->size_class[i];
2591
2592                 if (!class)
2593                         continue;
2594
2595                 if (class->index != i)
2596                         continue;
2597
2598                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2599                         if (!list_empty(&class->fullness_list[fg])) {
2600                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2601                                         class->size, fg);
2602                         }
2603                 }
2604                 kfree(class);
2605         }
2606
2607         destroy_cache(pool);
2608         kfree(pool->size_class);
2609         kfree(pool->name);
2610         kfree(pool);
2611 }
2612 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2613
2614 static int __init zs_init(void)
2615 {
2616         int ret;
2617
2618         ret = zsmalloc_mount();
2619         if (ret)
2620                 goto out;
2621
2622         ret = zs_register_cpu_notifier();
2623
2624         if (ret)
2625                 goto notifier_fail;
2626
2627         init_zs_size_classes();
2628
2629 #ifdef CONFIG_ZPOOL
2630         zpool_register_driver(&zs_zpool_driver);
2631 #endif
2632
2633         zs_stat_init();
2634
2635         return 0;
2636
2637 notifier_fail:
2638         zs_unregister_cpu_notifier();
2639         zsmalloc_unmount();
2640 out:
2641         return ret;
2642 }
2643
2644 static void __exit zs_exit(void)
2645 {
2646 #ifdef CONFIG_ZPOOL
2647         zpool_unregister_driver(&zs_zpool_driver);
2648 #endif
2649         zsmalloc_unmount();
2650         zs_unregister_cpu_notifier();
2651
2652         zs_stat_exit();
2653 }
2654
2655 module_init(zs_init);
2656 module_exit(zs_exit);
2657
2658 MODULE_LICENSE("Dual BSD/GPL");
2659 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");