GNU Linux-libre 4.14.290-gnu1
[releases.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/rwsem.h>
87 #include <linux/string.h>
88 #include <linux/mm.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/errno.h>
92 #include <linux/interrupt.h>
93 #include <linux/if_ether.h>
94 #include <linux/netdevice.h>
95 #include <linux/etherdevice.h>
96 #include <linux/ethtool.h>
97 #include <linux/notifier.h>
98 #include <linux/skbuff.h>
99 #include <linux/bpf.h>
100 #include <linux/bpf_trace.h>
101 #include <net/net_namespace.h>
102 #include <net/sock.h>
103 #include <net/busy_poll.h>
104 #include <linux/rtnetlink.h>
105 #include <linux/stat.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <linux/highmem.h>
113 #include <linux/init.h>
114 #include <linux/module.h>
115 #include <linux/netpoll.h>
116 #include <linux/rcupdate.h>
117 #include <linux/delay.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <net/mpls.h>
129 #include <linux/ipv6.h>
130 #include <linux/in.h>
131 #include <linux/jhash.h>
132 #include <linux/random.h>
133 #include <trace/events/napi.h>
134 #include <trace/events/net.h>
135 #include <trace/events/skb.h>
136 #include <linux/pci.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_ingress.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct net_device *dev,
167                                          struct netdev_notifier_info *info);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static DECLARE_RWSEM(devnet_rename_sem);
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235         struct net *net = dev_net(dev);
236
237         ASSERT_RTNL();
238
239         write_lock_bh(&dev_base_lock);
240         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242         hlist_add_head_rcu(&dev->index_hlist,
243                            dev_index_hash(net, dev->ifindex));
244         write_unlock_bh(&dev_base_lock);
245
246         dev_base_seq_inc(net);
247 }
248
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254         ASSERT_RTNL();
255
256         /* Unlink dev from the device chain */
257         write_lock_bh(&dev_base_lock);
258         list_del_rcu(&dev->dev_list);
259         hlist_del_rcu(&dev->name_hlist);
260         hlist_del_rcu(&dev->index_hlist);
261         write_unlock_bh(&dev_base_lock);
262
263         dev_base_seq_inc(dev_net(dev));
264 }
265
266 /*
267  *      Our notifier list
268  */
269
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271
272 /*
273  *      Device drivers call our routines to queue packets here. We empty the
274  *      queue in the local softnet handler.
275  */
276
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279
280 #ifdef CONFIG_LOCKDEP
281 /*
282  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283  * according to dev->type
284  */
285 static const unsigned short netdev_lock_type[] = {
286          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
287          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
298          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301
302 static const char *const netdev_lock_name[] = {
303         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318
319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323 {
324         int i;
325
326         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327                 if (netdev_lock_type[i] == dev_type)
328                         return i;
329         /* the last key is used by default */
330         return ARRAY_SIZE(netdev_lock_type) - 1;
331 }
332
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334                                                  unsigned short dev_type)
335 {
336         int i;
337
338         i = netdev_lock_pos(dev_type);
339         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340                                    netdev_lock_name[i]);
341 }
342
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 {
345         int i;
346
347         i = netdev_lock_pos(dev->type);
348         lockdep_set_class_and_name(&dev->addr_list_lock,
349                                    &netdev_addr_lock_key[i],
350                                    netdev_lock_name[i]);
351 }
352 #else
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354                                                  unsigned short dev_type)
355 {
356 }
357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
358 {
359 }
360 #endif
361
362 /*******************************************************************************
363  *
364  *              Protocol management and registration routines
365  *
366  *******************************************************************************/
367
368
369 /*
370  *      Add a protocol ID to the list. Now that the input handler is
371  *      smarter we can dispense with all the messy stuff that used to be
372  *      here.
373  *
374  *      BEWARE!!! Protocol handlers, mangling input packets,
375  *      MUST BE last in hash buckets and checking protocol handlers
376  *      MUST start from promiscuous ptype_all chain in net_bh.
377  *      It is true now, do not change it.
378  *      Explanation follows: if protocol handler, mangling packet, will
379  *      be the first on list, it is not able to sense, that packet
380  *      is cloned and should be copied-on-write, so that it will
381  *      change it and subsequent readers will get broken packet.
382  *                                                      --ANK (980803)
383  */
384
385 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 {
387         if (pt->type == htons(ETH_P_ALL))
388                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389         else
390                 return pt->dev ? &pt->dev->ptype_specific :
391                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
392 }
393
394 /**
395  *      dev_add_pack - add packet handler
396  *      @pt: packet type declaration
397  *
398  *      Add a protocol handler to the networking stack. The passed &packet_type
399  *      is linked into kernel lists and may not be freed until it has been
400  *      removed from the kernel lists.
401  *
402  *      This call does not sleep therefore it can not
403  *      guarantee all CPU's that are in middle of receiving packets
404  *      will see the new packet type (until the next received packet).
405  */
406
407 void dev_add_pack(struct packet_type *pt)
408 {
409         struct list_head *head = ptype_head(pt);
410
411         spin_lock(&ptype_lock);
412         list_add_rcu(&pt->list, head);
413         spin_unlock(&ptype_lock);
414 }
415 EXPORT_SYMBOL(dev_add_pack);
416
417 /**
418  *      __dev_remove_pack        - remove packet handler
419  *      @pt: packet type declaration
420  *
421  *      Remove a protocol handler that was previously added to the kernel
422  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
423  *      from the kernel lists and can be freed or reused once this function
424  *      returns.
425  *
426  *      The packet type might still be in use by receivers
427  *      and must not be freed until after all the CPU's have gone
428  *      through a quiescent state.
429  */
430 void __dev_remove_pack(struct packet_type *pt)
431 {
432         struct list_head *head = ptype_head(pt);
433         struct packet_type *pt1;
434
435         spin_lock(&ptype_lock);
436
437         list_for_each_entry(pt1, head, list) {
438                 if (pt == pt1) {
439                         list_del_rcu(&pt->list);
440                         goto out;
441                 }
442         }
443
444         pr_warn("dev_remove_pack: %p not found\n", pt);
445 out:
446         spin_unlock(&ptype_lock);
447 }
448 EXPORT_SYMBOL(__dev_remove_pack);
449
450 /**
451  *      dev_remove_pack  - remove packet handler
452  *      @pt: packet type declaration
453  *
454  *      Remove a protocol handler that was previously added to the kernel
455  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
456  *      from the kernel lists and can be freed or reused once this function
457  *      returns.
458  *
459  *      This call sleeps to guarantee that no CPU is looking at the packet
460  *      type after return.
461  */
462 void dev_remove_pack(struct packet_type *pt)
463 {
464         __dev_remove_pack(pt);
465
466         synchronize_net();
467 }
468 EXPORT_SYMBOL(dev_remove_pack);
469
470
471 /**
472  *      dev_add_offload - register offload handlers
473  *      @po: protocol offload declaration
474  *
475  *      Add protocol offload handlers to the networking stack. The passed
476  *      &proto_offload is linked into kernel lists and may not be freed until
477  *      it has been removed from the kernel lists.
478  *
479  *      This call does not sleep therefore it can not
480  *      guarantee all CPU's that are in middle of receiving packets
481  *      will see the new offload handlers (until the next received packet).
482  */
483 void dev_add_offload(struct packet_offload *po)
484 {
485         struct packet_offload *elem;
486
487         spin_lock(&offload_lock);
488         list_for_each_entry(elem, &offload_base, list) {
489                 if (po->priority < elem->priority)
490                         break;
491         }
492         list_add_rcu(&po->list, elem->list.prev);
493         spin_unlock(&offload_lock);
494 }
495 EXPORT_SYMBOL(dev_add_offload);
496
497 /**
498  *      __dev_remove_offload     - remove offload handler
499  *      @po: packet offload declaration
500  *
501  *      Remove a protocol offload handler that was previously added to the
502  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
503  *      is removed from the kernel lists and can be freed or reused once this
504  *      function returns.
505  *
506  *      The packet type might still be in use by receivers
507  *      and must not be freed until after all the CPU's have gone
508  *      through a quiescent state.
509  */
510 static void __dev_remove_offload(struct packet_offload *po)
511 {
512         struct list_head *head = &offload_base;
513         struct packet_offload *po1;
514
515         spin_lock(&offload_lock);
516
517         list_for_each_entry(po1, head, list) {
518                 if (po == po1) {
519                         list_del_rcu(&po->list);
520                         goto out;
521                 }
522         }
523
524         pr_warn("dev_remove_offload: %p not found\n", po);
525 out:
526         spin_unlock(&offload_lock);
527 }
528
529 /**
530  *      dev_remove_offload       - remove packet offload handler
531  *      @po: packet offload declaration
532  *
533  *      Remove a packet offload handler that was previously added to the kernel
534  *      offload handlers by dev_add_offload(). The passed &offload_type is
535  *      removed from the kernel lists and can be freed or reused once this
536  *      function returns.
537  *
538  *      This call sleeps to guarantee that no CPU is looking at the packet
539  *      type after return.
540  */
541 void dev_remove_offload(struct packet_offload *po)
542 {
543         __dev_remove_offload(po);
544
545         synchronize_net();
546 }
547 EXPORT_SYMBOL(dev_remove_offload);
548
549 /******************************************************************************
550  *
551  *                    Device Boot-time Settings Routines
552  *
553  ******************************************************************************/
554
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
557
558 /**
559  *      netdev_boot_setup_add   - add new setup entry
560  *      @name: name of the device
561  *      @map: configured settings for the device
562  *
563  *      Adds new setup entry to the dev_boot_setup list.  The function
564  *      returns 0 on error and 1 on success.  This is a generic routine to
565  *      all netdevices.
566  */
567 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 {
569         struct netdev_boot_setup *s;
570         int i;
571
572         s = dev_boot_setup;
573         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575                         memset(s[i].name, 0, sizeof(s[i].name));
576                         strlcpy(s[i].name, name, IFNAMSIZ);
577                         memcpy(&s[i].map, map, sizeof(s[i].map));
578                         break;
579                 }
580         }
581
582         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
583 }
584
585 /**
586  * netdev_boot_setup_check      - check boot time settings
587  * @dev: the netdevice
588  *
589  * Check boot time settings for the device.
590  * The found settings are set for the device to be used
591  * later in the device probing.
592  * Returns 0 if no settings found, 1 if they are.
593  */
594 int netdev_boot_setup_check(struct net_device *dev)
595 {
596         struct netdev_boot_setup *s = dev_boot_setup;
597         int i;
598
599         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
601                     !strcmp(dev->name, s[i].name)) {
602                         dev->irq = s[i].map.irq;
603                         dev->base_addr = s[i].map.base_addr;
604                         dev->mem_start = s[i].map.mem_start;
605                         dev->mem_end = s[i].map.mem_end;
606                         return 1;
607                 }
608         }
609         return 0;
610 }
611 EXPORT_SYMBOL(netdev_boot_setup_check);
612
613
614 /**
615  * netdev_boot_base     - get address from boot time settings
616  * @prefix: prefix for network device
617  * @unit: id for network device
618  *
619  * Check boot time settings for the base address of device.
620  * The found settings are set for the device to be used
621  * later in the device probing.
622  * Returns 0 if no settings found.
623  */
624 unsigned long netdev_boot_base(const char *prefix, int unit)
625 {
626         const struct netdev_boot_setup *s = dev_boot_setup;
627         char name[IFNAMSIZ];
628         int i;
629
630         sprintf(name, "%s%d", prefix, unit);
631
632         /*
633          * If device already registered then return base of 1
634          * to indicate not to probe for this interface
635          */
636         if (__dev_get_by_name(&init_net, name))
637                 return 1;
638
639         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640                 if (!strcmp(name, s[i].name))
641                         return s[i].map.base_addr;
642         return 0;
643 }
644
645 /*
646  * Saves at boot time configured settings for any netdevice.
647  */
648 int __init netdev_boot_setup(char *str)
649 {
650         int ints[5];
651         struct ifmap map;
652
653         str = get_options(str, ARRAY_SIZE(ints), ints);
654         if (!str || !*str)
655                 return 0;
656
657         /* Save settings */
658         memset(&map, 0, sizeof(map));
659         if (ints[0] > 0)
660                 map.irq = ints[1];
661         if (ints[0] > 1)
662                 map.base_addr = ints[2];
663         if (ints[0] > 2)
664                 map.mem_start = ints[3];
665         if (ints[0] > 3)
666                 map.mem_end = ints[4];
667
668         /* Add new entry to the list */
669         return netdev_boot_setup_add(str, &map);
670 }
671
672 __setup("netdev=", netdev_boot_setup);
673
674 /*******************************************************************************
675  *
676  *                          Device Interface Subroutines
677  *
678  *******************************************************************************/
679
680 /**
681  *      dev_get_iflink  - get 'iflink' value of a interface
682  *      @dev: targeted interface
683  *
684  *      Indicates the ifindex the interface is linked to.
685  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
686  */
687
688 int dev_get_iflink(const struct net_device *dev)
689 {
690         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691                 return dev->netdev_ops->ndo_get_iflink(dev);
692
693         return dev->ifindex;
694 }
695 EXPORT_SYMBOL(dev_get_iflink);
696
697 /**
698  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
699  *      @dev: targeted interface
700  *      @skb: The packet.
701  *
702  *      For better visibility of tunnel traffic OVS needs to retrieve
703  *      egress tunnel information for a packet. Following API allows
704  *      user to get this info.
705  */
706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 {
708         struct ip_tunnel_info *info;
709
710         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
711                 return -EINVAL;
712
713         info = skb_tunnel_info_unclone(skb);
714         if (!info)
715                 return -ENOMEM;
716         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717                 return -EINVAL;
718
719         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 }
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
722
723 /**
724  *      __dev_get_by_name       - find a device by its name
725  *      @net: the applicable net namespace
726  *      @name: name to find
727  *
728  *      Find an interface by name. Must be called under RTNL semaphore
729  *      or @dev_base_lock. If the name is found a pointer to the device
730  *      is returned. If the name is not found then %NULL is returned. The
731  *      reference counters are not incremented so the caller must be
732  *      careful with locks.
733  */
734
735 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 {
737         struct net_device *dev;
738         struct hlist_head *head = dev_name_hash(net, name);
739
740         hlist_for_each_entry(dev, head, name_hlist)
741                 if (!strncmp(dev->name, name, IFNAMSIZ))
742                         return dev;
743
744         return NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747
748 /**
749  * dev_get_by_name_rcu  - find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762         struct net_device *dev;
763         struct hlist_head *head = dev_name_hash(net, name);
764
765         hlist_for_each_entry_rcu(dev, head, name_hlist)
766                 if (!strncmp(dev->name, name, IFNAMSIZ))
767                         return dev;
768
769         return NULL;
770 }
771 EXPORT_SYMBOL(dev_get_by_name_rcu);
772
773 /**
774  *      dev_get_by_name         - find a device by its name
775  *      @net: the applicable net namespace
776  *      @name: name to find
777  *
778  *      Find an interface by name. This can be called from any
779  *      context and does its own locking. The returned handle has
780  *      the usage count incremented and the caller must use dev_put() to
781  *      release it when it is no longer needed. %NULL is returned if no
782  *      matching device is found.
783  */
784
785 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 {
787         struct net_device *dev;
788
789         rcu_read_lock();
790         dev = dev_get_by_name_rcu(net, name);
791         if (dev)
792                 dev_hold(dev);
793         rcu_read_unlock();
794         return dev;
795 }
796 EXPORT_SYMBOL(dev_get_by_name);
797
798 /**
799  *      __dev_get_by_index - find a device by its ifindex
800  *      @net: the applicable net namespace
801  *      @ifindex: index of device
802  *
803  *      Search for an interface by index. Returns %NULL if the device
804  *      is not found or a pointer to the device. The device has not
805  *      had its reference counter increased so the caller must be careful
806  *      about locking. The caller must hold either the RTNL semaphore
807  *      or @dev_base_lock.
808  */
809
810 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 {
812         struct net_device *dev;
813         struct hlist_head *head = dev_index_hash(net, ifindex);
814
815         hlist_for_each_entry(dev, head, index_hlist)
816                 if (dev->ifindex == ifindex)
817                         return dev;
818
819         return NULL;
820 }
821 EXPORT_SYMBOL(__dev_get_by_index);
822
823 /**
824  *      dev_get_by_index_rcu - find a device by its ifindex
825  *      @net: the applicable net namespace
826  *      @ifindex: index of device
827  *
828  *      Search for an interface by index. Returns %NULL if the device
829  *      is not found or a pointer to the device. The device has not
830  *      had its reference counter increased so the caller must be careful
831  *      about locking. The caller must hold RCU lock.
832  */
833
834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 {
836         struct net_device *dev;
837         struct hlist_head *head = dev_index_hash(net, ifindex);
838
839         hlist_for_each_entry_rcu(dev, head, index_hlist)
840                 if (dev->ifindex == ifindex)
841                         return dev;
842
843         return NULL;
844 }
845 EXPORT_SYMBOL(dev_get_by_index_rcu);
846
847
848 /**
849  *      dev_get_by_index - find a device by its ifindex
850  *      @net: the applicable net namespace
851  *      @ifindex: index of device
852  *
853  *      Search for an interface by index. Returns NULL if the device
854  *      is not found or a pointer to the device. The device returned has
855  *      had a reference added and the pointer is safe until the user calls
856  *      dev_put to indicate they have finished with it.
857  */
858
859 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 {
861         struct net_device *dev;
862
863         rcu_read_lock();
864         dev = dev_get_by_index_rcu(net, ifindex);
865         if (dev)
866                 dev_hold(dev);
867         rcu_read_unlock();
868         return dev;
869 }
870 EXPORT_SYMBOL(dev_get_by_index);
871
872 /**
873  *      dev_get_by_napi_id - find a device by napi_id
874  *      @napi_id: ID of the NAPI struct
875  *
876  *      Search for an interface by NAPI ID. Returns %NULL if the device
877  *      is not found or a pointer to the device. The device has not had
878  *      its reference counter increased so the caller must be careful
879  *      about locking. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 {
884         struct napi_struct *napi;
885
886         WARN_ON_ONCE(!rcu_read_lock_held());
887
888         if (napi_id < MIN_NAPI_ID)
889                 return NULL;
890
891         napi = napi_by_id(napi_id);
892
893         return napi ? napi->dev : NULL;
894 }
895 EXPORT_SYMBOL(dev_get_by_napi_id);
896
897 /**
898  *      netdev_get_name - get a netdevice name, knowing its ifindex.
899  *      @net: network namespace
900  *      @name: a pointer to the buffer where the name will be stored.
901  *      @ifindex: the ifindex of the interface to get the name from.
902  */
903 int netdev_get_name(struct net *net, char *name, int ifindex)
904 {
905         struct net_device *dev;
906         int ret;
907
908         down_read(&devnet_rename_sem);
909         rcu_read_lock();
910
911         dev = dev_get_by_index_rcu(net, ifindex);
912         if (!dev) {
913                 ret = -ENODEV;
914                 goto out;
915         }
916
917         strcpy(name, dev->name);
918
919         ret = 0;
920 out:
921         rcu_read_unlock();
922         up_read(&devnet_rename_sem);
923         return ret;
924 }
925
926 /**
927  *      dev_getbyhwaddr_rcu - find a device by its hardware address
928  *      @net: the applicable net namespace
929  *      @type: media type of device
930  *      @ha: hardware address
931  *
932  *      Search for an interface by MAC address. Returns NULL if the device
933  *      is not found or a pointer to the device.
934  *      The caller must hold RCU or RTNL.
935  *      The returned device has not had its ref count increased
936  *      and the caller must therefore be careful about locking
937  *
938  */
939
940 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
941                                        const char *ha)
942 {
943         struct net_device *dev;
944
945         for_each_netdev_rcu(net, dev)
946                 if (dev->type == type &&
947                     !memcmp(dev->dev_addr, ha, dev->addr_len))
948                         return dev;
949
950         return NULL;
951 }
952 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
953
954 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
955 {
956         struct net_device *dev;
957
958         ASSERT_RTNL();
959         for_each_netdev(net, dev)
960                 if (dev->type == type)
961                         return dev;
962
963         return NULL;
964 }
965 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
966
967 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
968 {
969         struct net_device *dev, *ret = NULL;
970
971         rcu_read_lock();
972         for_each_netdev_rcu(net, dev)
973                 if (dev->type == type) {
974                         dev_hold(dev);
975                         ret = dev;
976                         break;
977                 }
978         rcu_read_unlock();
979         return ret;
980 }
981 EXPORT_SYMBOL(dev_getfirstbyhwtype);
982
983 /**
984  *      __dev_get_by_flags - find any device with given flags
985  *      @net: the applicable net namespace
986  *      @if_flags: IFF_* values
987  *      @mask: bitmask of bits in if_flags to check
988  *
989  *      Search for any interface with the given flags. Returns NULL if a device
990  *      is not found or a pointer to the device. Must be called inside
991  *      rtnl_lock(), and result refcount is unchanged.
992  */
993
994 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
995                                       unsigned short mask)
996 {
997         struct net_device *dev, *ret;
998
999         ASSERT_RTNL();
1000
1001         ret = NULL;
1002         for_each_netdev(net, dev) {
1003                 if (((dev->flags ^ if_flags) & mask) == 0) {
1004                         ret = dev;
1005                         break;
1006                 }
1007         }
1008         return ret;
1009 }
1010 EXPORT_SYMBOL(__dev_get_by_flags);
1011
1012 /**
1013  *      dev_valid_name - check if name is okay for network device
1014  *      @name: name string
1015  *
1016  *      Network device names need to be valid file names to
1017  *      to allow sysfs to work.  We also disallow any kind of
1018  *      whitespace.
1019  */
1020 bool dev_valid_name(const char *name)
1021 {
1022         if (*name == '\0')
1023                 return false;
1024         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1025                 return false;
1026         if (!strcmp(name, ".") || !strcmp(name, ".."))
1027                 return false;
1028
1029         while (*name) {
1030                 if (*name == '/' || *name == ':' || isspace(*name))
1031                         return false;
1032                 name++;
1033         }
1034         return true;
1035 }
1036 EXPORT_SYMBOL(dev_valid_name);
1037
1038 /**
1039  *      __dev_alloc_name - allocate a name for a device
1040  *      @net: network namespace to allocate the device name in
1041  *      @name: name format string
1042  *      @buf:  scratch buffer and result name string
1043  *
1044  *      Passed a format string - eg "lt%d" it will try and find a suitable
1045  *      id. It scans list of devices to build up a free map, then chooses
1046  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1047  *      while allocating the name and adding the device in order to avoid
1048  *      duplicates.
1049  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1050  *      Returns the number of the unit assigned or a negative errno code.
1051  */
1052
1053 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1054 {
1055         int i = 0;
1056         const char *p;
1057         const int max_netdevices = 8*PAGE_SIZE;
1058         unsigned long *inuse;
1059         struct net_device *d;
1060
1061         p = strnchr(name, IFNAMSIZ-1, '%');
1062         if (p) {
1063                 /*
1064                  * Verify the string as this thing may have come from
1065                  * the user.  There must be either one "%d" and no other "%"
1066                  * characters.
1067                  */
1068                 if (p[1] != 'd' || strchr(p + 2, '%'))
1069                         return -EINVAL;
1070
1071                 /* Use one page as a bit array of possible slots */
1072                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1073                 if (!inuse)
1074                         return -ENOMEM;
1075
1076                 for_each_netdev(net, d) {
1077                         if (!sscanf(d->name, name, &i))
1078                                 continue;
1079                         if (i < 0 || i >= max_netdevices)
1080                                 continue;
1081
1082                         /*  avoid cases where sscanf is not exact inverse of printf */
1083                         snprintf(buf, IFNAMSIZ, name, i);
1084                         if (!strncmp(buf, d->name, IFNAMSIZ))
1085                                 set_bit(i, inuse);
1086                 }
1087
1088                 i = find_first_zero_bit(inuse, max_netdevices);
1089                 free_page((unsigned long) inuse);
1090         }
1091
1092         if (buf != name)
1093                 snprintf(buf, IFNAMSIZ, name, i);
1094         if (!__dev_get_by_name(net, buf))
1095                 return i;
1096
1097         /* It is possible to run out of possible slots
1098          * when the name is long and there isn't enough space left
1099          * for the digits, or if all bits are used.
1100          */
1101         return -ENFILE;
1102 }
1103
1104 /**
1105  *      dev_alloc_name - allocate a name for a device
1106  *      @dev: device
1107  *      @name: name format string
1108  *
1109  *      Passed a format string - eg "lt%d" it will try and find a suitable
1110  *      id. It scans list of devices to build up a free map, then chooses
1111  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1112  *      while allocating the name and adding the device in order to avoid
1113  *      duplicates.
1114  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1115  *      Returns the number of the unit assigned or a negative errno code.
1116  */
1117
1118 int dev_alloc_name(struct net_device *dev, const char *name)
1119 {
1120         char buf[IFNAMSIZ];
1121         struct net *net;
1122         int ret;
1123
1124         BUG_ON(!dev_net(dev));
1125         net = dev_net(dev);
1126         ret = __dev_alloc_name(net, name, buf);
1127         if (ret >= 0)
1128                 strlcpy(dev->name, buf, IFNAMSIZ);
1129         return ret;
1130 }
1131 EXPORT_SYMBOL(dev_alloc_name);
1132
1133 static int dev_alloc_name_ns(struct net *net,
1134                              struct net_device *dev,
1135                              const char *name)
1136 {
1137         char buf[IFNAMSIZ];
1138         int ret;
1139
1140         ret = __dev_alloc_name(net, name, buf);
1141         if (ret >= 0)
1142                 strlcpy(dev->name, buf, IFNAMSIZ);
1143         return ret;
1144 }
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147                        const char *name)
1148 {
1149         BUG_ON(!net);
1150
1151         if (!dev_valid_name(name))
1152                 return -EINVAL;
1153
1154         if (strchr(name, '%'))
1155                 return dev_alloc_name_ns(net, dev, name);
1156         else if (__dev_get_by_name(net, name))
1157                 return -EEXIST;
1158         else if (dev->name != name)
1159                 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161         return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164
1165 /**
1166  *      dev_change_name - change name of a device
1167  *      @dev: device
1168  *      @newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *      Change name of a device, can pass format strings "eth%d".
1171  *      for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175         unsigned char old_assign_type;
1176         char oldname[IFNAMSIZ];
1177         int err = 0;
1178         int ret;
1179         struct net *net;
1180
1181         ASSERT_RTNL();
1182         BUG_ON(!dev_net(dev));
1183
1184         net = dev_net(dev);
1185         if (dev->flags & IFF_UP)
1186                 return -EBUSY;
1187
1188         down_write(&devnet_rename_sem);
1189
1190         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191                 up_write(&devnet_rename_sem);
1192                 return 0;
1193         }
1194
1195         memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197         err = dev_get_valid_name(net, dev, newname);
1198         if (err < 0) {
1199                 up_write(&devnet_rename_sem);
1200                 return err;
1201         }
1202
1203         if (oldname[0] && !strchr(oldname, '%'))
1204                 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206         old_assign_type = dev->name_assign_type;
1207         dev->name_assign_type = NET_NAME_RENAMED;
1208
1209 rollback:
1210         ret = device_rename(&dev->dev, dev->name);
1211         if (ret) {
1212                 memcpy(dev->name, oldname, IFNAMSIZ);
1213                 dev->name_assign_type = old_assign_type;
1214                 up_write(&devnet_rename_sem);
1215                 return ret;
1216         }
1217
1218         up_write(&devnet_rename_sem);
1219
1220         netdev_adjacent_rename_links(dev, oldname);
1221
1222         write_lock_bh(&dev_base_lock);
1223         hlist_del_rcu(&dev->name_hlist);
1224         write_unlock_bh(&dev_base_lock);
1225
1226         synchronize_rcu();
1227
1228         write_lock_bh(&dev_base_lock);
1229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230         write_unlock_bh(&dev_base_lock);
1231
1232         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233         ret = notifier_to_errno(ret);
1234
1235         if (ret) {
1236                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237                 if (err >= 0) {
1238                         err = ret;
1239                         down_write(&devnet_rename_sem);
1240                         memcpy(dev->name, oldname, IFNAMSIZ);
1241                         memcpy(oldname, newname, IFNAMSIZ);
1242                         dev->name_assign_type = old_assign_type;
1243                         old_assign_type = NET_NAME_RENAMED;
1244                         goto rollback;
1245                 } else {
1246                         pr_err("%s: name change rollback failed: %d\n",
1247                                dev->name, ret);
1248                 }
1249         }
1250
1251         return err;
1252 }
1253
1254 /**
1255  *      dev_set_alias - change ifalias of a device
1256  *      @dev: device
1257  *      @alias: name up to IFALIASZ
1258  *      @len: limit of bytes to copy from info
1259  *
1260  *      Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264         char *new_ifalias;
1265
1266         ASSERT_RTNL();
1267
1268         if (len >= IFALIASZ)
1269                 return -EINVAL;
1270
1271         if (!len) {
1272                 kfree(dev->ifalias);
1273                 dev->ifalias = NULL;
1274                 return 0;
1275         }
1276
1277         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1278         if (!new_ifalias)
1279                 return -ENOMEM;
1280         dev->ifalias = new_ifalias;
1281         memcpy(dev->ifalias, alias, len);
1282         dev->ifalias[len] = 0;
1283
1284         return len;
1285 }
1286
1287
1288 /**
1289  *      netdev_features_change - device changes features
1290  *      @dev: device to cause notification
1291  *
1292  *      Called to indicate a device has changed features.
1293  */
1294 void netdev_features_change(struct net_device *dev)
1295 {
1296         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1297 }
1298 EXPORT_SYMBOL(netdev_features_change);
1299
1300 /**
1301  *      netdev_state_change - device changes state
1302  *      @dev: device to cause notification
1303  *
1304  *      Called to indicate a device has changed state. This function calls
1305  *      the notifier chains for netdev_chain and sends a NEWLINK message
1306  *      to the routing socket.
1307  */
1308 void netdev_state_change(struct net_device *dev)
1309 {
1310         if (dev->flags & IFF_UP) {
1311                 struct netdev_notifier_change_info change_info;
1312
1313                 change_info.flags_changed = 0;
1314                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1315                                               &change_info.info);
1316                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1317         }
1318 }
1319 EXPORT_SYMBOL(netdev_state_change);
1320
1321 /**
1322  * netdev_notify_peers - notify network peers about existence of @dev
1323  * @dev: network device
1324  *
1325  * Generate traffic such that interested network peers are aware of
1326  * @dev, such as by generating a gratuitous ARP. This may be used when
1327  * a device wants to inform the rest of the network about some sort of
1328  * reconfiguration such as a failover event or virtual machine
1329  * migration.
1330  */
1331 void netdev_notify_peers(struct net_device *dev)
1332 {
1333         rtnl_lock();
1334         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1335         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1336         rtnl_unlock();
1337 }
1338 EXPORT_SYMBOL(netdev_notify_peers);
1339
1340 static int __dev_open(struct net_device *dev)
1341 {
1342         const struct net_device_ops *ops = dev->netdev_ops;
1343         int ret;
1344
1345         ASSERT_RTNL();
1346
1347         if (!netif_device_present(dev))
1348                 return -ENODEV;
1349
1350         /* Block netpoll from trying to do any rx path servicing.
1351          * If we don't do this there is a chance ndo_poll_controller
1352          * or ndo_poll may be running while we open the device
1353          */
1354         netpoll_poll_disable(dev);
1355
1356         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1357         ret = notifier_to_errno(ret);
1358         if (ret)
1359                 return ret;
1360
1361         set_bit(__LINK_STATE_START, &dev->state);
1362
1363         if (ops->ndo_validate_addr)
1364                 ret = ops->ndo_validate_addr(dev);
1365
1366         if (!ret && ops->ndo_open)
1367                 ret = ops->ndo_open(dev);
1368
1369         netpoll_poll_enable(dev);
1370
1371         if (ret)
1372                 clear_bit(__LINK_STATE_START, &dev->state);
1373         else {
1374                 dev->flags |= IFF_UP;
1375                 dev_set_rx_mode(dev);
1376                 dev_activate(dev);
1377                 add_device_randomness(dev->dev_addr, dev->addr_len);
1378         }
1379
1380         return ret;
1381 }
1382
1383 /**
1384  *      dev_open        - prepare an interface for use.
1385  *      @dev:   device to open
1386  *
1387  *      Takes a device from down to up state. The device's private open
1388  *      function is invoked and then the multicast lists are loaded. Finally
1389  *      the device is moved into the up state and a %NETDEV_UP message is
1390  *      sent to the netdev notifier chain.
1391  *
1392  *      Calling this function on an active interface is a nop. On a failure
1393  *      a negative errno code is returned.
1394  */
1395 int dev_open(struct net_device *dev)
1396 {
1397         int ret;
1398
1399         if (dev->flags & IFF_UP)
1400                 return 0;
1401
1402         ret = __dev_open(dev);
1403         if (ret < 0)
1404                 return ret;
1405
1406         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1407         call_netdevice_notifiers(NETDEV_UP, dev);
1408
1409         return ret;
1410 }
1411 EXPORT_SYMBOL(dev_open);
1412
1413 static void __dev_close_many(struct list_head *head)
1414 {
1415         struct net_device *dev;
1416
1417         ASSERT_RTNL();
1418         might_sleep();
1419
1420         list_for_each_entry(dev, head, close_list) {
1421                 /* Temporarily disable netpoll until the interface is down */
1422                 netpoll_poll_disable(dev);
1423
1424                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1425
1426                 clear_bit(__LINK_STATE_START, &dev->state);
1427
1428                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1429                  * can be even on different cpu. So just clear netif_running().
1430                  *
1431                  * dev->stop() will invoke napi_disable() on all of it's
1432                  * napi_struct instances on this device.
1433                  */
1434                 smp_mb__after_atomic(); /* Commit netif_running(). */
1435         }
1436
1437         dev_deactivate_many(head);
1438
1439         list_for_each_entry(dev, head, close_list) {
1440                 const struct net_device_ops *ops = dev->netdev_ops;
1441
1442                 /*
1443                  *      Call the device specific close. This cannot fail.
1444                  *      Only if device is UP
1445                  *
1446                  *      We allow it to be called even after a DETACH hot-plug
1447                  *      event.
1448                  */
1449                 if (ops->ndo_stop)
1450                         ops->ndo_stop(dev);
1451
1452                 dev->flags &= ~IFF_UP;
1453                 netpoll_poll_enable(dev);
1454         }
1455 }
1456
1457 static void __dev_close(struct net_device *dev)
1458 {
1459         LIST_HEAD(single);
1460
1461         list_add(&dev->close_list, &single);
1462         __dev_close_many(&single);
1463         list_del(&single);
1464 }
1465
1466 void dev_close_many(struct list_head *head, bool unlink)
1467 {
1468         struct net_device *dev, *tmp;
1469
1470         /* Remove the devices that don't need to be closed */
1471         list_for_each_entry_safe(dev, tmp, head, close_list)
1472                 if (!(dev->flags & IFF_UP))
1473                         list_del_init(&dev->close_list);
1474
1475         __dev_close_many(head);
1476
1477         list_for_each_entry_safe(dev, tmp, head, close_list) {
1478                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1479                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1480                 if (unlink)
1481                         list_del_init(&dev->close_list);
1482         }
1483 }
1484 EXPORT_SYMBOL(dev_close_many);
1485
1486 /**
1487  *      dev_close - shutdown an interface.
1488  *      @dev: device to shutdown
1489  *
1490  *      This function moves an active device into down state. A
1491  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1492  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1493  *      chain.
1494  */
1495 void dev_close(struct net_device *dev)
1496 {
1497         if (dev->flags & IFF_UP) {
1498                 LIST_HEAD(single);
1499
1500                 list_add(&dev->close_list, &single);
1501                 dev_close_many(&single, true);
1502                 list_del(&single);
1503         }
1504 }
1505 EXPORT_SYMBOL(dev_close);
1506
1507
1508 /**
1509  *      dev_disable_lro - disable Large Receive Offload on a device
1510  *      @dev: device
1511  *
1512  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1513  *      called under RTNL.  This is needed if received packets may be
1514  *      forwarded to another interface.
1515  */
1516 void dev_disable_lro(struct net_device *dev)
1517 {
1518         struct net_device *lower_dev;
1519         struct list_head *iter;
1520
1521         dev->wanted_features &= ~NETIF_F_LRO;
1522         netdev_update_features(dev);
1523
1524         if (unlikely(dev->features & NETIF_F_LRO))
1525                 netdev_WARN(dev, "failed to disable LRO!\n");
1526
1527         netdev_for_each_lower_dev(dev, lower_dev, iter)
1528                 dev_disable_lro(lower_dev);
1529 }
1530 EXPORT_SYMBOL(dev_disable_lro);
1531
1532 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1533                                    struct net_device *dev)
1534 {
1535         struct netdev_notifier_info info;
1536
1537         netdev_notifier_info_init(&info, dev);
1538         return nb->notifier_call(nb, val, &info);
1539 }
1540
1541 static int dev_boot_phase = 1;
1542
1543 /**
1544  * register_netdevice_notifier - register a network notifier block
1545  * @nb: notifier
1546  *
1547  * Register a notifier to be called when network device events occur.
1548  * The notifier passed is linked into the kernel structures and must
1549  * not be reused until it has been unregistered. A negative errno code
1550  * is returned on a failure.
1551  *
1552  * When registered all registration and up events are replayed
1553  * to the new notifier to allow device to have a race free
1554  * view of the network device list.
1555  */
1556
1557 int register_netdevice_notifier(struct notifier_block *nb)
1558 {
1559         struct net_device *dev;
1560         struct net_device *last;
1561         struct net *net;
1562         int err;
1563
1564         rtnl_lock();
1565         err = raw_notifier_chain_register(&netdev_chain, nb);
1566         if (err)
1567                 goto unlock;
1568         if (dev_boot_phase)
1569                 goto unlock;
1570         for_each_net(net) {
1571                 for_each_netdev(net, dev) {
1572                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1573                         err = notifier_to_errno(err);
1574                         if (err)
1575                                 goto rollback;
1576
1577                         if (!(dev->flags & IFF_UP))
1578                                 continue;
1579
1580                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1581                 }
1582         }
1583
1584 unlock:
1585         rtnl_unlock();
1586         return err;
1587
1588 rollback:
1589         last = dev;
1590         for_each_net(net) {
1591                 for_each_netdev(net, dev) {
1592                         if (dev == last)
1593                                 goto outroll;
1594
1595                         if (dev->flags & IFF_UP) {
1596                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1597                                                         dev);
1598                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1599                         }
1600                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1601                 }
1602         }
1603
1604 outroll:
1605         raw_notifier_chain_unregister(&netdev_chain, nb);
1606         goto unlock;
1607 }
1608 EXPORT_SYMBOL(register_netdevice_notifier);
1609
1610 /**
1611  * unregister_netdevice_notifier - unregister a network notifier block
1612  * @nb: notifier
1613  *
1614  * Unregister a notifier previously registered by
1615  * register_netdevice_notifier(). The notifier is unlinked into the
1616  * kernel structures and may then be reused. A negative errno code
1617  * is returned on a failure.
1618  *
1619  * After unregistering unregister and down device events are synthesized
1620  * for all devices on the device list to the removed notifier to remove
1621  * the need for special case cleanup code.
1622  */
1623
1624 int unregister_netdevice_notifier(struct notifier_block *nb)
1625 {
1626         struct net_device *dev;
1627         struct net *net;
1628         int err;
1629
1630         rtnl_lock();
1631         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1632         if (err)
1633                 goto unlock;
1634
1635         for_each_net(net) {
1636                 for_each_netdev(net, dev) {
1637                         if (dev->flags & IFF_UP) {
1638                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1639                                                         dev);
1640                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1641                         }
1642                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1643                 }
1644         }
1645 unlock:
1646         rtnl_unlock();
1647         return err;
1648 }
1649 EXPORT_SYMBOL(unregister_netdevice_notifier);
1650
1651 /**
1652  *      call_netdevice_notifiers_info - call all network notifier blocks
1653  *      @val: value passed unmodified to notifier function
1654  *      @dev: net_device pointer passed unmodified to notifier function
1655  *      @info: notifier information data
1656  *
1657  *      Call all network notifier blocks.  Parameters and return value
1658  *      are as for raw_notifier_call_chain().
1659  */
1660
1661 static int call_netdevice_notifiers_info(unsigned long val,
1662                                          struct net_device *dev,
1663                                          struct netdev_notifier_info *info)
1664 {
1665         ASSERT_RTNL();
1666         netdev_notifier_info_init(info, dev);
1667         return raw_notifier_call_chain(&netdev_chain, val, info);
1668 }
1669
1670 /**
1671  *      call_netdevice_notifiers - call all network notifier blocks
1672  *      @val: value passed unmodified to notifier function
1673  *      @dev: net_device pointer passed unmodified to notifier function
1674  *
1675  *      Call all network notifier blocks.  Parameters and return value
1676  *      are as for raw_notifier_call_chain().
1677  */
1678
1679 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1680 {
1681         struct netdev_notifier_info info;
1682
1683         return call_netdevice_notifiers_info(val, dev, &info);
1684 }
1685 EXPORT_SYMBOL(call_netdevice_notifiers);
1686
1687 /**
1688  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1689  *      @val: value passed unmodified to notifier function
1690  *      @dev: net_device pointer passed unmodified to notifier function
1691  *      @arg: additional u32 argument passed to the notifier function
1692  *
1693  *      Call all network notifier blocks.  Parameters and return value
1694  *      are as for raw_notifier_call_chain().
1695  */
1696 static int call_netdevice_notifiers_mtu(unsigned long val,
1697                                         struct net_device *dev, u32 arg)
1698 {
1699         struct netdev_notifier_info_ext info = {
1700                 .info.dev = dev,
1701                 .ext.mtu = arg,
1702         };
1703
1704         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1705
1706         return call_netdevice_notifiers_info(val, dev, &info.info);
1707 }
1708
1709 #ifdef CONFIG_NET_INGRESS
1710 static struct static_key ingress_needed __read_mostly;
1711
1712 void net_inc_ingress_queue(void)
1713 {
1714         static_key_slow_inc(&ingress_needed);
1715 }
1716 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1717
1718 void net_dec_ingress_queue(void)
1719 {
1720         static_key_slow_dec(&ingress_needed);
1721 }
1722 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1723 #endif
1724
1725 #ifdef CONFIG_NET_EGRESS
1726 static struct static_key egress_needed __read_mostly;
1727
1728 void net_inc_egress_queue(void)
1729 {
1730         static_key_slow_inc(&egress_needed);
1731 }
1732 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1733
1734 void net_dec_egress_queue(void)
1735 {
1736         static_key_slow_dec(&egress_needed);
1737 }
1738 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1739 #endif
1740
1741 static struct static_key netstamp_needed __read_mostly;
1742 #ifdef HAVE_JUMP_LABEL
1743 static atomic_t netstamp_needed_deferred;
1744 static atomic_t netstamp_wanted;
1745 static void netstamp_clear(struct work_struct *work)
1746 {
1747         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1748         int wanted;
1749
1750         wanted = atomic_add_return(deferred, &netstamp_wanted);
1751         if (wanted > 0)
1752                 static_key_enable(&netstamp_needed);
1753         else
1754                 static_key_disable(&netstamp_needed);
1755 }
1756 static DECLARE_WORK(netstamp_work, netstamp_clear);
1757 #endif
1758
1759 void net_enable_timestamp(void)
1760 {
1761 #ifdef HAVE_JUMP_LABEL
1762         int wanted;
1763
1764         while (1) {
1765                 wanted = atomic_read(&netstamp_wanted);
1766                 if (wanted <= 0)
1767                         break;
1768                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1769                         return;
1770         }
1771         atomic_inc(&netstamp_needed_deferred);
1772         schedule_work(&netstamp_work);
1773 #else
1774         static_key_slow_inc(&netstamp_needed);
1775 #endif
1776 }
1777 EXPORT_SYMBOL(net_enable_timestamp);
1778
1779 void net_disable_timestamp(void)
1780 {
1781 #ifdef HAVE_JUMP_LABEL
1782         int wanted;
1783
1784         while (1) {
1785                 wanted = atomic_read(&netstamp_wanted);
1786                 if (wanted <= 1)
1787                         break;
1788                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1789                         return;
1790         }
1791         atomic_dec(&netstamp_needed_deferred);
1792         schedule_work(&netstamp_work);
1793 #else
1794         static_key_slow_dec(&netstamp_needed);
1795 #endif
1796 }
1797 EXPORT_SYMBOL(net_disable_timestamp);
1798
1799 static inline void net_timestamp_set(struct sk_buff *skb)
1800 {
1801         skb->tstamp = 0;
1802         if (static_key_false(&netstamp_needed))
1803                 __net_timestamp(skb);
1804 }
1805
1806 #define net_timestamp_check(COND, SKB)                  \
1807         if (static_key_false(&netstamp_needed)) {               \
1808                 if ((COND) && !(SKB)->tstamp)   \
1809                         __net_timestamp(SKB);           \
1810         }                                               \
1811
1812 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1813 {
1814         unsigned int len;
1815
1816         if (!(dev->flags & IFF_UP))
1817                 return false;
1818
1819         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1820         if (skb->len <= len)
1821                 return true;
1822
1823         /* if TSO is enabled, we don't care about the length as the packet
1824          * could be forwarded without being segmented before
1825          */
1826         if (skb_is_gso(skb))
1827                 return true;
1828
1829         return false;
1830 }
1831 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1832
1833 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1834 {
1835         int ret = ____dev_forward_skb(dev, skb);
1836
1837         if (likely(!ret)) {
1838                 skb->protocol = eth_type_trans(skb, dev);
1839                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1840         }
1841
1842         return ret;
1843 }
1844 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1845
1846 /**
1847  * dev_forward_skb - loopback an skb to another netif
1848  *
1849  * @dev: destination network device
1850  * @skb: buffer to forward
1851  *
1852  * return values:
1853  *      NET_RX_SUCCESS  (no congestion)
1854  *      NET_RX_DROP     (packet was dropped, but freed)
1855  *
1856  * dev_forward_skb can be used for injecting an skb from the
1857  * start_xmit function of one device into the receive queue
1858  * of another device.
1859  *
1860  * The receiving device may be in another namespace, so
1861  * we have to clear all information in the skb that could
1862  * impact namespace isolation.
1863  */
1864 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1865 {
1866         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1867 }
1868 EXPORT_SYMBOL_GPL(dev_forward_skb);
1869
1870 static inline int deliver_skb(struct sk_buff *skb,
1871                               struct packet_type *pt_prev,
1872                               struct net_device *orig_dev)
1873 {
1874         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1875                 return -ENOMEM;
1876         refcount_inc(&skb->users);
1877         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1878 }
1879
1880 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1881                                           struct packet_type **pt,
1882                                           struct net_device *orig_dev,
1883                                           __be16 type,
1884                                           struct list_head *ptype_list)
1885 {
1886         struct packet_type *ptype, *pt_prev = *pt;
1887
1888         list_for_each_entry_rcu(ptype, ptype_list, list) {
1889                 if (ptype->type != type)
1890                         continue;
1891                 if (pt_prev)
1892                         deliver_skb(skb, pt_prev, orig_dev);
1893                 pt_prev = ptype;
1894         }
1895         *pt = pt_prev;
1896 }
1897
1898 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1899 {
1900         if (!ptype->af_packet_priv || !skb->sk)
1901                 return false;
1902
1903         if (ptype->id_match)
1904                 return ptype->id_match(ptype, skb->sk);
1905         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1906                 return true;
1907
1908         return false;
1909 }
1910
1911 /*
1912  *      Support routine. Sends outgoing frames to any network
1913  *      taps currently in use.
1914  */
1915
1916 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1917 {
1918         struct packet_type *ptype;
1919         struct sk_buff *skb2 = NULL;
1920         struct packet_type *pt_prev = NULL;
1921         struct list_head *ptype_list = &ptype_all;
1922
1923         rcu_read_lock();
1924 again:
1925         list_for_each_entry_rcu(ptype, ptype_list, list) {
1926                 /* Never send packets back to the socket
1927                  * they originated from - MvS (miquels@drinkel.ow.org)
1928                  */
1929                 if (skb_loop_sk(ptype, skb))
1930                         continue;
1931
1932                 if (pt_prev) {
1933                         deliver_skb(skb2, pt_prev, skb->dev);
1934                         pt_prev = ptype;
1935                         continue;
1936                 }
1937
1938                 /* need to clone skb, done only once */
1939                 skb2 = skb_clone(skb, GFP_ATOMIC);
1940                 if (!skb2)
1941                         goto out_unlock;
1942
1943                 net_timestamp_set(skb2);
1944
1945                 /* skb->nh should be correctly
1946                  * set by sender, so that the second statement is
1947                  * just protection against buggy protocols.
1948                  */
1949                 skb_reset_mac_header(skb2);
1950
1951                 if (skb_network_header(skb2) < skb2->data ||
1952                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1953                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1954                                              ntohs(skb2->protocol),
1955                                              dev->name);
1956                         skb_reset_network_header(skb2);
1957                 }
1958
1959                 skb2->transport_header = skb2->network_header;
1960                 skb2->pkt_type = PACKET_OUTGOING;
1961                 pt_prev = ptype;
1962         }
1963
1964         if (ptype_list == &ptype_all) {
1965                 ptype_list = &dev->ptype_all;
1966                 goto again;
1967         }
1968 out_unlock:
1969         if (pt_prev) {
1970                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1971                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1972                 else
1973                         kfree_skb(skb2);
1974         }
1975         rcu_read_unlock();
1976 }
1977 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1978
1979 /**
1980  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1981  * @dev: Network device
1982  * @txq: number of queues available
1983  *
1984  * If real_num_tx_queues is changed the tc mappings may no longer be
1985  * valid. To resolve this verify the tc mapping remains valid and if
1986  * not NULL the mapping. With no priorities mapping to this
1987  * offset/count pair it will no longer be used. In the worst case TC0
1988  * is invalid nothing can be done so disable priority mappings. If is
1989  * expected that drivers will fix this mapping if they can before
1990  * calling netif_set_real_num_tx_queues.
1991  */
1992 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1993 {
1994         int i;
1995         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1996
1997         /* If TC0 is invalidated disable TC mapping */
1998         if (tc->offset + tc->count > txq) {
1999                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2000                 dev->num_tc = 0;
2001                 return;
2002         }
2003
2004         /* Invalidated prio to tc mappings set to TC0 */
2005         for (i = 1; i < TC_BITMASK + 1; i++) {
2006                 int q = netdev_get_prio_tc_map(dev, i);
2007
2008                 tc = &dev->tc_to_txq[q];
2009                 if (tc->offset + tc->count > txq) {
2010                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2011                                 i, q);
2012                         netdev_set_prio_tc_map(dev, i, 0);
2013                 }
2014         }
2015 }
2016
2017 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2018 {
2019         if (dev->num_tc) {
2020                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2021                 int i;
2022
2023                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2024                         if ((txq - tc->offset) < tc->count)
2025                                 return i;
2026                 }
2027
2028                 return -1;
2029         }
2030
2031         return 0;
2032 }
2033
2034 #ifdef CONFIG_XPS
2035 static DEFINE_MUTEX(xps_map_mutex);
2036 #define xmap_dereference(P)             \
2037         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2038
2039 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2040                              int tci, u16 index)
2041 {
2042         struct xps_map *map = NULL;
2043         int pos;
2044
2045         if (dev_maps)
2046                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2047         if (!map)
2048                 return false;
2049
2050         for (pos = map->len; pos--;) {
2051                 if (map->queues[pos] != index)
2052                         continue;
2053
2054                 if (map->len > 1) {
2055                         map->queues[pos] = map->queues[--map->len];
2056                         break;
2057                 }
2058
2059                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2060                 kfree_rcu(map, rcu);
2061                 return false;
2062         }
2063
2064         return true;
2065 }
2066
2067 static bool remove_xps_queue_cpu(struct net_device *dev,
2068                                  struct xps_dev_maps *dev_maps,
2069                                  int cpu, u16 offset, u16 count)
2070 {
2071         int num_tc = dev->num_tc ? : 1;
2072         bool active = false;
2073         int tci;
2074
2075         for (tci = cpu * num_tc; num_tc--; tci++) {
2076                 int i, j;
2077
2078                 for (i = count, j = offset; i--; j++) {
2079                         if (!remove_xps_queue(dev_maps, tci, j))
2080                                 break;
2081                 }
2082
2083                 active |= i < 0;
2084         }
2085
2086         return active;
2087 }
2088
2089 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2090                                    u16 count)
2091 {
2092         struct xps_dev_maps *dev_maps;
2093         int cpu, i;
2094         bool active = false;
2095
2096         mutex_lock(&xps_map_mutex);
2097         dev_maps = xmap_dereference(dev->xps_maps);
2098
2099         if (!dev_maps)
2100                 goto out_no_maps;
2101
2102         for_each_possible_cpu(cpu)
2103                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2104                                                offset, count);
2105
2106         if (!active) {
2107                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2108                 kfree_rcu(dev_maps, rcu);
2109         }
2110
2111         for (i = offset + (count - 1); count--; i--)
2112                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2113                                              NUMA_NO_NODE);
2114
2115 out_no_maps:
2116         mutex_unlock(&xps_map_mutex);
2117 }
2118
2119 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2120 {
2121         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2122 }
2123
2124 static struct xps_map *expand_xps_map(struct xps_map *map,
2125                                       int cpu, u16 index)
2126 {
2127         struct xps_map *new_map;
2128         int alloc_len = XPS_MIN_MAP_ALLOC;
2129         int i, pos;
2130
2131         for (pos = 0; map && pos < map->len; pos++) {
2132                 if (map->queues[pos] != index)
2133                         continue;
2134                 return map;
2135         }
2136
2137         /* Need to add queue to this CPU's existing map */
2138         if (map) {
2139                 if (pos < map->alloc_len)
2140                         return map;
2141
2142                 alloc_len = map->alloc_len * 2;
2143         }
2144
2145         /* Need to allocate new map to store queue on this CPU's map */
2146         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2147                                cpu_to_node(cpu));
2148         if (!new_map)
2149                 return NULL;
2150
2151         for (i = 0; i < pos; i++)
2152                 new_map->queues[i] = map->queues[i];
2153         new_map->alloc_len = alloc_len;
2154         new_map->len = pos;
2155
2156         return new_map;
2157 }
2158
2159 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2160                         u16 index)
2161 {
2162         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2163         int i, cpu, tci, numa_node_id = -2;
2164         int maps_sz, num_tc = 1, tc = 0;
2165         struct xps_map *map, *new_map;
2166         bool active = false;
2167
2168         if (dev->num_tc) {
2169                 num_tc = dev->num_tc;
2170                 tc = netdev_txq_to_tc(dev, index);
2171                 if (tc < 0)
2172                         return -EINVAL;
2173         }
2174
2175         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2176         if (maps_sz < L1_CACHE_BYTES)
2177                 maps_sz = L1_CACHE_BYTES;
2178
2179         mutex_lock(&xps_map_mutex);
2180
2181         dev_maps = xmap_dereference(dev->xps_maps);
2182
2183         /* allocate memory for queue storage */
2184         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2185                 if (!new_dev_maps)
2186                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2187                 if (!new_dev_maps) {
2188                         mutex_unlock(&xps_map_mutex);
2189                         return -ENOMEM;
2190                 }
2191
2192                 tci = cpu * num_tc + tc;
2193                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2194                                  NULL;
2195
2196                 map = expand_xps_map(map, cpu, index);
2197                 if (!map)
2198                         goto error;
2199
2200                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2201         }
2202
2203         if (!new_dev_maps)
2204                 goto out_no_new_maps;
2205
2206         for_each_possible_cpu(cpu) {
2207                 /* copy maps belonging to foreign traffic classes */
2208                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2209                         /* fill in the new device map from the old device map */
2210                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2211                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2212                 }
2213
2214                 /* We need to explicitly update tci as prevous loop
2215                  * could break out early if dev_maps is NULL.
2216                  */
2217                 tci = cpu * num_tc + tc;
2218
2219                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2220                         /* add queue to CPU maps */
2221                         int pos = 0;
2222
2223                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2224                         while ((pos < map->len) && (map->queues[pos] != index))
2225                                 pos++;
2226
2227                         if (pos == map->len)
2228                                 map->queues[map->len++] = index;
2229 #ifdef CONFIG_NUMA
2230                         if (numa_node_id == -2)
2231                                 numa_node_id = cpu_to_node(cpu);
2232                         else if (numa_node_id != cpu_to_node(cpu))
2233                                 numa_node_id = -1;
2234 #endif
2235                 } else if (dev_maps) {
2236                         /* fill in the new device map from the old device map */
2237                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2238                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2239                 }
2240
2241                 /* copy maps belonging to foreign traffic classes */
2242                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2243                         /* fill in the new device map from the old device map */
2244                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2245                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2246                 }
2247         }
2248
2249         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2250
2251         /* Cleanup old maps */
2252         if (!dev_maps)
2253                 goto out_no_old_maps;
2254
2255         for_each_possible_cpu(cpu) {
2256                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2257                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2258                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2259                         if (map && map != new_map)
2260                                 kfree_rcu(map, rcu);
2261                 }
2262         }
2263
2264         kfree_rcu(dev_maps, rcu);
2265
2266 out_no_old_maps:
2267         dev_maps = new_dev_maps;
2268         active = true;
2269
2270 out_no_new_maps:
2271         /* update Tx queue numa node */
2272         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2273                                      (numa_node_id >= 0) ? numa_node_id :
2274                                      NUMA_NO_NODE);
2275
2276         if (!dev_maps)
2277                 goto out_no_maps;
2278
2279         /* removes queue from unused CPUs */
2280         for_each_possible_cpu(cpu) {
2281                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2282                         active |= remove_xps_queue(dev_maps, tci, index);
2283                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2284                         active |= remove_xps_queue(dev_maps, tci, index);
2285                 for (i = num_tc - tc, tci++; --i; tci++)
2286                         active |= remove_xps_queue(dev_maps, tci, index);
2287         }
2288
2289         /* free map if not active */
2290         if (!active) {
2291                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2292                 kfree_rcu(dev_maps, rcu);
2293         }
2294
2295 out_no_maps:
2296         mutex_unlock(&xps_map_mutex);
2297
2298         return 0;
2299 error:
2300         /* remove any maps that we added */
2301         for_each_possible_cpu(cpu) {
2302                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2303                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2304                         map = dev_maps ?
2305                               xmap_dereference(dev_maps->cpu_map[tci]) :
2306                               NULL;
2307                         if (new_map && new_map != map)
2308                                 kfree(new_map);
2309                 }
2310         }
2311
2312         mutex_unlock(&xps_map_mutex);
2313
2314         kfree(new_dev_maps);
2315         return -ENOMEM;
2316 }
2317 EXPORT_SYMBOL(netif_set_xps_queue);
2318
2319 #endif
2320 void netdev_reset_tc(struct net_device *dev)
2321 {
2322 #ifdef CONFIG_XPS
2323         netif_reset_xps_queues_gt(dev, 0);
2324 #endif
2325         dev->num_tc = 0;
2326         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2327         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2328 }
2329 EXPORT_SYMBOL(netdev_reset_tc);
2330
2331 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2332 {
2333         if (tc >= dev->num_tc)
2334                 return -EINVAL;
2335
2336 #ifdef CONFIG_XPS
2337         netif_reset_xps_queues(dev, offset, count);
2338 #endif
2339         dev->tc_to_txq[tc].count = count;
2340         dev->tc_to_txq[tc].offset = offset;
2341         return 0;
2342 }
2343 EXPORT_SYMBOL(netdev_set_tc_queue);
2344
2345 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2346 {
2347         if (num_tc > TC_MAX_QUEUE)
2348                 return -EINVAL;
2349
2350 #ifdef CONFIG_XPS
2351         netif_reset_xps_queues_gt(dev, 0);
2352 #endif
2353         dev->num_tc = num_tc;
2354         return 0;
2355 }
2356 EXPORT_SYMBOL(netdev_set_num_tc);
2357
2358 /*
2359  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2360  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2361  */
2362 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2363 {
2364         bool disabling;
2365         int rc;
2366
2367         disabling = txq < dev->real_num_tx_queues;
2368
2369         if (txq < 1 || txq > dev->num_tx_queues)
2370                 return -EINVAL;
2371
2372         if (dev->reg_state == NETREG_REGISTERED ||
2373             dev->reg_state == NETREG_UNREGISTERING) {
2374                 ASSERT_RTNL();
2375
2376                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2377                                                   txq);
2378                 if (rc)
2379                         return rc;
2380
2381                 if (dev->num_tc)
2382                         netif_setup_tc(dev, txq);
2383
2384                 dev->real_num_tx_queues = txq;
2385
2386                 if (disabling) {
2387                         synchronize_net();
2388                         qdisc_reset_all_tx_gt(dev, txq);
2389 #ifdef CONFIG_XPS
2390                         netif_reset_xps_queues_gt(dev, txq);
2391 #endif
2392                 }
2393         } else {
2394                 dev->real_num_tx_queues = txq;
2395         }
2396
2397         return 0;
2398 }
2399 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2400
2401 #ifdef CONFIG_SYSFS
2402 /**
2403  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2404  *      @dev: Network device
2405  *      @rxq: Actual number of RX queues
2406  *
2407  *      This must be called either with the rtnl_lock held or before
2408  *      registration of the net device.  Returns 0 on success, or a
2409  *      negative error code.  If called before registration, it always
2410  *      succeeds.
2411  */
2412 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2413 {
2414         int rc;
2415
2416         if (rxq < 1 || rxq > dev->num_rx_queues)
2417                 return -EINVAL;
2418
2419         if (dev->reg_state == NETREG_REGISTERED) {
2420                 ASSERT_RTNL();
2421
2422                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2423                                                   rxq);
2424                 if (rc)
2425                         return rc;
2426         }
2427
2428         dev->real_num_rx_queues = rxq;
2429         return 0;
2430 }
2431 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2432 #endif
2433
2434 /**
2435  * netif_get_num_default_rss_queues - default number of RSS queues
2436  *
2437  * This routine should set an upper limit on the number of RSS queues
2438  * used by default by multiqueue devices.
2439  */
2440 int netif_get_num_default_rss_queues(void)
2441 {
2442         return is_kdump_kernel() ?
2443                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2444 }
2445 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2446
2447 static void __netif_reschedule(struct Qdisc *q)
2448 {
2449         struct softnet_data *sd;
2450         unsigned long flags;
2451
2452         local_irq_save(flags);
2453         sd = this_cpu_ptr(&softnet_data);
2454         q->next_sched = NULL;
2455         *sd->output_queue_tailp = q;
2456         sd->output_queue_tailp = &q->next_sched;
2457         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2458         local_irq_restore(flags);
2459 }
2460
2461 void __netif_schedule(struct Qdisc *q)
2462 {
2463         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2464                 __netif_reschedule(q);
2465 }
2466 EXPORT_SYMBOL(__netif_schedule);
2467
2468 struct dev_kfree_skb_cb {
2469         enum skb_free_reason reason;
2470 };
2471
2472 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2473 {
2474         return (struct dev_kfree_skb_cb *)skb->cb;
2475 }
2476
2477 void netif_schedule_queue(struct netdev_queue *txq)
2478 {
2479         rcu_read_lock();
2480         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2481                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2482
2483                 __netif_schedule(q);
2484         }
2485         rcu_read_unlock();
2486 }
2487 EXPORT_SYMBOL(netif_schedule_queue);
2488
2489 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2490 {
2491         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2492                 struct Qdisc *q;
2493
2494                 rcu_read_lock();
2495                 q = rcu_dereference(dev_queue->qdisc);
2496                 __netif_schedule(q);
2497                 rcu_read_unlock();
2498         }
2499 }
2500 EXPORT_SYMBOL(netif_tx_wake_queue);
2501
2502 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2503 {
2504         unsigned long flags;
2505
2506         if (unlikely(!skb))
2507                 return;
2508
2509         if (likely(refcount_read(&skb->users) == 1)) {
2510                 smp_rmb();
2511                 refcount_set(&skb->users, 0);
2512         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2513                 return;
2514         }
2515         get_kfree_skb_cb(skb)->reason = reason;
2516         local_irq_save(flags);
2517         skb->next = __this_cpu_read(softnet_data.completion_queue);
2518         __this_cpu_write(softnet_data.completion_queue, skb);
2519         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2520         local_irq_restore(flags);
2521 }
2522 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2523
2524 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2525 {
2526         if (in_irq() || irqs_disabled())
2527                 __dev_kfree_skb_irq(skb, reason);
2528         else
2529                 dev_kfree_skb(skb);
2530 }
2531 EXPORT_SYMBOL(__dev_kfree_skb_any);
2532
2533
2534 /**
2535  * netif_device_detach - mark device as removed
2536  * @dev: network device
2537  *
2538  * Mark device as removed from system and therefore no longer available.
2539  */
2540 void netif_device_detach(struct net_device *dev)
2541 {
2542         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2543             netif_running(dev)) {
2544                 netif_tx_stop_all_queues(dev);
2545         }
2546 }
2547 EXPORT_SYMBOL(netif_device_detach);
2548
2549 /**
2550  * netif_device_attach - mark device as attached
2551  * @dev: network device
2552  *
2553  * Mark device as attached from system and restart if needed.
2554  */
2555 void netif_device_attach(struct net_device *dev)
2556 {
2557         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2558             netif_running(dev)) {
2559                 netif_tx_wake_all_queues(dev);
2560                 __netdev_watchdog_up(dev);
2561         }
2562 }
2563 EXPORT_SYMBOL(netif_device_attach);
2564
2565 /*
2566  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2567  * to be used as a distribution range.
2568  */
2569 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2570                   unsigned int num_tx_queues)
2571 {
2572         u32 hash;
2573         u16 qoffset = 0;
2574         u16 qcount = num_tx_queues;
2575
2576         if (skb_rx_queue_recorded(skb)) {
2577                 hash = skb_get_rx_queue(skb);
2578                 while (unlikely(hash >= num_tx_queues))
2579                         hash -= num_tx_queues;
2580                 return hash;
2581         }
2582
2583         if (dev->num_tc) {
2584                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2585
2586                 qoffset = dev->tc_to_txq[tc].offset;
2587                 qcount = dev->tc_to_txq[tc].count;
2588         }
2589
2590         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2591 }
2592 EXPORT_SYMBOL(__skb_tx_hash);
2593
2594 static void skb_warn_bad_offload(const struct sk_buff *skb)
2595 {
2596         static const netdev_features_t null_features;
2597         struct net_device *dev = skb->dev;
2598         const char *name = "";
2599
2600         if (!net_ratelimit())
2601                 return;
2602
2603         if (dev) {
2604                 if (dev->dev.parent)
2605                         name = dev_driver_string(dev->dev.parent);
2606                 else
2607                         name = netdev_name(dev);
2608         }
2609         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2610              "gso_type=%d ip_summed=%d\n",
2611              name, dev ? &dev->features : &null_features,
2612              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2613              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2614              skb_shinfo(skb)->gso_type, skb->ip_summed);
2615 }
2616
2617 /*
2618  * Invalidate hardware checksum when packet is to be mangled, and
2619  * complete checksum manually on outgoing path.
2620  */
2621 int skb_checksum_help(struct sk_buff *skb)
2622 {
2623         __wsum csum;
2624         int ret = 0, offset;
2625
2626         if (skb->ip_summed == CHECKSUM_COMPLETE)
2627                 goto out_set_summed;
2628
2629         if (unlikely(skb_shinfo(skb)->gso_size)) {
2630                 skb_warn_bad_offload(skb);
2631                 return -EINVAL;
2632         }
2633
2634         /* Before computing a checksum, we should make sure no frag could
2635          * be modified by an external entity : checksum could be wrong.
2636          */
2637         if (skb_has_shared_frag(skb)) {
2638                 ret = __skb_linearize(skb);
2639                 if (ret)
2640                         goto out;
2641         }
2642
2643         offset = skb_checksum_start_offset(skb);
2644         BUG_ON(offset >= skb_headlen(skb));
2645         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2646
2647         offset += skb->csum_offset;
2648         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2649
2650         if (skb_cloned(skb) &&
2651             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2652                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2653                 if (ret)
2654                         goto out;
2655         }
2656
2657         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2658 out_set_summed:
2659         skb->ip_summed = CHECKSUM_NONE;
2660 out:
2661         return ret;
2662 }
2663 EXPORT_SYMBOL(skb_checksum_help);
2664
2665 int skb_crc32c_csum_help(struct sk_buff *skb)
2666 {
2667         __le32 crc32c_csum;
2668         int ret = 0, offset, start;
2669
2670         if (skb->ip_summed != CHECKSUM_PARTIAL)
2671                 goto out;
2672
2673         if (unlikely(skb_is_gso(skb)))
2674                 goto out;
2675
2676         /* Before computing a checksum, we should make sure no frag could
2677          * be modified by an external entity : checksum could be wrong.
2678          */
2679         if (unlikely(skb_has_shared_frag(skb))) {
2680                 ret = __skb_linearize(skb);
2681                 if (ret)
2682                         goto out;
2683         }
2684         start = skb_checksum_start_offset(skb);
2685         offset = start + offsetof(struct sctphdr, checksum);
2686         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2687                 ret = -EINVAL;
2688                 goto out;
2689         }
2690         if (skb_cloned(skb) &&
2691             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2692                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2693                 if (ret)
2694                         goto out;
2695         }
2696         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2697                                                   skb->len - start, ~(__u32)0,
2698                                                   crc32c_csum_stub));
2699         *(__le32 *)(skb->data + offset) = crc32c_csum;
2700         skb->ip_summed = CHECKSUM_NONE;
2701         skb->csum_not_inet = 0;
2702 out:
2703         return ret;
2704 }
2705
2706 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2707 {
2708         __be16 type = skb->protocol;
2709
2710         /* Tunnel gso handlers can set protocol to ethernet. */
2711         if (type == htons(ETH_P_TEB)) {
2712                 struct ethhdr *eth;
2713
2714                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2715                         return 0;
2716
2717                 eth = (struct ethhdr *)skb->data;
2718                 type = eth->h_proto;
2719         }
2720
2721         return __vlan_get_protocol(skb, type, depth);
2722 }
2723
2724 /**
2725  *      skb_mac_gso_segment - mac layer segmentation handler.
2726  *      @skb: buffer to segment
2727  *      @features: features for the output path (see dev->features)
2728  */
2729 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2730                                     netdev_features_t features)
2731 {
2732         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2733         struct packet_offload *ptype;
2734         int vlan_depth = skb->mac_len;
2735         __be16 type = skb_network_protocol(skb, &vlan_depth);
2736
2737         if (unlikely(!type))
2738                 return ERR_PTR(-EINVAL);
2739
2740         __skb_pull(skb, vlan_depth);
2741
2742         rcu_read_lock();
2743         list_for_each_entry_rcu(ptype, &offload_base, list) {
2744                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2745                         segs = ptype->callbacks.gso_segment(skb, features);
2746                         break;
2747                 }
2748         }
2749         rcu_read_unlock();
2750
2751         __skb_push(skb, skb->data - skb_mac_header(skb));
2752
2753         return segs;
2754 }
2755 EXPORT_SYMBOL(skb_mac_gso_segment);
2756
2757
2758 /* openvswitch calls this on rx path, so we need a different check.
2759  */
2760 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2761 {
2762         if (tx_path)
2763                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2764                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2765
2766         return skb->ip_summed == CHECKSUM_NONE;
2767 }
2768
2769 /**
2770  *      __skb_gso_segment - Perform segmentation on skb.
2771  *      @skb: buffer to segment
2772  *      @features: features for the output path (see dev->features)
2773  *      @tx_path: whether it is called in TX path
2774  *
2775  *      This function segments the given skb and returns a list of segments.
2776  *
2777  *      It may return NULL if the skb requires no segmentation.  This is
2778  *      only possible when GSO is used for verifying header integrity.
2779  *
2780  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2781  */
2782 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2783                                   netdev_features_t features, bool tx_path)
2784 {
2785         struct sk_buff *segs;
2786
2787         if (unlikely(skb_needs_check(skb, tx_path))) {
2788                 int err;
2789
2790                 /* We're going to init ->check field in TCP or UDP header */
2791                 err = skb_cow_head(skb, 0);
2792                 if (err < 0)
2793                         return ERR_PTR(err);
2794         }
2795
2796         /* Only report GSO partial support if it will enable us to
2797          * support segmentation on this frame without needing additional
2798          * work.
2799          */
2800         if (features & NETIF_F_GSO_PARTIAL) {
2801                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2802                 struct net_device *dev = skb->dev;
2803
2804                 partial_features |= dev->features & dev->gso_partial_features;
2805                 if (!skb_gso_ok(skb, features | partial_features))
2806                         features &= ~NETIF_F_GSO_PARTIAL;
2807         }
2808
2809         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2810                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2811
2812         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2813         SKB_GSO_CB(skb)->encap_level = 0;
2814
2815         skb_reset_mac_header(skb);
2816         skb_reset_mac_len(skb);
2817
2818         segs = skb_mac_gso_segment(skb, features);
2819
2820         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2821                 skb_warn_bad_offload(skb);
2822
2823         return segs;
2824 }
2825 EXPORT_SYMBOL(__skb_gso_segment);
2826
2827 /* Take action when hardware reception checksum errors are detected. */
2828 #ifdef CONFIG_BUG
2829 void netdev_rx_csum_fault(struct net_device *dev)
2830 {
2831         if (net_ratelimit()) {
2832                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2833                 dump_stack();
2834         }
2835 }
2836 EXPORT_SYMBOL(netdev_rx_csum_fault);
2837 #endif
2838
2839 /* Actually, we should eliminate this check as soon as we know, that:
2840  * 1. IOMMU is present and allows to map all the memory.
2841  * 2. No high memory really exists on this machine.
2842  */
2843
2844 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2845 {
2846 #ifdef CONFIG_HIGHMEM
2847         int i;
2848
2849         if (!(dev->features & NETIF_F_HIGHDMA)) {
2850                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2851                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2852
2853                         if (PageHighMem(skb_frag_page(frag)))
2854                                 return 1;
2855                 }
2856         }
2857
2858         if (PCI_DMA_BUS_IS_PHYS) {
2859                 struct device *pdev = dev->dev.parent;
2860
2861                 if (!pdev)
2862                         return 0;
2863                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2864                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2865                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2866
2867                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2868                                 return 1;
2869                 }
2870         }
2871 #endif
2872         return 0;
2873 }
2874
2875 /* If MPLS offload request, verify we are testing hardware MPLS features
2876  * instead of standard features for the netdev.
2877  */
2878 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2879 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2880                                            netdev_features_t features,
2881                                            __be16 type)
2882 {
2883         if (eth_p_mpls(type))
2884                 features &= skb->dev->mpls_features;
2885
2886         return features;
2887 }
2888 #else
2889 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2890                                            netdev_features_t features,
2891                                            __be16 type)
2892 {
2893         return features;
2894 }
2895 #endif
2896
2897 static netdev_features_t harmonize_features(struct sk_buff *skb,
2898         netdev_features_t features)
2899 {
2900         int tmp;
2901         __be16 type;
2902
2903         type = skb_network_protocol(skb, &tmp);
2904         features = net_mpls_features(skb, features, type);
2905
2906         if (skb->ip_summed != CHECKSUM_NONE &&
2907             !can_checksum_protocol(features, type)) {
2908                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2909         }
2910         if (illegal_highdma(skb->dev, skb))
2911                 features &= ~NETIF_F_SG;
2912
2913         return features;
2914 }
2915
2916 netdev_features_t passthru_features_check(struct sk_buff *skb,
2917                                           struct net_device *dev,
2918                                           netdev_features_t features)
2919 {
2920         return features;
2921 }
2922 EXPORT_SYMBOL(passthru_features_check);
2923
2924 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2925                                              struct net_device *dev,
2926                                              netdev_features_t features)
2927 {
2928         return vlan_features_check(skb, features);
2929 }
2930
2931 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2932                                             struct net_device *dev,
2933                                             netdev_features_t features)
2934 {
2935         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2936
2937         if (gso_segs > dev->gso_max_segs)
2938                 return features & ~NETIF_F_GSO_MASK;
2939
2940         /* Support for GSO partial features requires software
2941          * intervention before we can actually process the packets
2942          * so we need to strip support for any partial features now
2943          * and we can pull them back in after we have partially
2944          * segmented the frame.
2945          */
2946         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2947                 features &= ~dev->gso_partial_features;
2948
2949         /* Make sure to clear the IPv4 ID mangling feature if the
2950          * IPv4 header has the potential to be fragmented.
2951          */
2952         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2953                 struct iphdr *iph = skb->encapsulation ?
2954                                     inner_ip_hdr(skb) : ip_hdr(skb);
2955
2956                 if (!(iph->frag_off & htons(IP_DF)))
2957                         features &= ~NETIF_F_TSO_MANGLEID;
2958         }
2959
2960         return features;
2961 }
2962
2963 netdev_features_t netif_skb_features(struct sk_buff *skb)
2964 {
2965         struct net_device *dev = skb->dev;
2966         netdev_features_t features = dev->features;
2967
2968         if (skb_is_gso(skb))
2969                 features = gso_features_check(skb, dev, features);
2970
2971         /* If encapsulation offload request, verify we are testing
2972          * hardware encapsulation features instead of standard
2973          * features for the netdev
2974          */
2975         if (skb->encapsulation)
2976                 features &= dev->hw_enc_features;
2977
2978         if (skb_vlan_tagged(skb))
2979                 features = netdev_intersect_features(features,
2980                                                      dev->vlan_features |
2981                                                      NETIF_F_HW_VLAN_CTAG_TX |
2982                                                      NETIF_F_HW_VLAN_STAG_TX);
2983
2984         if (dev->netdev_ops->ndo_features_check)
2985                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2986                                                                 features);
2987         else
2988                 features &= dflt_features_check(skb, dev, features);
2989
2990         return harmonize_features(skb, features);
2991 }
2992 EXPORT_SYMBOL(netif_skb_features);
2993
2994 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2995                     struct netdev_queue *txq, bool more)
2996 {
2997         unsigned int len;
2998         int rc;
2999
3000         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3001                 dev_queue_xmit_nit(skb, dev);
3002
3003         len = skb->len;
3004         trace_net_dev_start_xmit(skb, dev);
3005         rc = netdev_start_xmit(skb, dev, txq, more);
3006         trace_net_dev_xmit(skb, rc, dev, len);
3007
3008         return rc;
3009 }
3010
3011 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3012                                     struct netdev_queue *txq, int *ret)
3013 {
3014         struct sk_buff *skb = first;
3015         int rc = NETDEV_TX_OK;
3016
3017         while (skb) {
3018                 struct sk_buff *next = skb->next;
3019
3020                 skb->next = NULL;
3021                 rc = xmit_one(skb, dev, txq, next != NULL);
3022                 if (unlikely(!dev_xmit_complete(rc))) {
3023                         skb->next = next;
3024                         goto out;
3025                 }
3026
3027                 skb = next;
3028                 if (netif_tx_queue_stopped(txq) && skb) {
3029                         rc = NETDEV_TX_BUSY;
3030                         break;
3031                 }
3032         }
3033
3034 out:
3035         *ret = rc;
3036         return skb;
3037 }
3038
3039 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3040                                           netdev_features_t features)
3041 {
3042         if (skb_vlan_tag_present(skb) &&
3043             !vlan_hw_offload_capable(features, skb->vlan_proto))
3044                 skb = __vlan_hwaccel_push_inside(skb);
3045         return skb;
3046 }
3047
3048 int skb_csum_hwoffload_help(struct sk_buff *skb,
3049                             const netdev_features_t features)
3050 {
3051         if (unlikely(skb->csum_not_inet))
3052                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3053                         skb_crc32c_csum_help(skb);
3054
3055         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3056 }
3057 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3058
3059 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3060 {
3061         netdev_features_t features;
3062
3063         features = netif_skb_features(skb);
3064         skb = validate_xmit_vlan(skb, features);
3065         if (unlikely(!skb))
3066                 goto out_null;
3067
3068         if (netif_needs_gso(skb, features)) {
3069                 struct sk_buff *segs;
3070
3071                 segs = skb_gso_segment(skb, features);
3072                 if (IS_ERR(segs)) {
3073                         goto out_kfree_skb;
3074                 } else if (segs) {
3075                         consume_skb(skb);
3076                         skb = segs;
3077                 }
3078         } else {
3079                 if (skb_needs_linearize(skb, features) &&
3080                     __skb_linearize(skb))
3081                         goto out_kfree_skb;
3082
3083                 if (validate_xmit_xfrm(skb, features))
3084                         goto out_kfree_skb;
3085
3086                 /* If packet is not checksummed and device does not
3087                  * support checksumming for this protocol, complete
3088                  * checksumming here.
3089                  */
3090                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3091                         if (skb->encapsulation)
3092                                 skb_set_inner_transport_header(skb,
3093                                                                skb_checksum_start_offset(skb));
3094                         else
3095                                 skb_set_transport_header(skb,
3096                                                          skb_checksum_start_offset(skb));
3097                         if (skb_csum_hwoffload_help(skb, features))
3098                                 goto out_kfree_skb;
3099                 }
3100         }
3101
3102         return skb;
3103
3104 out_kfree_skb:
3105         kfree_skb(skb);
3106 out_null:
3107         atomic_long_inc(&dev->tx_dropped);
3108         return NULL;
3109 }
3110
3111 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3112 {
3113         struct sk_buff *next, *head = NULL, *tail;
3114
3115         for (; skb != NULL; skb = next) {
3116                 next = skb->next;
3117                 skb->next = NULL;
3118
3119                 /* in case skb wont be segmented, point to itself */
3120                 skb->prev = skb;
3121
3122                 skb = validate_xmit_skb(skb, dev);
3123                 if (!skb)
3124                         continue;
3125
3126                 if (!head)
3127                         head = skb;
3128                 else
3129                         tail->next = skb;
3130                 /* If skb was segmented, skb->prev points to
3131                  * the last segment. If not, it still contains skb.
3132                  */
3133                 tail = skb->prev;
3134         }
3135         return head;
3136 }
3137 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3138
3139 static void qdisc_pkt_len_init(struct sk_buff *skb)
3140 {
3141         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3142
3143         qdisc_skb_cb(skb)->pkt_len = skb->len;
3144
3145         /* To get more precise estimation of bytes sent on wire,
3146          * we add to pkt_len the headers size of all segments
3147          */
3148         if (shinfo->gso_size)  {
3149                 unsigned int hdr_len;
3150                 u16 gso_segs = shinfo->gso_segs;
3151
3152                 /* mac layer + network layer */
3153                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3154
3155                 /* + transport layer */
3156                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3157                         const struct tcphdr *th;
3158                         struct tcphdr _tcphdr;
3159
3160                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3161                                                 sizeof(_tcphdr), &_tcphdr);
3162                         if (likely(th))
3163                                 hdr_len += __tcp_hdrlen(th);
3164                 } else {
3165                         struct udphdr _udphdr;
3166
3167                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3168                                                sizeof(_udphdr), &_udphdr))
3169                                 hdr_len += sizeof(struct udphdr);
3170                 }
3171
3172                 if (shinfo->gso_type & SKB_GSO_DODGY)
3173                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3174                                                 shinfo->gso_size);
3175
3176                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3177         }
3178 }
3179
3180 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3181                                  struct net_device *dev,
3182                                  struct netdev_queue *txq)
3183 {
3184         spinlock_t *root_lock = qdisc_lock(q);
3185         struct sk_buff *to_free = NULL;
3186         bool contended;
3187         int rc;
3188
3189         qdisc_calculate_pkt_len(skb, q);
3190         /*
3191          * Heuristic to force contended enqueues to serialize on a
3192          * separate lock before trying to get qdisc main lock.
3193          * This permits qdisc->running owner to get the lock more
3194          * often and dequeue packets faster.
3195          */
3196         contended = qdisc_is_running(q);
3197         if (unlikely(contended))
3198                 spin_lock(&q->busylock);
3199
3200         spin_lock(root_lock);
3201         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3202                 __qdisc_drop(skb, &to_free);
3203                 rc = NET_XMIT_DROP;
3204         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3205                    qdisc_run_begin(q)) {
3206                 /*
3207                  * This is a work-conserving queue; there are no old skbs
3208                  * waiting to be sent out; and the qdisc is not running -
3209                  * xmit the skb directly.
3210                  */
3211
3212                 qdisc_bstats_update(q, skb);
3213
3214                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3215                         if (unlikely(contended)) {
3216                                 spin_unlock(&q->busylock);
3217                                 contended = false;
3218                         }
3219                         __qdisc_run(q);
3220                 } else
3221                         qdisc_run_end(q);
3222
3223                 rc = NET_XMIT_SUCCESS;
3224         } else {
3225                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3226                 if (qdisc_run_begin(q)) {
3227                         if (unlikely(contended)) {
3228                                 spin_unlock(&q->busylock);
3229                                 contended = false;
3230                         }
3231                         __qdisc_run(q);
3232                 }
3233         }
3234         spin_unlock(root_lock);
3235         if (unlikely(to_free))
3236                 kfree_skb_list(to_free);
3237         if (unlikely(contended))
3238                 spin_unlock(&q->busylock);
3239         return rc;
3240 }
3241
3242 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3243 static void skb_update_prio(struct sk_buff *skb)
3244 {
3245         const struct netprio_map *map;
3246         const struct sock *sk;
3247         unsigned int prioidx;
3248
3249         if (skb->priority)
3250                 return;
3251         map = rcu_dereference_bh(skb->dev->priomap);
3252         if (!map)
3253                 return;
3254         sk = skb_to_full_sk(skb);
3255         if (!sk)
3256                 return;
3257
3258         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3259
3260         if (prioidx < map->priomap_len)
3261                 skb->priority = map->priomap[prioidx];
3262 }
3263 #else
3264 #define skb_update_prio(skb)
3265 #endif
3266
3267 DEFINE_PER_CPU(int, xmit_recursion);
3268 EXPORT_SYMBOL(xmit_recursion);
3269
3270 /**
3271  *      dev_loopback_xmit - loop back @skb
3272  *      @net: network namespace this loopback is happening in
3273  *      @sk:  sk needed to be a netfilter okfn
3274  *      @skb: buffer to transmit
3275  */
3276 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3277 {
3278         skb_reset_mac_header(skb);
3279         __skb_pull(skb, skb_network_offset(skb));
3280         skb->pkt_type = PACKET_LOOPBACK;
3281         skb->ip_summed = CHECKSUM_UNNECESSARY;
3282         WARN_ON(!skb_dst(skb));
3283         skb_dst_force(skb);
3284         netif_rx_ni(skb);
3285         return 0;
3286 }
3287 EXPORT_SYMBOL(dev_loopback_xmit);
3288
3289 #ifdef CONFIG_NET_EGRESS
3290 static struct sk_buff *
3291 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3292 {
3293         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3294         struct tcf_result cl_res;
3295
3296         if (!cl)
3297                 return skb;
3298
3299         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3300         qdisc_bstats_cpu_update(cl->q, skb);
3301
3302         switch (tcf_classify(skb, cl, &cl_res, false)) {
3303         case TC_ACT_OK:
3304         case TC_ACT_RECLASSIFY:
3305                 skb->tc_index = TC_H_MIN(cl_res.classid);
3306                 break;
3307         case TC_ACT_SHOT:
3308                 qdisc_qstats_cpu_drop(cl->q);
3309                 *ret = NET_XMIT_DROP;
3310                 kfree_skb(skb);
3311                 return NULL;
3312         case TC_ACT_STOLEN:
3313         case TC_ACT_QUEUED:
3314         case TC_ACT_TRAP:
3315                 *ret = NET_XMIT_SUCCESS;
3316                 consume_skb(skb);
3317                 return NULL;
3318         case TC_ACT_REDIRECT:
3319                 /* No need to push/pop skb's mac_header here on egress! */
3320                 skb_do_redirect(skb);
3321                 *ret = NET_XMIT_SUCCESS;
3322                 return NULL;
3323         default:
3324                 break;
3325         }
3326
3327         return skb;
3328 }
3329 #endif /* CONFIG_NET_EGRESS */
3330
3331 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3332 {
3333 #ifdef CONFIG_XPS
3334         struct xps_dev_maps *dev_maps;
3335         struct xps_map *map;
3336         int queue_index = -1;
3337
3338         rcu_read_lock();
3339         dev_maps = rcu_dereference(dev->xps_maps);
3340         if (dev_maps) {
3341                 unsigned int tci = skb->sender_cpu - 1;
3342
3343                 if (dev->num_tc) {
3344                         tci *= dev->num_tc;
3345                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3346                 }
3347
3348                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3349                 if (map) {
3350                         if (map->len == 1)
3351                                 queue_index = map->queues[0];
3352                         else
3353                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3354                                                                            map->len)];
3355                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3356                                 queue_index = -1;
3357                 }
3358         }
3359         rcu_read_unlock();
3360
3361         return queue_index;
3362 #else
3363         return -1;
3364 #endif
3365 }
3366
3367 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3368 {
3369         struct sock *sk = skb->sk;
3370         int queue_index = sk_tx_queue_get(sk);
3371
3372         if (queue_index < 0 || skb->ooo_okay ||
3373             queue_index >= dev->real_num_tx_queues) {
3374                 int new_index = get_xps_queue(dev, skb);
3375
3376                 if (new_index < 0)
3377                         new_index = skb_tx_hash(dev, skb);
3378
3379                 if (queue_index != new_index && sk &&
3380                     sk_fullsock(sk) &&
3381                     rcu_access_pointer(sk->sk_dst_cache))
3382                         sk_tx_queue_set(sk, new_index);
3383
3384                 queue_index = new_index;
3385         }
3386
3387         return queue_index;
3388 }
3389
3390 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3391                                     struct sk_buff *skb,
3392                                     void *accel_priv)
3393 {
3394         int queue_index = 0;
3395
3396 #ifdef CONFIG_XPS
3397         u32 sender_cpu = skb->sender_cpu - 1;
3398
3399         if (sender_cpu >= (u32)NR_CPUS)
3400                 skb->sender_cpu = raw_smp_processor_id() + 1;
3401 #endif
3402
3403         if (dev->real_num_tx_queues != 1) {
3404                 const struct net_device_ops *ops = dev->netdev_ops;
3405
3406                 if (ops->ndo_select_queue)
3407                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3408                                                             __netdev_pick_tx);
3409                 else
3410                         queue_index = __netdev_pick_tx(dev, skb);
3411
3412                 if (!accel_priv)
3413                         queue_index = netdev_cap_txqueue(dev, queue_index);
3414         }
3415
3416         skb_set_queue_mapping(skb, queue_index);
3417         return netdev_get_tx_queue(dev, queue_index);
3418 }
3419
3420 /**
3421  *      __dev_queue_xmit - transmit a buffer
3422  *      @skb: buffer to transmit
3423  *      @accel_priv: private data used for L2 forwarding offload
3424  *
3425  *      Queue a buffer for transmission to a network device. The caller must
3426  *      have set the device and priority and built the buffer before calling
3427  *      this function. The function can be called from an interrupt.
3428  *
3429  *      A negative errno code is returned on a failure. A success does not
3430  *      guarantee the frame will be transmitted as it may be dropped due
3431  *      to congestion or traffic shaping.
3432  *
3433  * -----------------------------------------------------------------------------------
3434  *      I notice this method can also return errors from the queue disciplines,
3435  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3436  *      be positive.
3437  *
3438  *      Regardless of the return value, the skb is consumed, so it is currently
3439  *      difficult to retry a send to this method.  (You can bump the ref count
3440  *      before sending to hold a reference for retry if you are careful.)
3441  *
3442  *      When calling this method, interrupts MUST be enabled.  This is because
3443  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3444  *          --BLG
3445  */
3446 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3447 {
3448         struct net_device *dev = skb->dev;
3449         struct netdev_queue *txq;
3450         struct Qdisc *q;
3451         int rc = -ENOMEM;
3452
3453         skb_reset_mac_header(skb);
3454
3455         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3456                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3457
3458         /* Disable soft irqs for various locks below. Also
3459          * stops preemption for RCU.
3460          */
3461         rcu_read_lock_bh();
3462
3463         skb_update_prio(skb);
3464
3465         qdisc_pkt_len_init(skb);
3466 #ifdef CONFIG_NET_CLS_ACT
3467         skb->tc_at_ingress = 0;
3468 # ifdef CONFIG_NET_EGRESS
3469         if (static_key_false(&egress_needed)) {
3470                 skb = sch_handle_egress(skb, &rc, dev);
3471                 if (!skb)
3472                         goto out;
3473         }
3474 # endif
3475 #endif
3476         /* If device/qdisc don't need skb->dst, release it right now while
3477          * its hot in this cpu cache.
3478          */
3479         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3480                 skb_dst_drop(skb);
3481         else
3482                 skb_dst_force(skb);
3483
3484         txq = netdev_pick_tx(dev, skb, accel_priv);
3485         q = rcu_dereference_bh(txq->qdisc);
3486
3487         trace_net_dev_queue(skb);
3488         if (q->enqueue) {
3489                 rc = __dev_xmit_skb(skb, q, dev, txq);
3490                 goto out;
3491         }
3492
3493         /* The device has no queue. Common case for software devices:
3494          * loopback, all the sorts of tunnels...
3495
3496          * Really, it is unlikely that netif_tx_lock protection is necessary
3497          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3498          * counters.)
3499          * However, it is possible, that they rely on protection
3500          * made by us here.
3501
3502          * Check this and shot the lock. It is not prone from deadlocks.
3503          *Either shot noqueue qdisc, it is even simpler 8)
3504          */
3505         if (dev->flags & IFF_UP) {
3506                 int cpu = smp_processor_id(); /* ok because BHs are off */
3507
3508                 if (txq->xmit_lock_owner != cpu) {
3509                         if (unlikely(__this_cpu_read(xmit_recursion) >
3510                                      XMIT_RECURSION_LIMIT))
3511                                 goto recursion_alert;
3512
3513                         skb = validate_xmit_skb(skb, dev);
3514                         if (!skb)
3515                                 goto out;
3516
3517                         HARD_TX_LOCK(dev, txq, cpu);
3518
3519                         if (!netif_xmit_stopped(txq)) {
3520                                 __this_cpu_inc(xmit_recursion);
3521                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3522                                 __this_cpu_dec(xmit_recursion);
3523                                 if (dev_xmit_complete(rc)) {
3524                                         HARD_TX_UNLOCK(dev, txq);
3525                                         goto out;
3526                                 }
3527                         }
3528                         HARD_TX_UNLOCK(dev, txq);
3529                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3530                                              dev->name);
3531                 } else {
3532                         /* Recursion is detected! It is possible,
3533                          * unfortunately
3534                          */
3535 recursion_alert:
3536                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3537                                              dev->name);
3538                 }
3539         }
3540
3541         rc = -ENETDOWN;
3542         rcu_read_unlock_bh();
3543
3544         atomic_long_inc(&dev->tx_dropped);
3545         kfree_skb_list(skb);
3546         return rc;
3547 out:
3548         rcu_read_unlock_bh();
3549         return rc;
3550 }
3551
3552 int dev_queue_xmit(struct sk_buff *skb)
3553 {
3554         return __dev_queue_xmit(skb, NULL);
3555 }
3556 EXPORT_SYMBOL(dev_queue_xmit);
3557
3558 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3559 {
3560         return __dev_queue_xmit(skb, accel_priv);
3561 }
3562 EXPORT_SYMBOL(dev_queue_xmit_accel);
3563
3564
3565 /*************************************************************************
3566  *                      Receiver routines
3567  *************************************************************************/
3568
3569 int netdev_max_backlog __read_mostly = 1000;
3570 EXPORT_SYMBOL(netdev_max_backlog);
3571
3572 int netdev_tstamp_prequeue __read_mostly = 1;
3573 int netdev_budget __read_mostly = 300;
3574 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3575 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3576 int weight_p __read_mostly = 64;           /* old backlog weight */
3577 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3578 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3579 int dev_rx_weight __read_mostly = 64;
3580 int dev_tx_weight __read_mostly = 64;
3581
3582 /* Called with irq disabled */
3583 static inline void ____napi_schedule(struct softnet_data *sd,
3584                                      struct napi_struct *napi)
3585 {
3586         list_add_tail(&napi->poll_list, &sd->poll_list);
3587         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3588 }
3589
3590 #ifdef CONFIG_RPS
3591
3592 /* One global table that all flow-based protocols share. */
3593 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3594 EXPORT_SYMBOL(rps_sock_flow_table);
3595 u32 rps_cpu_mask __read_mostly;
3596 EXPORT_SYMBOL(rps_cpu_mask);
3597
3598 struct static_key rps_needed __read_mostly;
3599 EXPORT_SYMBOL(rps_needed);
3600 struct static_key rfs_needed __read_mostly;
3601 EXPORT_SYMBOL(rfs_needed);
3602
3603 static struct rps_dev_flow *
3604 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3605             struct rps_dev_flow *rflow, u16 next_cpu)
3606 {
3607         if (next_cpu < nr_cpu_ids) {
3608 #ifdef CONFIG_RFS_ACCEL
3609                 struct netdev_rx_queue *rxqueue;
3610                 struct rps_dev_flow_table *flow_table;
3611                 struct rps_dev_flow *old_rflow;
3612                 u32 flow_id;
3613                 u16 rxq_index;
3614                 int rc;
3615
3616                 /* Should we steer this flow to a different hardware queue? */
3617                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3618                     !(dev->features & NETIF_F_NTUPLE))
3619                         goto out;
3620                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3621                 if (rxq_index == skb_get_rx_queue(skb))
3622                         goto out;
3623
3624                 rxqueue = dev->_rx + rxq_index;
3625                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3626                 if (!flow_table)
3627                         goto out;
3628                 flow_id = skb_get_hash(skb) & flow_table->mask;
3629                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3630                                                         rxq_index, flow_id);
3631                 if (rc < 0)
3632                         goto out;
3633                 old_rflow = rflow;
3634                 rflow = &flow_table->flows[flow_id];
3635                 rflow->filter = rc;
3636                 if (old_rflow->filter == rflow->filter)
3637                         old_rflow->filter = RPS_NO_FILTER;
3638         out:
3639 #endif
3640                 rflow->last_qtail =
3641                         per_cpu(softnet_data, next_cpu).input_queue_head;
3642         }
3643
3644         rflow->cpu = next_cpu;
3645         return rflow;
3646 }
3647
3648 /*
3649  * get_rps_cpu is called from netif_receive_skb and returns the target
3650  * CPU from the RPS map of the receiving queue for a given skb.
3651  * rcu_read_lock must be held on entry.
3652  */
3653 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3654                        struct rps_dev_flow **rflowp)
3655 {
3656         const struct rps_sock_flow_table *sock_flow_table;
3657         struct netdev_rx_queue *rxqueue = dev->_rx;
3658         struct rps_dev_flow_table *flow_table;
3659         struct rps_map *map;
3660         int cpu = -1;
3661         u32 tcpu;
3662         u32 hash;
3663
3664         if (skb_rx_queue_recorded(skb)) {
3665                 u16 index = skb_get_rx_queue(skb);
3666
3667                 if (unlikely(index >= dev->real_num_rx_queues)) {
3668                         WARN_ONCE(dev->real_num_rx_queues > 1,
3669                                   "%s received packet on queue %u, but number "
3670                                   "of RX queues is %u\n",
3671                                   dev->name, index, dev->real_num_rx_queues);
3672                         goto done;
3673                 }
3674                 rxqueue += index;
3675         }
3676
3677         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3678
3679         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3680         map = rcu_dereference(rxqueue->rps_map);
3681         if (!flow_table && !map)
3682                 goto done;
3683
3684         skb_reset_network_header(skb);
3685         hash = skb_get_hash(skb);
3686         if (!hash)
3687                 goto done;
3688
3689         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3690         if (flow_table && sock_flow_table) {
3691                 struct rps_dev_flow *rflow;
3692                 u32 next_cpu;
3693                 u32 ident;
3694
3695                 /* First check into global flow table if there is a match */
3696                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3697                 if ((ident ^ hash) & ~rps_cpu_mask)
3698                         goto try_rps;
3699
3700                 next_cpu = ident & rps_cpu_mask;
3701
3702                 /* OK, now we know there is a match,
3703                  * we can look at the local (per receive queue) flow table
3704                  */
3705                 rflow = &flow_table->flows[hash & flow_table->mask];
3706                 tcpu = rflow->cpu;
3707
3708                 /*
3709                  * If the desired CPU (where last recvmsg was done) is
3710                  * different from current CPU (one in the rx-queue flow
3711                  * table entry), switch if one of the following holds:
3712                  *   - Current CPU is unset (>= nr_cpu_ids).
3713                  *   - Current CPU is offline.
3714                  *   - The current CPU's queue tail has advanced beyond the
3715                  *     last packet that was enqueued using this table entry.
3716                  *     This guarantees that all previous packets for the flow
3717                  *     have been dequeued, thus preserving in order delivery.
3718                  */
3719                 if (unlikely(tcpu != next_cpu) &&
3720                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3721                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3722                       rflow->last_qtail)) >= 0)) {
3723                         tcpu = next_cpu;
3724                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3725                 }
3726
3727                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3728                         *rflowp = rflow;
3729                         cpu = tcpu;
3730                         goto done;
3731                 }
3732         }
3733
3734 try_rps:
3735
3736         if (map) {
3737                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3738                 if (cpu_online(tcpu)) {
3739                         cpu = tcpu;
3740                         goto done;
3741                 }
3742         }
3743
3744 done:
3745         return cpu;
3746 }
3747
3748 #ifdef CONFIG_RFS_ACCEL
3749
3750 /**
3751  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3752  * @dev: Device on which the filter was set
3753  * @rxq_index: RX queue index
3754  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3755  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3756  *
3757  * Drivers that implement ndo_rx_flow_steer() should periodically call
3758  * this function for each installed filter and remove the filters for
3759  * which it returns %true.
3760  */
3761 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3762                          u32 flow_id, u16 filter_id)
3763 {
3764         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3765         struct rps_dev_flow_table *flow_table;
3766         struct rps_dev_flow *rflow;
3767         bool expire = true;
3768         unsigned int cpu;
3769
3770         rcu_read_lock();
3771         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3772         if (flow_table && flow_id <= flow_table->mask) {
3773                 rflow = &flow_table->flows[flow_id];
3774                 cpu = ACCESS_ONCE(rflow->cpu);
3775                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3776                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3777                            rflow->last_qtail) <
3778                      (int)(10 * flow_table->mask)))
3779                         expire = false;
3780         }
3781         rcu_read_unlock();
3782         return expire;
3783 }
3784 EXPORT_SYMBOL(rps_may_expire_flow);
3785
3786 #endif /* CONFIG_RFS_ACCEL */
3787
3788 /* Called from hardirq (IPI) context */
3789 static void rps_trigger_softirq(void *data)
3790 {
3791         struct softnet_data *sd = data;
3792
3793         ____napi_schedule(sd, &sd->backlog);
3794         sd->received_rps++;
3795 }
3796
3797 #endif /* CONFIG_RPS */
3798
3799 /*
3800  * Check if this softnet_data structure is another cpu one
3801  * If yes, queue it to our IPI list and return 1
3802  * If no, return 0
3803  */
3804 static int rps_ipi_queued(struct softnet_data *sd)
3805 {
3806 #ifdef CONFIG_RPS
3807         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3808
3809         if (sd != mysd) {
3810                 sd->rps_ipi_next = mysd->rps_ipi_list;
3811                 mysd->rps_ipi_list = sd;
3812
3813                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3814                 return 1;
3815         }
3816 #endif /* CONFIG_RPS */
3817         return 0;
3818 }
3819
3820 #ifdef CONFIG_NET_FLOW_LIMIT
3821 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3822 #endif
3823
3824 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3825 {
3826 #ifdef CONFIG_NET_FLOW_LIMIT
3827         struct sd_flow_limit *fl;
3828         struct softnet_data *sd;
3829         unsigned int old_flow, new_flow;
3830
3831         if (qlen < (netdev_max_backlog >> 1))
3832                 return false;
3833
3834         sd = this_cpu_ptr(&softnet_data);
3835
3836         rcu_read_lock();
3837         fl = rcu_dereference(sd->flow_limit);
3838         if (fl) {
3839                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3840                 old_flow = fl->history[fl->history_head];
3841                 fl->history[fl->history_head] = new_flow;
3842
3843                 fl->history_head++;
3844                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3845
3846                 if (likely(fl->buckets[old_flow]))
3847                         fl->buckets[old_flow]--;
3848
3849                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3850                         fl->count++;
3851                         rcu_read_unlock();
3852                         return true;
3853                 }
3854         }
3855         rcu_read_unlock();
3856 #endif
3857         return false;
3858 }
3859
3860 /*
3861  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3862  * queue (may be a remote CPU queue).
3863  */
3864 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3865                               unsigned int *qtail)
3866 {
3867         struct softnet_data *sd;
3868         unsigned long flags;
3869         unsigned int qlen;
3870
3871         sd = &per_cpu(softnet_data, cpu);
3872
3873         local_irq_save(flags);
3874
3875         rps_lock(sd);
3876         if (!netif_running(skb->dev))
3877                 goto drop;
3878         qlen = skb_queue_len(&sd->input_pkt_queue);
3879         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3880                 if (qlen) {
3881 enqueue:
3882                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3883                         input_queue_tail_incr_save(sd, qtail);
3884                         rps_unlock(sd);
3885                         local_irq_restore(flags);
3886                         return NET_RX_SUCCESS;
3887                 }
3888
3889                 /* Schedule NAPI for backlog device
3890                  * We can use non atomic operation since we own the queue lock
3891                  */
3892                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3893                         if (!rps_ipi_queued(sd))
3894                                 ____napi_schedule(sd, &sd->backlog);
3895                 }
3896                 goto enqueue;
3897         }
3898
3899 drop:
3900         sd->dropped++;
3901         rps_unlock(sd);
3902
3903         local_irq_restore(flags);
3904
3905         atomic_long_inc(&skb->dev->rx_dropped);
3906         kfree_skb(skb);
3907         return NET_RX_DROP;
3908 }
3909
3910 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3911                                      struct bpf_prog *xdp_prog)
3912 {
3913         struct xdp_buff xdp;
3914         u32 act = XDP_DROP;
3915         void *orig_data;
3916         int hlen, off;
3917         u32 mac_len;
3918
3919         /* Reinjected packets coming from act_mirred or similar should
3920          * not get XDP generic processing.
3921          */
3922         if (skb_cloned(skb))
3923                 return XDP_PASS;
3924
3925         if (skb_linearize(skb))
3926                 goto do_drop;
3927
3928         /* The XDP program wants to see the packet starting at the MAC
3929          * header.
3930          */
3931         mac_len = skb->data - skb_mac_header(skb);
3932         hlen = skb_headlen(skb) + mac_len;
3933         xdp.data = skb->data - mac_len;
3934         xdp.data_end = xdp.data + hlen;
3935         xdp.data_hard_start = skb->data - skb_headroom(skb);
3936         orig_data = xdp.data;
3937
3938         act = bpf_prog_run_xdp(xdp_prog, &xdp);
3939
3940         off = xdp.data - orig_data;
3941         if (off > 0)
3942                 __skb_pull(skb, off);
3943         else if (off < 0)
3944                 __skb_push(skb, -off);
3945         skb->mac_header += off;
3946
3947         switch (act) {
3948         case XDP_REDIRECT:
3949         case XDP_TX:
3950                 __skb_push(skb, mac_len);
3951                 /* fall through */
3952         case XDP_PASS:
3953                 break;
3954
3955         default:
3956                 bpf_warn_invalid_xdp_action(act);
3957                 /* fall through */
3958         case XDP_ABORTED:
3959                 trace_xdp_exception(skb->dev, xdp_prog, act);
3960                 /* fall through */
3961         case XDP_DROP:
3962         do_drop:
3963                 kfree_skb(skb);
3964                 break;
3965         }
3966
3967         return act;
3968 }
3969
3970 /* When doing generic XDP we have to bypass the qdisc layer and the
3971  * network taps in order to match in-driver-XDP behavior.
3972  */
3973 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3974 {
3975         struct net_device *dev = skb->dev;
3976         struct netdev_queue *txq;
3977         bool free_skb = true;
3978         int cpu, rc;
3979
3980         txq = netdev_pick_tx(dev, skb, NULL);
3981         cpu = smp_processor_id();
3982         HARD_TX_LOCK(dev, txq, cpu);
3983         if (!netif_xmit_stopped(txq)) {
3984                 rc = netdev_start_xmit(skb, dev, txq, 0);
3985                 if (dev_xmit_complete(rc))
3986                         free_skb = false;
3987         }
3988         HARD_TX_UNLOCK(dev, txq);
3989         if (free_skb) {
3990                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3991                 kfree_skb(skb);
3992         }
3993 }
3994 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3995
3996 static struct static_key generic_xdp_needed __read_mostly;
3997
3998 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
3999 {
4000         if (xdp_prog) {
4001                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4002                 int err;
4003
4004                 if (act != XDP_PASS) {
4005                         switch (act) {
4006                         case XDP_REDIRECT:
4007                                 err = xdp_do_generic_redirect(skb->dev, skb,
4008                                                               xdp_prog);
4009                                 if (err)
4010                                         goto out_redir;
4011                         /* fallthru to submit skb */
4012                         case XDP_TX:
4013                                 generic_xdp_tx(skb, xdp_prog);
4014                                 break;
4015                         }
4016                         return XDP_DROP;
4017                 }
4018         }
4019         return XDP_PASS;
4020 out_redir:
4021         kfree_skb(skb);
4022         return XDP_DROP;
4023 }
4024 EXPORT_SYMBOL_GPL(do_xdp_generic);
4025
4026 static int netif_rx_internal(struct sk_buff *skb)
4027 {
4028         int ret;
4029
4030         net_timestamp_check(netdev_tstamp_prequeue, skb);
4031
4032         trace_netif_rx(skb);
4033
4034         if (static_key_false(&generic_xdp_needed)) {
4035                 int ret;
4036
4037                 preempt_disable();
4038                 rcu_read_lock();
4039                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4040                 rcu_read_unlock();
4041                 preempt_enable();
4042
4043                 /* Consider XDP consuming the packet a success from
4044                  * the netdev point of view we do not want to count
4045                  * this as an error.
4046                  */
4047                 if (ret != XDP_PASS)
4048                         return NET_RX_SUCCESS;
4049         }
4050
4051 #ifdef CONFIG_RPS
4052         if (static_key_false(&rps_needed)) {
4053                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4054                 int cpu;
4055
4056                 preempt_disable();
4057                 rcu_read_lock();
4058
4059                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4060                 if (cpu < 0)
4061                         cpu = smp_processor_id();
4062
4063                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4064
4065                 rcu_read_unlock();
4066                 preempt_enable();
4067         } else
4068 #endif
4069         {
4070                 unsigned int qtail;
4071
4072                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4073                 put_cpu();
4074         }
4075         return ret;
4076 }
4077
4078 /**
4079  *      netif_rx        -       post buffer to the network code
4080  *      @skb: buffer to post
4081  *
4082  *      This function receives a packet from a device driver and queues it for
4083  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4084  *      may be dropped during processing for congestion control or by the
4085  *      protocol layers.
4086  *
4087  *      return values:
4088  *      NET_RX_SUCCESS  (no congestion)
4089  *      NET_RX_DROP     (packet was dropped)
4090  *
4091  */
4092
4093 int netif_rx(struct sk_buff *skb)
4094 {
4095         trace_netif_rx_entry(skb);
4096
4097         return netif_rx_internal(skb);
4098 }
4099 EXPORT_SYMBOL(netif_rx);
4100
4101 int netif_rx_ni(struct sk_buff *skb)
4102 {
4103         int err;
4104
4105         trace_netif_rx_ni_entry(skb);
4106
4107         preempt_disable();
4108         err = netif_rx_internal(skb);
4109         if (local_softirq_pending())
4110                 do_softirq();
4111         preempt_enable();
4112
4113         return err;
4114 }
4115 EXPORT_SYMBOL(netif_rx_ni);
4116
4117 static __latent_entropy void net_tx_action(struct softirq_action *h)
4118 {
4119         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4120
4121         if (sd->completion_queue) {
4122                 struct sk_buff *clist;
4123
4124                 local_irq_disable();
4125                 clist = sd->completion_queue;
4126                 sd->completion_queue = NULL;
4127                 local_irq_enable();
4128
4129                 while (clist) {
4130                         struct sk_buff *skb = clist;
4131
4132                         clist = clist->next;
4133
4134                         WARN_ON(refcount_read(&skb->users));
4135                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4136                                 trace_consume_skb(skb);
4137                         else
4138                                 trace_kfree_skb(skb, net_tx_action);
4139
4140                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4141                                 __kfree_skb(skb);
4142                         else
4143                                 __kfree_skb_defer(skb);
4144                 }
4145
4146                 __kfree_skb_flush();
4147         }
4148
4149         if (sd->output_queue) {
4150                 struct Qdisc *head;
4151
4152                 local_irq_disable();
4153                 head = sd->output_queue;
4154                 sd->output_queue = NULL;
4155                 sd->output_queue_tailp = &sd->output_queue;
4156                 local_irq_enable();
4157
4158                 while (head) {
4159                         struct Qdisc *q = head;
4160                         spinlock_t *root_lock;
4161
4162                         head = head->next_sched;
4163
4164                         root_lock = qdisc_lock(q);
4165                         spin_lock(root_lock);
4166                         /* We need to make sure head->next_sched is read
4167                          * before clearing __QDISC_STATE_SCHED
4168                          */
4169                         smp_mb__before_atomic();
4170                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4171                         qdisc_run(q);
4172                         spin_unlock(root_lock);
4173                 }
4174         }
4175 }
4176
4177 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4178 /* This hook is defined here for ATM LANE */
4179 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4180                              unsigned char *addr) __read_mostly;
4181 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4182 #endif
4183
4184 static inline struct sk_buff *
4185 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4186                    struct net_device *orig_dev)
4187 {
4188 #ifdef CONFIG_NET_CLS_ACT
4189         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4190         struct tcf_result cl_res;
4191
4192         /* If there's at least one ingress present somewhere (so
4193          * we get here via enabled static key), remaining devices
4194          * that are not configured with an ingress qdisc will bail
4195          * out here.
4196          */
4197         if (!cl)
4198                 return skb;
4199         if (*pt_prev) {
4200                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4201                 *pt_prev = NULL;
4202         }
4203
4204         qdisc_skb_cb(skb)->pkt_len = skb->len;
4205         skb->tc_at_ingress = 1;
4206         qdisc_bstats_cpu_update(cl->q, skb);
4207
4208         switch (tcf_classify(skb, cl, &cl_res, false)) {
4209         case TC_ACT_OK:
4210         case TC_ACT_RECLASSIFY:
4211                 skb->tc_index = TC_H_MIN(cl_res.classid);
4212                 break;
4213         case TC_ACT_SHOT:
4214                 qdisc_qstats_cpu_drop(cl->q);
4215                 kfree_skb(skb);
4216                 return NULL;
4217         case TC_ACT_STOLEN:
4218         case TC_ACT_QUEUED:
4219         case TC_ACT_TRAP:
4220                 consume_skb(skb);
4221                 return NULL;
4222         case TC_ACT_REDIRECT:
4223                 /* skb_mac_header check was done by cls/act_bpf, so
4224                  * we can safely push the L2 header back before
4225                  * redirecting to another netdev
4226                  */
4227                 __skb_push(skb, skb->mac_len);
4228                 skb_do_redirect(skb);
4229                 return NULL;
4230         default:
4231                 break;
4232         }
4233 #endif /* CONFIG_NET_CLS_ACT */
4234         return skb;
4235 }
4236
4237 /**
4238  *      netdev_is_rx_handler_busy - check if receive handler is registered
4239  *      @dev: device to check
4240  *
4241  *      Check if a receive handler is already registered for a given device.
4242  *      Return true if there one.
4243  *
4244  *      The caller must hold the rtnl_mutex.
4245  */
4246 bool netdev_is_rx_handler_busy(struct net_device *dev)
4247 {
4248         ASSERT_RTNL();
4249         return dev && rtnl_dereference(dev->rx_handler);
4250 }
4251 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4252
4253 /**
4254  *      netdev_rx_handler_register - register receive handler
4255  *      @dev: device to register a handler for
4256  *      @rx_handler: receive handler to register
4257  *      @rx_handler_data: data pointer that is used by rx handler
4258  *
4259  *      Register a receive handler for a device. This handler will then be
4260  *      called from __netif_receive_skb. A negative errno code is returned
4261  *      on a failure.
4262  *
4263  *      The caller must hold the rtnl_mutex.
4264  *
4265  *      For a general description of rx_handler, see enum rx_handler_result.
4266  */
4267 int netdev_rx_handler_register(struct net_device *dev,
4268                                rx_handler_func_t *rx_handler,
4269                                void *rx_handler_data)
4270 {
4271         if (netdev_is_rx_handler_busy(dev))
4272                 return -EBUSY;
4273
4274         /* Note: rx_handler_data must be set before rx_handler */
4275         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4276         rcu_assign_pointer(dev->rx_handler, rx_handler);
4277
4278         return 0;
4279 }
4280 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4281
4282 /**
4283  *      netdev_rx_handler_unregister - unregister receive handler
4284  *      @dev: device to unregister a handler from
4285  *
4286  *      Unregister a receive handler from a device.
4287  *
4288  *      The caller must hold the rtnl_mutex.
4289  */
4290 void netdev_rx_handler_unregister(struct net_device *dev)
4291 {
4292
4293         ASSERT_RTNL();
4294         RCU_INIT_POINTER(dev->rx_handler, NULL);
4295         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4296          * section has a guarantee to see a non NULL rx_handler_data
4297          * as well.
4298          */
4299         synchronize_net();
4300         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4301 }
4302 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4303
4304 /*
4305  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4306  * the special handling of PFMEMALLOC skbs.
4307  */
4308 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4309 {
4310         switch (skb->protocol) {
4311         case htons(ETH_P_ARP):
4312         case htons(ETH_P_IP):
4313         case htons(ETH_P_IPV6):
4314         case htons(ETH_P_8021Q):
4315         case htons(ETH_P_8021AD):
4316                 return true;
4317         default:
4318                 return false;
4319         }
4320 }
4321
4322 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4323                              int *ret, struct net_device *orig_dev)
4324 {
4325 #ifdef CONFIG_NETFILTER_INGRESS
4326         if (nf_hook_ingress_active(skb)) {
4327                 int ingress_retval;
4328
4329                 if (*pt_prev) {
4330                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4331                         *pt_prev = NULL;
4332                 }
4333
4334                 rcu_read_lock();
4335                 ingress_retval = nf_hook_ingress(skb);
4336                 rcu_read_unlock();
4337                 return ingress_retval;
4338         }
4339 #endif /* CONFIG_NETFILTER_INGRESS */
4340         return 0;
4341 }
4342
4343 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4344 {
4345         struct packet_type *ptype, *pt_prev;
4346         rx_handler_func_t *rx_handler;
4347         struct net_device *orig_dev;
4348         bool deliver_exact = false;
4349         int ret = NET_RX_DROP;
4350         __be16 type;
4351
4352         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4353
4354         trace_netif_receive_skb(skb);
4355
4356         orig_dev = skb->dev;
4357
4358         skb_reset_network_header(skb);
4359         if (!skb_transport_header_was_set(skb))
4360                 skb_reset_transport_header(skb);
4361         skb_reset_mac_len(skb);
4362
4363         pt_prev = NULL;
4364
4365 another_round:
4366         skb->skb_iif = skb->dev->ifindex;
4367
4368         __this_cpu_inc(softnet_data.processed);
4369
4370         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4371             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4372                 skb = skb_vlan_untag(skb);
4373                 if (unlikely(!skb))
4374                         goto out;
4375         }
4376
4377         if (skb_skip_tc_classify(skb))
4378                 goto skip_classify;
4379
4380         if (pfmemalloc)
4381                 goto skip_taps;
4382
4383         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4384                 if (pt_prev)
4385                         ret = deliver_skb(skb, pt_prev, orig_dev);
4386                 pt_prev = ptype;
4387         }
4388
4389         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4390                 if (pt_prev)
4391                         ret = deliver_skb(skb, pt_prev, orig_dev);
4392                 pt_prev = ptype;
4393         }
4394
4395 skip_taps:
4396 #ifdef CONFIG_NET_INGRESS
4397         if (static_key_false(&ingress_needed)) {
4398                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4399                 if (!skb)
4400                         goto out;
4401
4402                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4403                         goto out;
4404         }
4405 #endif
4406         skb_reset_tc(skb);
4407 skip_classify:
4408         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4409                 goto drop;
4410
4411         if (skb_vlan_tag_present(skb)) {
4412                 if (pt_prev) {
4413                         ret = deliver_skb(skb, pt_prev, orig_dev);
4414                         pt_prev = NULL;
4415                 }
4416                 if (vlan_do_receive(&skb))
4417                         goto another_round;
4418                 else if (unlikely(!skb))
4419                         goto out;
4420         }
4421
4422         rx_handler = rcu_dereference(skb->dev->rx_handler);
4423         if (rx_handler) {
4424                 if (pt_prev) {
4425                         ret = deliver_skb(skb, pt_prev, orig_dev);
4426                         pt_prev = NULL;
4427                 }
4428                 switch (rx_handler(&skb)) {
4429                 case RX_HANDLER_CONSUMED:
4430                         ret = NET_RX_SUCCESS;
4431                         goto out;
4432                 case RX_HANDLER_ANOTHER:
4433                         goto another_round;
4434                 case RX_HANDLER_EXACT:
4435                         deliver_exact = true;
4436                 case RX_HANDLER_PASS:
4437                         break;
4438                 default:
4439                         BUG();
4440                 }
4441         }
4442
4443         if (unlikely(skb_vlan_tag_present(skb))) {
4444                 if (skb_vlan_tag_get_id(skb))
4445                         skb->pkt_type = PACKET_OTHERHOST;
4446                 /* Note: we might in the future use prio bits
4447                  * and set skb->priority like in vlan_do_receive()
4448                  * For the time being, just ignore Priority Code Point
4449                  */
4450                 skb->vlan_tci = 0;
4451         }
4452
4453         type = skb->protocol;
4454
4455         /* deliver only exact match when indicated */
4456         if (likely(!deliver_exact)) {
4457                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4458                                        &ptype_base[ntohs(type) &
4459                                                    PTYPE_HASH_MASK]);
4460         }
4461
4462         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4463                                &orig_dev->ptype_specific);
4464
4465         if (unlikely(skb->dev != orig_dev)) {
4466                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4467                                        &skb->dev->ptype_specific);
4468         }
4469
4470         if (pt_prev) {
4471                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4472                         goto drop;
4473                 else
4474                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4475         } else {
4476 drop:
4477                 if (!deliver_exact)
4478                         atomic_long_inc(&skb->dev->rx_dropped);
4479                 else
4480                         atomic_long_inc(&skb->dev->rx_nohandler);
4481                 kfree_skb(skb);
4482                 /* Jamal, now you will not able to escape explaining
4483                  * me how you were going to use this. :-)
4484                  */
4485                 ret = NET_RX_DROP;
4486         }
4487
4488 out:
4489         return ret;
4490 }
4491
4492 static int __netif_receive_skb(struct sk_buff *skb)
4493 {
4494         int ret;
4495
4496         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4497                 unsigned int noreclaim_flag;
4498
4499                 /*
4500                  * PFMEMALLOC skbs are special, they should
4501                  * - be delivered to SOCK_MEMALLOC sockets only
4502                  * - stay away from userspace
4503                  * - have bounded memory usage
4504                  *
4505                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4506                  * context down to all allocation sites.
4507                  */
4508                 noreclaim_flag = memalloc_noreclaim_save();
4509                 ret = __netif_receive_skb_core(skb, true);
4510                 memalloc_noreclaim_restore(noreclaim_flag);
4511         } else
4512                 ret = __netif_receive_skb_core(skb, false);
4513
4514         return ret;
4515 }
4516
4517 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4518 {
4519         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4520         struct bpf_prog *new = xdp->prog;
4521         int ret = 0;
4522
4523         switch (xdp->command) {
4524         case XDP_SETUP_PROG:
4525                 rcu_assign_pointer(dev->xdp_prog, new);
4526                 if (old)
4527                         bpf_prog_put(old);
4528
4529                 if (old && !new) {
4530                         static_key_slow_dec(&generic_xdp_needed);
4531                 } else if (new && !old) {
4532                         static_key_slow_inc(&generic_xdp_needed);
4533                         dev_disable_lro(dev);
4534                 }
4535                 break;
4536
4537         case XDP_QUERY_PROG:
4538                 xdp->prog_attached = !!old;
4539                 xdp->prog_id = old ? old->aux->id : 0;
4540                 break;
4541
4542         default:
4543                 ret = -EINVAL;
4544                 break;
4545         }
4546
4547         return ret;
4548 }
4549
4550 static int netif_receive_skb_internal(struct sk_buff *skb)
4551 {
4552         int ret;
4553
4554         net_timestamp_check(netdev_tstamp_prequeue, skb);
4555
4556         if (skb_defer_rx_timestamp(skb))
4557                 return NET_RX_SUCCESS;
4558
4559         if (static_key_false(&generic_xdp_needed)) {
4560                 int ret;
4561
4562                 preempt_disable();
4563                 rcu_read_lock();
4564                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4565                 rcu_read_unlock();
4566                 preempt_enable();
4567
4568                 if (ret != XDP_PASS)
4569                         return NET_RX_DROP;
4570         }
4571
4572         rcu_read_lock();
4573 #ifdef CONFIG_RPS
4574         if (static_key_false(&rps_needed)) {
4575                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4576                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4577
4578                 if (cpu >= 0) {
4579                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4580                         rcu_read_unlock();
4581                         return ret;
4582                 }
4583         }
4584 #endif
4585         ret = __netif_receive_skb(skb);
4586         rcu_read_unlock();
4587         return ret;
4588 }
4589
4590 /**
4591  *      netif_receive_skb - process receive buffer from network
4592  *      @skb: buffer to process
4593  *
4594  *      netif_receive_skb() is the main receive data processing function.
4595  *      It always succeeds. The buffer may be dropped during processing
4596  *      for congestion control or by the protocol layers.
4597  *
4598  *      This function may only be called from softirq context and interrupts
4599  *      should be enabled.
4600  *
4601  *      Return values (usually ignored):
4602  *      NET_RX_SUCCESS: no congestion
4603  *      NET_RX_DROP: packet was dropped
4604  */
4605 int netif_receive_skb(struct sk_buff *skb)
4606 {
4607         trace_netif_receive_skb_entry(skb);
4608
4609         return netif_receive_skb_internal(skb);
4610 }
4611 EXPORT_SYMBOL(netif_receive_skb);
4612
4613 DEFINE_PER_CPU(struct work_struct, flush_works);
4614
4615 /* Network device is going away, flush any packets still pending */
4616 static void flush_backlog(struct work_struct *work)
4617 {
4618         struct sk_buff *skb, *tmp;
4619         struct softnet_data *sd;
4620
4621         local_bh_disable();
4622         sd = this_cpu_ptr(&softnet_data);
4623
4624         local_irq_disable();
4625         rps_lock(sd);
4626         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4627                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4628                         __skb_unlink(skb, &sd->input_pkt_queue);
4629                         dev_kfree_skb_irq(skb);
4630                         input_queue_head_incr(sd);
4631                 }
4632         }
4633         rps_unlock(sd);
4634         local_irq_enable();
4635
4636         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4637                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4638                         __skb_unlink(skb, &sd->process_queue);
4639                         kfree_skb(skb);
4640                         input_queue_head_incr(sd);
4641                 }
4642         }
4643         local_bh_enable();
4644 }
4645
4646 static void flush_all_backlogs(void)
4647 {
4648         unsigned int cpu;
4649
4650         get_online_cpus();
4651
4652         for_each_online_cpu(cpu)
4653                 queue_work_on(cpu, system_highpri_wq,
4654                               per_cpu_ptr(&flush_works, cpu));
4655
4656         for_each_online_cpu(cpu)
4657                 flush_work(per_cpu_ptr(&flush_works, cpu));
4658
4659         put_online_cpus();
4660 }
4661
4662 static int napi_gro_complete(struct sk_buff *skb)
4663 {
4664         struct packet_offload *ptype;
4665         __be16 type = skb->protocol;
4666         struct list_head *head = &offload_base;
4667         int err = -ENOENT;
4668
4669         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4670
4671         if (NAPI_GRO_CB(skb)->count == 1) {
4672                 skb_shinfo(skb)->gso_size = 0;
4673                 goto out;
4674         }
4675
4676         rcu_read_lock();
4677         list_for_each_entry_rcu(ptype, head, list) {
4678                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4679                         continue;
4680
4681                 err = ptype->callbacks.gro_complete(skb, 0);
4682                 break;
4683         }
4684         rcu_read_unlock();
4685
4686         if (err) {
4687                 WARN_ON(&ptype->list == head);
4688                 kfree_skb(skb);
4689                 return NET_RX_SUCCESS;
4690         }
4691
4692 out:
4693         return netif_receive_skb_internal(skb);
4694 }
4695
4696 /* napi->gro_list contains packets ordered by age.
4697  * youngest packets at the head of it.
4698  * Complete skbs in reverse order to reduce latencies.
4699  */
4700 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4701 {
4702         struct sk_buff *skb, *prev = NULL;
4703
4704         /* scan list and build reverse chain */
4705         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4706                 skb->prev = prev;
4707                 prev = skb;
4708         }
4709
4710         for (skb = prev; skb; skb = prev) {
4711                 skb->next = NULL;
4712
4713                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4714                         return;
4715
4716                 prev = skb->prev;
4717                 napi_gro_complete(skb);
4718                 napi->gro_count--;
4719         }
4720
4721         napi->gro_list = NULL;
4722 }
4723 EXPORT_SYMBOL(napi_gro_flush);
4724
4725 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4726 {
4727         struct sk_buff *p;
4728         unsigned int maclen = skb->dev->hard_header_len;
4729         u32 hash = skb_get_hash_raw(skb);
4730
4731         for (p = napi->gro_list; p; p = p->next) {
4732                 unsigned long diffs;
4733
4734                 NAPI_GRO_CB(p)->flush = 0;
4735
4736                 if (hash != skb_get_hash_raw(p)) {
4737                         NAPI_GRO_CB(p)->same_flow = 0;
4738                         continue;
4739                 }
4740
4741                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4742                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4743                 diffs |= skb_metadata_dst_cmp(p, skb);
4744                 if (maclen == ETH_HLEN)
4745                         diffs |= compare_ether_header(skb_mac_header(p),
4746                                                       skb_mac_header(skb));
4747                 else if (!diffs)
4748                         diffs = memcmp(skb_mac_header(p),
4749                                        skb_mac_header(skb),
4750                                        maclen);
4751                 NAPI_GRO_CB(p)->same_flow = !diffs;
4752         }
4753 }
4754
4755 static void skb_gro_reset_offset(struct sk_buff *skb)
4756 {
4757         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4758         const skb_frag_t *frag0 = &pinfo->frags[0];
4759
4760         NAPI_GRO_CB(skb)->data_offset = 0;
4761         NAPI_GRO_CB(skb)->frag0 = NULL;
4762         NAPI_GRO_CB(skb)->frag0_len = 0;
4763
4764         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4765             pinfo->nr_frags &&
4766             !PageHighMem(skb_frag_page(frag0)) &&
4767             (!NET_IP_ALIGN || !(skb_frag_off(frag0) & 3))) {
4768                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4769                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4770                                                     skb_frag_size(frag0),
4771                                                     skb->end - skb->tail);
4772         }
4773 }
4774
4775 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4776 {
4777         struct skb_shared_info *pinfo = skb_shinfo(skb);
4778
4779         BUG_ON(skb->end - skb->tail < grow);
4780
4781         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4782
4783         skb->data_len -= grow;
4784         skb->tail += grow;
4785
4786         pinfo->frags[0].page_offset += grow;
4787         skb_frag_size_sub(&pinfo->frags[0], grow);
4788
4789         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4790                 skb_frag_unref(skb, 0);
4791                 memmove(pinfo->frags, pinfo->frags + 1,
4792                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4793         }
4794 }
4795
4796 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4797 {
4798         struct sk_buff **pp = NULL;
4799         struct packet_offload *ptype;
4800         __be16 type = skb->protocol;
4801         struct list_head *head = &offload_base;
4802         int same_flow;
4803         enum gro_result ret;
4804         int grow;
4805
4806         if (netif_elide_gro(skb->dev))
4807                 goto normal;
4808
4809         gro_list_prepare(napi, skb);
4810
4811         rcu_read_lock();
4812         list_for_each_entry_rcu(ptype, head, list) {
4813                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4814                         continue;
4815
4816                 skb_set_network_header(skb, skb_gro_offset(skb));
4817                 skb_reset_mac_len(skb);
4818                 NAPI_GRO_CB(skb)->same_flow = 0;
4819                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4820                 NAPI_GRO_CB(skb)->free = 0;
4821                 NAPI_GRO_CB(skb)->encap_mark = 0;
4822                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4823                 NAPI_GRO_CB(skb)->is_fou = 0;
4824                 NAPI_GRO_CB(skb)->is_atomic = 1;
4825                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4826
4827                 /* Setup for GRO checksum validation */
4828                 switch (skb->ip_summed) {
4829                 case CHECKSUM_COMPLETE:
4830                         NAPI_GRO_CB(skb)->csum = skb->csum;
4831                         NAPI_GRO_CB(skb)->csum_valid = 1;
4832                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4833                         break;
4834                 case CHECKSUM_UNNECESSARY:
4835                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4836                         NAPI_GRO_CB(skb)->csum_valid = 0;
4837                         break;
4838                 default:
4839                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4840                         NAPI_GRO_CB(skb)->csum_valid = 0;
4841                 }
4842
4843                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4844                 break;
4845         }
4846         rcu_read_unlock();
4847
4848         if (&ptype->list == head)
4849                 goto normal;
4850
4851         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4852                 ret = GRO_CONSUMED;
4853                 goto ok;
4854         }
4855
4856         same_flow = NAPI_GRO_CB(skb)->same_flow;
4857         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4858
4859         if (pp) {
4860                 struct sk_buff *nskb = *pp;
4861
4862                 *pp = nskb->next;
4863                 nskb->next = NULL;
4864                 napi_gro_complete(nskb);
4865                 napi->gro_count--;
4866         }
4867
4868         if (same_flow)
4869                 goto ok;
4870
4871         if (NAPI_GRO_CB(skb)->flush)
4872                 goto normal;
4873
4874         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4875                 struct sk_buff *nskb = napi->gro_list;
4876
4877                 /* locate the end of the list to select the 'oldest' flow */
4878                 while (nskb->next) {
4879                         pp = &nskb->next;
4880                         nskb = *pp;
4881                 }
4882                 *pp = NULL;
4883                 nskb->next = NULL;
4884                 napi_gro_complete(nskb);
4885         } else {
4886                 napi->gro_count++;
4887         }
4888         NAPI_GRO_CB(skb)->count = 1;
4889         NAPI_GRO_CB(skb)->age = jiffies;
4890         NAPI_GRO_CB(skb)->last = skb;
4891         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4892         skb->next = napi->gro_list;
4893         napi->gro_list = skb;
4894         ret = GRO_HELD;
4895
4896 pull:
4897         grow = skb_gro_offset(skb) - skb_headlen(skb);
4898         if (grow > 0)
4899                 gro_pull_from_frag0(skb, grow);
4900 ok:
4901         return ret;
4902
4903 normal:
4904         ret = GRO_NORMAL;
4905         goto pull;
4906 }
4907
4908 struct packet_offload *gro_find_receive_by_type(__be16 type)
4909 {
4910         struct list_head *offload_head = &offload_base;
4911         struct packet_offload *ptype;
4912
4913         list_for_each_entry_rcu(ptype, offload_head, list) {
4914                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4915                         continue;
4916                 return ptype;
4917         }
4918         return NULL;
4919 }
4920 EXPORT_SYMBOL(gro_find_receive_by_type);
4921
4922 struct packet_offload *gro_find_complete_by_type(__be16 type)
4923 {
4924         struct list_head *offload_head = &offload_base;
4925         struct packet_offload *ptype;
4926
4927         list_for_each_entry_rcu(ptype, offload_head, list) {
4928                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4929                         continue;
4930                 return ptype;
4931         }
4932         return NULL;
4933 }
4934 EXPORT_SYMBOL(gro_find_complete_by_type);
4935
4936 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4937 {
4938         skb_dst_drop(skb);
4939         secpath_reset(skb);
4940         kmem_cache_free(skbuff_head_cache, skb);
4941 }
4942
4943 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4944 {
4945         switch (ret) {
4946         case GRO_NORMAL:
4947                 if (netif_receive_skb_internal(skb))
4948                         ret = GRO_DROP;
4949                 break;
4950
4951         case GRO_DROP:
4952                 kfree_skb(skb);
4953                 break;
4954
4955         case GRO_MERGED_FREE:
4956                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4957                         napi_skb_free_stolen_head(skb);
4958                 else
4959                         __kfree_skb(skb);
4960                 break;
4961
4962         case GRO_HELD:
4963         case GRO_MERGED:
4964         case GRO_CONSUMED:
4965                 break;
4966         }
4967
4968         return ret;
4969 }
4970
4971 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4972 {
4973         skb_mark_napi_id(skb, napi);
4974         trace_napi_gro_receive_entry(skb);
4975
4976         skb_gro_reset_offset(skb);
4977
4978         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4979 }
4980 EXPORT_SYMBOL(napi_gro_receive);
4981
4982 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4983 {
4984         if (unlikely(skb->pfmemalloc)) {
4985                 consume_skb(skb);
4986                 return;
4987         }
4988         __skb_pull(skb, skb_headlen(skb));
4989         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4990         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4991         skb->vlan_tci = 0;
4992         skb->dev = napi->dev;
4993         skb->skb_iif = 0;
4994
4995         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
4996         skb->pkt_type = PACKET_HOST;
4997
4998         skb->encapsulation = 0;
4999         skb_shinfo(skb)->gso_type = 0;
5000         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5001         secpath_reset(skb);
5002
5003         napi->skb = skb;
5004 }
5005
5006 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5007 {
5008         struct sk_buff *skb = napi->skb;
5009
5010         if (!skb) {
5011                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5012                 if (skb) {
5013                         napi->skb = skb;
5014                         skb_mark_napi_id(skb, napi);
5015                 }
5016         }
5017         return skb;
5018 }
5019 EXPORT_SYMBOL(napi_get_frags);
5020
5021 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5022                                       struct sk_buff *skb,
5023                                       gro_result_t ret)
5024 {
5025         switch (ret) {
5026         case GRO_NORMAL:
5027         case GRO_HELD:
5028                 __skb_push(skb, ETH_HLEN);
5029                 skb->protocol = eth_type_trans(skb, skb->dev);
5030                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5031                         ret = GRO_DROP;
5032                 break;
5033
5034         case GRO_DROP:
5035                 napi_reuse_skb(napi, skb);
5036                 break;
5037
5038         case GRO_MERGED_FREE:
5039                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5040                         napi_skb_free_stolen_head(skb);
5041                 else
5042                         napi_reuse_skb(napi, skb);
5043                 break;
5044
5045         case GRO_MERGED:
5046         case GRO_CONSUMED:
5047                 break;
5048         }
5049
5050         return ret;
5051 }
5052
5053 /* Upper GRO stack assumes network header starts at gro_offset=0
5054  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5055  * We copy ethernet header into skb->data to have a common layout.
5056  */
5057 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5058 {
5059         struct sk_buff *skb = napi->skb;
5060         const struct ethhdr *eth;
5061         unsigned int hlen = sizeof(*eth);
5062
5063         napi->skb = NULL;
5064
5065         skb_reset_mac_header(skb);
5066         skb_gro_reset_offset(skb);
5067
5068         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5069                 eth = skb_gro_header_slow(skb, hlen, 0);
5070                 if (unlikely(!eth)) {
5071                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5072                                              __func__, napi->dev->name);
5073                         napi_reuse_skb(napi, skb);
5074                         return NULL;
5075                 }
5076         } else {
5077                 eth = (const struct ethhdr *)skb->data;
5078                 gro_pull_from_frag0(skb, hlen);
5079                 NAPI_GRO_CB(skb)->frag0 += hlen;
5080                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5081         }
5082         __skb_pull(skb, hlen);
5083
5084         /*
5085          * This works because the only protocols we care about don't require
5086          * special handling.
5087          * We'll fix it up properly in napi_frags_finish()
5088          */
5089         skb->protocol = eth->h_proto;
5090
5091         return skb;
5092 }
5093
5094 gro_result_t napi_gro_frags(struct napi_struct *napi)
5095 {
5096         struct sk_buff *skb = napi_frags_skb(napi);
5097
5098         if (!skb)
5099                 return GRO_DROP;
5100
5101         trace_napi_gro_frags_entry(skb);
5102
5103         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5104 }
5105 EXPORT_SYMBOL(napi_gro_frags);
5106
5107 /* Compute the checksum from gro_offset and return the folded value
5108  * after adding in any pseudo checksum.
5109  */
5110 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5111 {
5112         __wsum wsum;
5113         __sum16 sum;
5114
5115         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5116
5117         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5118         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5119         if (likely(!sum)) {
5120                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5121                     !skb->csum_complete_sw)
5122                         netdev_rx_csum_fault(skb->dev);
5123         }
5124
5125         NAPI_GRO_CB(skb)->csum = wsum;
5126         NAPI_GRO_CB(skb)->csum_valid = 1;
5127
5128         return sum;
5129 }
5130 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5131
5132 static void net_rps_send_ipi(struct softnet_data *remsd)
5133 {
5134 #ifdef CONFIG_RPS
5135         while (remsd) {
5136                 struct softnet_data *next = remsd->rps_ipi_next;
5137
5138                 if (cpu_online(remsd->cpu))
5139                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5140                 remsd = next;
5141         }
5142 #endif
5143 }
5144
5145 /*
5146  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5147  * Note: called with local irq disabled, but exits with local irq enabled.
5148  */
5149 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5150 {
5151 #ifdef CONFIG_RPS
5152         struct softnet_data *remsd = sd->rps_ipi_list;
5153
5154         if (remsd) {
5155                 sd->rps_ipi_list = NULL;
5156
5157                 local_irq_enable();
5158
5159                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5160                 net_rps_send_ipi(remsd);
5161         } else
5162 #endif
5163                 local_irq_enable();
5164 }
5165
5166 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5167 {
5168 #ifdef CONFIG_RPS
5169         return sd->rps_ipi_list != NULL;
5170 #else
5171         return false;
5172 #endif
5173 }
5174
5175 static int process_backlog(struct napi_struct *napi, int quota)
5176 {
5177         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5178         bool again = true;
5179         int work = 0;
5180
5181         /* Check if we have pending ipi, its better to send them now,
5182          * not waiting net_rx_action() end.
5183          */
5184         if (sd_has_rps_ipi_waiting(sd)) {
5185                 local_irq_disable();
5186                 net_rps_action_and_irq_enable(sd);
5187         }
5188
5189         napi->weight = dev_rx_weight;
5190         while (again) {
5191                 struct sk_buff *skb;
5192
5193                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5194                         rcu_read_lock();
5195                         __netif_receive_skb(skb);
5196                         rcu_read_unlock();
5197                         input_queue_head_incr(sd);
5198                         if (++work >= quota)
5199                                 return work;
5200
5201                 }
5202
5203                 local_irq_disable();
5204                 rps_lock(sd);
5205                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5206                         /*
5207                          * Inline a custom version of __napi_complete().
5208                          * only current cpu owns and manipulates this napi,
5209                          * and NAPI_STATE_SCHED is the only possible flag set
5210                          * on backlog.
5211                          * We can use a plain write instead of clear_bit(),
5212                          * and we dont need an smp_mb() memory barrier.
5213                          */
5214                         napi->state = 0;
5215                         again = false;
5216                 } else {
5217                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5218                                                    &sd->process_queue);
5219                 }
5220                 rps_unlock(sd);
5221                 local_irq_enable();
5222         }
5223
5224         return work;
5225 }
5226
5227 /**
5228  * __napi_schedule - schedule for receive
5229  * @n: entry to schedule
5230  *
5231  * The entry's receive function will be scheduled to run.
5232  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5233  */
5234 void __napi_schedule(struct napi_struct *n)
5235 {
5236         unsigned long flags;
5237
5238         local_irq_save(flags);
5239         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5240         local_irq_restore(flags);
5241 }
5242 EXPORT_SYMBOL(__napi_schedule);
5243
5244 /**
5245  *      napi_schedule_prep - check if napi can be scheduled
5246  *      @n: napi context
5247  *
5248  * Test if NAPI routine is already running, and if not mark
5249  * it as running.  This is used as a condition variable
5250  * insure only one NAPI poll instance runs.  We also make
5251  * sure there is no pending NAPI disable.
5252  */
5253 bool napi_schedule_prep(struct napi_struct *n)
5254 {
5255         unsigned long val, new;
5256
5257         do {
5258                 val = READ_ONCE(n->state);
5259                 if (unlikely(val & NAPIF_STATE_DISABLE))
5260                         return false;
5261                 new = val | NAPIF_STATE_SCHED;
5262
5263                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5264                  * This was suggested by Alexander Duyck, as compiler
5265                  * emits better code than :
5266                  * if (val & NAPIF_STATE_SCHED)
5267                  *     new |= NAPIF_STATE_MISSED;
5268                  */
5269                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5270                                                    NAPIF_STATE_MISSED;
5271         } while (cmpxchg(&n->state, val, new) != val);
5272
5273         return !(val & NAPIF_STATE_SCHED);
5274 }
5275 EXPORT_SYMBOL(napi_schedule_prep);
5276
5277 /**
5278  * __napi_schedule_irqoff - schedule for receive
5279  * @n: entry to schedule
5280  *
5281  * Variant of __napi_schedule() assuming hard irqs are masked.
5282  *
5283  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5284  * because the interrupt disabled assumption might not be true
5285  * due to force-threaded interrupts and spinlock substitution.
5286  */
5287 void __napi_schedule_irqoff(struct napi_struct *n)
5288 {
5289         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5290                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5291         else
5292                 __napi_schedule(n);
5293 }
5294 EXPORT_SYMBOL(__napi_schedule_irqoff);
5295
5296 bool napi_complete_done(struct napi_struct *n, int work_done)
5297 {
5298         unsigned long flags, val, new;
5299
5300         /*
5301          * 1) Don't let napi dequeue from the cpu poll list
5302          *    just in case its running on a different cpu.
5303          * 2) If we are busy polling, do nothing here, we have
5304          *    the guarantee we will be called later.
5305          */
5306         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5307                                  NAPIF_STATE_IN_BUSY_POLL)))
5308                 return false;
5309
5310         if (n->gro_list) {
5311                 unsigned long timeout = 0;
5312
5313                 if (work_done)
5314                         timeout = n->dev->gro_flush_timeout;
5315
5316                 /* When the NAPI instance uses a timeout and keeps postponing
5317                  * it, we need to bound somehow the time packets are kept in
5318                  * the GRO layer
5319                  */
5320                 napi_gro_flush(n, !!timeout);
5321                 if (timeout)
5322                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5323                                       HRTIMER_MODE_REL_PINNED);
5324         }
5325         if (unlikely(!list_empty(&n->poll_list))) {
5326                 /* If n->poll_list is not empty, we need to mask irqs */
5327                 local_irq_save(flags);
5328                 list_del_init(&n->poll_list);
5329                 local_irq_restore(flags);
5330         }
5331
5332         do {
5333                 val = READ_ONCE(n->state);
5334
5335                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5336
5337                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5338
5339                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5340                  * because we will call napi->poll() one more time.
5341                  * This C code was suggested by Alexander Duyck to help gcc.
5342                  */
5343                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5344                                                     NAPIF_STATE_SCHED;
5345         } while (cmpxchg(&n->state, val, new) != val);
5346
5347         if (unlikely(val & NAPIF_STATE_MISSED)) {
5348                 __napi_schedule(n);
5349                 return false;
5350         }
5351
5352         return true;
5353 }
5354 EXPORT_SYMBOL(napi_complete_done);
5355
5356 /* must be called under rcu_read_lock(), as we dont take a reference */
5357 static struct napi_struct *napi_by_id(unsigned int napi_id)
5358 {
5359         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5360         struct napi_struct *napi;
5361
5362         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5363                 if (napi->napi_id == napi_id)
5364                         return napi;
5365
5366         return NULL;
5367 }
5368
5369 #if defined(CONFIG_NET_RX_BUSY_POLL)
5370
5371 #define BUSY_POLL_BUDGET 8
5372
5373 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5374 {
5375         int rc;
5376
5377         /* Busy polling means there is a high chance device driver hard irq
5378          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5379          * set in napi_schedule_prep().
5380          * Since we are about to call napi->poll() once more, we can safely
5381          * clear NAPI_STATE_MISSED.
5382          *
5383          * Note: x86 could use a single "lock and ..." instruction
5384          * to perform these two clear_bit()
5385          */
5386         clear_bit(NAPI_STATE_MISSED, &napi->state);
5387         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5388
5389         local_bh_disable();
5390
5391         /* All we really want here is to re-enable device interrupts.
5392          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5393          */
5394         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5395         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5396         netpoll_poll_unlock(have_poll_lock);
5397         if (rc == BUSY_POLL_BUDGET)
5398                 __napi_schedule(napi);
5399         local_bh_enable();
5400 }
5401
5402 void napi_busy_loop(unsigned int napi_id,
5403                     bool (*loop_end)(void *, unsigned long),
5404                     void *loop_end_arg)
5405 {
5406         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5407         int (*napi_poll)(struct napi_struct *napi, int budget);
5408         void *have_poll_lock = NULL;
5409         struct napi_struct *napi;
5410
5411 restart:
5412         napi_poll = NULL;
5413
5414         rcu_read_lock();
5415
5416         napi = napi_by_id(napi_id);
5417         if (!napi)
5418                 goto out;
5419
5420         preempt_disable();
5421         for (;;) {
5422                 int work = 0;
5423
5424                 local_bh_disable();
5425                 if (!napi_poll) {
5426                         unsigned long val = READ_ONCE(napi->state);
5427
5428                         /* If multiple threads are competing for this napi,
5429                          * we avoid dirtying napi->state as much as we can.
5430                          */
5431                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5432                                    NAPIF_STATE_IN_BUSY_POLL))
5433                                 goto count;
5434                         if (cmpxchg(&napi->state, val,
5435                                     val | NAPIF_STATE_IN_BUSY_POLL |
5436                                           NAPIF_STATE_SCHED) != val)
5437                                 goto count;
5438                         have_poll_lock = netpoll_poll_lock(napi);
5439                         napi_poll = napi->poll;
5440                 }
5441                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5442                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5443 count:
5444                 if (work > 0)
5445                         __NET_ADD_STATS(dev_net(napi->dev),
5446                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5447                 local_bh_enable();
5448
5449                 if (!loop_end || loop_end(loop_end_arg, start_time))
5450                         break;
5451
5452                 if (unlikely(need_resched())) {
5453                         if (napi_poll)
5454                                 busy_poll_stop(napi, have_poll_lock);
5455                         preempt_enable();
5456                         rcu_read_unlock();
5457                         cond_resched();
5458                         if (loop_end(loop_end_arg, start_time))
5459                                 return;
5460                         goto restart;
5461                 }
5462                 cpu_relax();
5463         }
5464         if (napi_poll)
5465                 busy_poll_stop(napi, have_poll_lock);
5466         preempt_enable();
5467 out:
5468         rcu_read_unlock();
5469 }
5470 EXPORT_SYMBOL(napi_busy_loop);
5471
5472 #endif /* CONFIG_NET_RX_BUSY_POLL */
5473
5474 static void napi_hash_add(struct napi_struct *napi)
5475 {
5476         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5477             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5478                 return;
5479
5480         spin_lock(&napi_hash_lock);
5481
5482         /* 0..NR_CPUS range is reserved for sender_cpu use */
5483         do {
5484                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5485                         napi_gen_id = MIN_NAPI_ID;
5486         } while (napi_by_id(napi_gen_id));
5487         napi->napi_id = napi_gen_id;
5488
5489         hlist_add_head_rcu(&napi->napi_hash_node,
5490                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5491
5492         spin_unlock(&napi_hash_lock);
5493 }
5494
5495 /* Warning : caller is responsible to make sure rcu grace period
5496  * is respected before freeing memory containing @napi
5497  */
5498 bool napi_hash_del(struct napi_struct *napi)
5499 {
5500         bool rcu_sync_needed = false;
5501
5502         spin_lock(&napi_hash_lock);
5503
5504         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5505                 rcu_sync_needed = true;
5506                 hlist_del_rcu(&napi->napi_hash_node);
5507         }
5508         spin_unlock(&napi_hash_lock);
5509         return rcu_sync_needed;
5510 }
5511 EXPORT_SYMBOL_GPL(napi_hash_del);
5512
5513 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5514 {
5515         struct napi_struct *napi;
5516
5517         napi = container_of(timer, struct napi_struct, timer);
5518
5519         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5520          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5521          */
5522         if (napi->gro_list && !napi_disable_pending(napi) &&
5523             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5524                 __napi_schedule_irqoff(napi);
5525
5526         return HRTIMER_NORESTART;
5527 }
5528
5529 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5530                     int (*poll)(struct napi_struct *, int), int weight)
5531 {
5532         INIT_LIST_HEAD(&napi->poll_list);
5533         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5534         napi->timer.function = napi_watchdog;
5535         napi->gro_count = 0;
5536         napi->gro_list = NULL;
5537         napi->skb = NULL;
5538         napi->poll = poll;
5539         if (weight > NAPI_POLL_WEIGHT)
5540                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5541                             weight, dev->name);
5542         napi->weight = weight;
5543         napi->dev = dev;
5544 #ifdef CONFIG_NETPOLL
5545         napi->poll_owner = -1;
5546 #endif
5547         set_bit(NAPI_STATE_SCHED, &napi->state);
5548         set_bit(NAPI_STATE_NPSVC, &napi->state);
5549         list_add_rcu(&napi->dev_list, &dev->napi_list);
5550         napi_hash_add(napi);
5551 }
5552 EXPORT_SYMBOL(netif_napi_add);
5553
5554 void napi_disable(struct napi_struct *n)
5555 {
5556         might_sleep();
5557         set_bit(NAPI_STATE_DISABLE, &n->state);
5558
5559         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5560                 msleep(1);
5561         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5562                 msleep(1);
5563
5564         hrtimer_cancel(&n->timer);
5565
5566         clear_bit(NAPI_STATE_DISABLE, &n->state);
5567 }
5568 EXPORT_SYMBOL(napi_disable);
5569
5570 /* Must be called in process context */
5571 void netif_napi_del(struct napi_struct *napi)
5572 {
5573         might_sleep();
5574         if (napi_hash_del(napi))
5575                 synchronize_net();
5576         list_del_init(&napi->dev_list);
5577         napi_free_frags(napi);
5578
5579         kfree_skb_list(napi->gro_list);
5580         napi->gro_list = NULL;
5581         napi->gro_count = 0;
5582 }
5583 EXPORT_SYMBOL(netif_napi_del);
5584
5585 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5586 {
5587         void *have;
5588         int work, weight;
5589
5590         list_del_init(&n->poll_list);
5591
5592         have = netpoll_poll_lock(n);
5593
5594         weight = n->weight;
5595
5596         /* This NAPI_STATE_SCHED test is for avoiding a race
5597          * with netpoll's poll_napi().  Only the entity which
5598          * obtains the lock and sees NAPI_STATE_SCHED set will
5599          * actually make the ->poll() call.  Therefore we avoid
5600          * accidentally calling ->poll() when NAPI is not scheduled.
5601          */
5602         work = 0;
5603         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5604                 work = n->poll(n, weight);
5605                 trace_napi_poll(n, work, weight);
5606         }
5607
5608         WARN_ON_ONCE(work > weight);
5609
5610         if (likely(work < weight))
5611                 goto out_unlock;
5612
5613         /* Drivers must not modify the NAPI state if they
5614          * consume the entire weight.  In such cases this code
5615          * still "owns" the NAPI instance and therefore can
5616          * move the instance around on the list at-will.
5617          */
5618         if (unlikely(napi_disable_pending(n))) {
5619                 napi_complete(n);
5620                 goto out_unlock;
5621         }
5622
5623         if (n->gro_list) {
5624                 /* flush too old packets
5625                  * If HZ < 1000, flush all packets.
5626                  */
5627                 napi_gro_flush(n, HZ >= 1000);
5628         }
5629
5630         /* Some drivers may have called napi_schedule
5631          * prior to exhausting their budget.
5632          */
5633         if (unlikely(!list_empty(&n->poll_list))) {
5634                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5635                              n->dev ? n->dev->name : "backlog");
5636                 goto out_unlock;
5637         }
5638
5639         list_add_tail(&n->poll_list, repoll);
5640
5641 out_unlock:
5642         netpoll_poll_unlock(have);
5643
5644         return work;
5645 }
5646
5647 static __latent_entropy void net_rx_action(struct softirq_action *h)
5648 {
5649         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5650         unsigned long time_limit = jiffies +
5651                 usecs_to_jiffies(netdev_budget_usecs);
5652         int budget = netdev_budget;
5653         LIST_HEAD(list);
5654         LIST_HEAD(repoll);
5655
5656         local_irq_disable();
5657         list_splice_init(&sd->poll_list, &list);
5658         local_irq_enable();
5659
5660         for (;;) {
5661                 struct napi_struct *n;
5662
5663                 if (list_empty(&list)) {
5664                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5665                                 goto out;
5666                         break;
5667                 }
5668
5669                 n = list_first_entry(&list, struct napi_struct, poll_list);
5670                 budget -= napi_poll(n, &repoll);
5671
5672                 /* If softirq window is exhausted then punt.
5673                  * Allow this to run for 2 jiffies since which will allow
5674                  * an average latency of 1.5/HZ.
5675                  */
5676                 if (unlikely(budget <= 0 ||
5677                              time_after_eq(jiffies, time_limit))) {
5678                         sd->time_squeeze++;
5679                         break;
5680                 }
5681         }
5682
5683         local_irq_disable();
5684
5685         list_splice_tail_init(&sd->poll_list, &list);
5686         list_splice_tail(&repoll, &list);
5687         list_splice(&list, &sd->poll_list);
5688         if (!list_empty(&sd->poll_list))
5689                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5690
5691         net_rps_action_and_irq_enable(sd);
5692 out:
5693         __kfree_skb_flush();
5694 }
5695
5696 struct netdev_adjacent {
5697         struct net_device *dev;
5698
5699         /* upper master flag, there can only be one master device per list */
5700         bool master;
5701
5702         /* counter for the number of times this device was added to us */
5703         u16 ref_nr;
5704
5705         /* private field for the users */
5706         void *private;
5707
5708         struct list_head list;
5709         struct rcu_head rcu;
5710 };
5711
5712 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5713                                                  struct list_head *adj_list)
5714 {
5715         struct netdev_adjacent *adj;
5716
5717         list_for_each_entry(adj, adj_list, list) {
5718                 if (adj->dev == adj_dev)
5719                         return adj;
5720         }
5721         return NULL;
5722 }
5723
5724 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5725 {
5726         struct net_device *dev = data;
5727
5728         return upper_dev == dev;
5729 }
5730
5731 /**
5732  * netdev_has_upper_dev - Check if device is linked to an upper device
5733  * @dev: device
5734  * @upper_dev: upper device to check
5735  *
5736  * Find out if a device is linked to specified upper device and return true
5737  * in case it is. Note that this checks only immediate upper device,
5738  * not through a complete stack of devices. The caller must hold the RTNL lock.
5739  */
5740 bool netdev_has_upper_dev(struct net_device *dev,
5741                           struct net_device *upper_dev)
5742 {
5743         ASSERT_RTNL();
5744
5745         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5746                                              upper_dev);
5747 }
5748 EXPORT_SYMBOL(netdev_has_upper_dev);
5749
5750 /**
5751  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5752  * @dev: device
5753  * @upper_dev: upper device to check
5754  *
5755  * Find out if a device is linked to specified upper device and return true
5756  * in case it is. Note that this checks the entire upper device chain.
5757  * The caller must hold rcu lock.
5758  */
5759
5760 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5761                                   struct net_device *upper_dev)
5762 {
5763         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5764                                                upper_dev);
5765 }
5766 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5767
5768 /**
5769  * netdev_has_any_upper_dev - Check if device is linked to some device
5770  * @dev: device
5771  *
5772  * Find out if a device is linked to an upper device and return true in case
5773  * it is. The caller must hold the RTNL lock.
5774  */
5775 bool netdev_has_any_upper_dev(struct net_device *dev)
5776 {
5777         ASSERT_RTNL();
5778
5779         return !list_empty(&dev->adj_list.upper);
5780 }
5781 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5782
5783 /**
5784  * netdev_master_upper_dev_get - Get master upper device
5785  * @dev: device
5786  *
5787  * Find a master upper device and return pointer to it or NULL in case
5788  * it's not there. The caller must hold the RTNL lock.
5789  */
5790 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5791 {
5792         struct netdev_adjacent *upper;
5793
5794         ASSERT_RTNL();
5795
5796         if (list_empty(&dev->adj_list.upper))
5797                 return NULL;
5798
5799         upper = list_first_entry(&dev->adj_list.upper,
5800                                  struct netdev_adjacent, list);
5801         if (likely(upper->master))
5802                 return upper->dev;
5803         return NULL;
5804 }
5805 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5806
5807 /**
5808  * netdev_has_any_lower_dev - Check if device is linked to some device
5809  * @dev: device
5810  *
5811  * Find out if a device is linked to a lower device and return true in case
5812  * it is. The caller must hold the RTNL lock.
5813  */
5814 static bool netdev_has_any_lower_dev(struct net_device *dev)
5815 {
5816         ASSERT_RTNL();
5817
5818         return !list_empty(&dev->adj_list.lower);
5819 }
5820
5821 void *netdev_adjacent_get_private(struct list_head *adj_list)
5822 {
5823         struct netdev_adjacent *adj;
5824
5825         adj = list_entry(adj_list, struct netdev_adjacent, list);
5826
5827         return adj->private;
5828 }
5829 EXPORT_SYMBOL(netdev_adjacent_get_private);
5830
5831 /**
5832  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5833  * @dev: device
5834  * @iter: list_head ** of the current position
5835  *
5836  * Gets the next device from the dev's upper list, starting from iter
5837  * position. The caller must hold RCU read lock.
5838  */
5839 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5840                                                  struct list_head **iter)
5841 {
5842         struct netdev_adjacent *upper;
5843
5844         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5845
5846         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5847
5848         if (&upper->list == &dev->adj_list.upper)
5849                 return NULL;
5850
5851         *iter = &upper->list;
5852
5853         return upper->dev;
5854 }
5855 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5856
5857 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5858                                                     struct list_head **iter)
5859 {
5860         struct netdev_adjacent *upper;
5861
5862         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5863
5864         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5865
5866         if (&upper->list == &dev->adj_list.upper)
5867                 return NULL;
5868
5869         *iter = &upper->list;
5870
5871         return upper->dev;
5872 }
5873
5874 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5875                                   int (*fn)(struct net_device *dev,
5876                                             void *data),
5877                                   void *data)
5878 {
5879         struct net_device *udev;
5880         struct list_head *iter;
5881         int ret;
5882
5883         for (iter = &dev->adj_list.upper,
5884              udev = netdev_next_upper_dev_rcu(dev, &iter);
5885              udev;
5886              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5887                 /* first is the upper device itself */
5888                 ret = fn(udev, data);
5889                 if (ret)
5890                         return ret;
5891
5892                 /* then look at all of its upper devices */
5893                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5894                 if (ret)
5895                         return ret;
5896         }
5897
5898         return 0;
5899 }
5900 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5901
5902 /**
5903  * netdev_lower_get_next_private - Get the next ->private from the
5904  *                                 lower neighbour list
5905  * @dev: device
5906  * @iter: list_head ** of the current position
5907  *
5908  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5909  * list, starting from iter position. The caller must hold either hold the
5910  * RTNL lock or its own locking that guarantees that the neighbour lower
5911  * list will remain unchanged.
5912  */
5913 void *netdev_lower_get_next_private(struct net_device *dev,
5914                                     struct list_head **iter)
5915 {
5916         struct netdev_adjacent *lower;
5917
5918         lower = list_entry(*iter, struct netdev_adjacent, list);
5919
5920         if (&lower->list == &dev->adj_list.lower)
5921                 return NULL;
5922
5923         *iter = lower->list.next;
5924
5925         return lower->private;
5926 }
5927 EXPORT_SYMBOL(netdev_lower_get_next_private);
5928
5929 /**
5930  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5931  *                                     lower neighbour list, RCU
5932  *                                     variant
5933  * @dev: device
5934  * @iter: list_head ** of the current position
5935  *
5936  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5937  * list, starting from iter position. The caller must hold RCU read lock.
5938  */
5939 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5940                                         struct list_head **iter)
5941 {
5942         struct netdev_adjacent *lower;
5943
5944         WARN_ON_ONCE(!rcu_read_lock_held());
5945
5946         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5947
5948         if (&lower->list == &dev->adj_list.lower)
5949                 return NULL;
5950
5951         *iter = &lower->list;
5952
5953         return lower->private;
5954 }
5955 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5956
5957 /**
5958  * netdev_lower_get_next - Get the next device from the lower neighbour
5959  *                         list
5960  * @dev: device
5961  * @iter: list_head ** of the current position
5962  *
5963  * Gets the next netdev_adjacent from the dev's lower neighbour
5964  * list, starting from iter position. The caller must hold RTNL lock or
5965  * its own locking that guarantees that the neighbour lower
5966  * list will remain unchanged.
5967  */
5968 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5969 {
5970         struct netdev_adjacent *lower;
5971
5972         lower = list_entry(*iter, struct netdev_adjacent, list);
5973
5974         if (&lower->list == &dev->adj_list.lower)
5975                 return NULL;
5976
5977         *iter = lower->list.next;
5978
5979         return lower->dev;
5980 }
5981 EXPORT_SYMBOL(netdev_lower_get_next);
5982
5983 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5984                                                 struct list_head **iter)
5985 {
5986         struct netdev_adjacent *lower;
5987
5988         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5989
5990         if (&lower->list == &dev->adj_list.lower)
5991                 return NULL;
5992
5993         *iter = &lower->list;
5994
5995         return lower->dev;
5996 }
5997
5998 int netdev_walk_all_lower_dev(struct net_device *dev,
5999                               int (*fn)(struct net_device *dev,
6000                                         void *data),
6001                               void *data)
6002 {
6003         struct net_device *ldev;
6004         struct list_head *iter;
6005         int ret;
6006
6007         for (iter = &dev->adj_list.lower,
6008              ldev = netdev_next_lower_dev(dev, &iter);
6009              ldev;
6010              ldev = netdev_next_lower_dev(dev, &iter)) {
6011                 /* first is the lower device itself */
6012                 ret = fn(ldev, data);
6013                 if (ret)
6014                         return ret;
6015
6016                 /* then look at all of its lower devices */
6017                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6018                 if (ret)
6019                         return ret;
6020         }
6021
6022         return 0;
6023 }
6024 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6025
6026 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6027                                                     struct list_head **iter)
6028 {
6029         struct netdev_adjacent *lower;
6030
6031         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6032         if (&lower->list == &dev->adj_list.lower)
6033                 return NULL;
6034
6035         *iter = &lower->list;
6036
6037         return lower->dev;
6038 }
6039
6040 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6041                                   int (*fn)(struct net_device *dev,
6042                                             void *data),
6043                                   void *data)
6044 {
6045         struct net_device *ldev;
6046         struct list_head *iter;
6047         int ret;
6048
6049         for (iter = &dev->adj_list.lower,
6050              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6051              ldev;
6052              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6053                 /* first is the lower device itself */
6054                 ret = fn(ldev, data);
6055                 if (ret)
6056                         return ret;
6057
6058                 /* then look at all of its lower devices */
6059                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6060                 if (ret)
6061                         return ret;
6062         }
6063
6064         return 0;
6065 }
6066 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6067
6068 /**
6069  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6070  *                                     lower neighbour list, RCU
6071  *                                     variant
6072  * @dev: device
6073  *
6074  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6075  * list. The caller must hold RCU read lock.
6076  */
6077 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6078 {
6079         struct netdev_adjacent *lower;
6080
6081         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6082                         struct netdev_adjacent, list);
6083         if (lower)
6084                 return lower->private;
6085         return NULL;
6086 }
6087 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6088
6089 /**
6090  * netdev_master_upper_dev_get_rcu - Get master upper device
6091  * @dev: device
6092  *
6093  * Find a master upper device and return pointer to it or NULL in case
6094  * it's not there. The caller must hold the RCU read lock.
6095  */
6096 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6097 {
6098         struct netdev_adjacent *upper;
6099
6100         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6101                                        struct netdev_adjacent, list);
6102         if (upper && likely(upper->master))
6103                 return upper->dev;
6104         return NULL;
6105 }
6106 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6107
6108 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6109                               struct net_device *adj_dev,
6110                               struct list_head *dev_list)
6111 {
6112         char linkname[IFNAMSIZ+7];
6113
6114         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6115                 "upper_%s" : "lower_%s", adj_dev->name);
6116         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6117                                  linkname);
6118 }
6119 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6120                                char *name,
6121                                struct list_head *dev_list)
6122 {
6123         char linkname[IFNAMSIZ+7];
6124
6125         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6126                 "upper_%s" : "lower_%s", name);
6127         sysfs_remove_link(&(dev->dev.kobj), linkname);
6128 }
6129
6130 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6131                                                  struct net_device *adj_dev,
6132                                                  struct list_head *dev_list)
6133 {
6134         return (dev_list == &dev->adj_list.upper ||
6135                 dev_list == &dev->adj_list.lower) &&
6136                 net_eq(dev_net(dev), dev_net(adj_dev));
6137 }
6138
6139 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6140                                         struct net_device *adj_dev,
6141                                         struct list_head *dev_list,
6142                                         void *private, bool master)
6143 {
6144         struct netdev_adjacent *adj;
6145         int ret;
6146
6147         adj = __netdev_find_adj(adj_dev, dev_list);
6148
6149         if (adj) {
6150                 adj->ref_nr += 1;
6151                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6152                          dev->name, adj_dev->name, adj->ref_nr);
6153
6154                 return 0;
6155         }
6156
6157         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6158         if (!adj)
6159                 return -ENOMEM;
6160
6161         adj->dev = adj_dev;
6162         adj->master = master;
6163         adj->ref_nr = 1;
6164         adj->private = private;
6165         dev_hold(adj_dev);
6166
6167         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6168                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6169
6170         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6171                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6172                 if (ret)
6173                         goto free_adj;
6174         }
6175
6176         /* Ensure that master link is always the first item in list. */
6177         if (master) {
6178                 ret = sysfs_create_link(&(dev->dev.kobj),
6179                                         &(adj_dev->dev.kobj), "master");
6180                 if (ret)
6181                         goto remove_symlinks;
6182
6183                 list_add_rcu(&adj->list, dev_list);
6184         } else {
6185                 list_add_tail_rcu(&adj->list, dev_list);
6186         }
6187
6188         return 0;
6189
6190 remove_symlinks:
6191         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6192                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6193 free_adj:
6194         kfree(adj);
6195         dev_put(adj_dev);
6196
6197         return ret;
6198 }
6199
6200 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6201                                          struct net_device *adj_dev,
6202                                          u16 ref_nr,
6203                                          struct list_head *dev_list)
6204 {
6205         struct netdev_adjacent *adj;
6206
6207         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6208                  dev->name, adj_dev->name, ref_nr);
6209
6210         adj = __netdev_find_adj(adj_dev, dev_list);
6211
6212         if (!adj) {
6213                 pr_err("Adjacency does not exist for device %s from %s\n",
6214                        dev->name, adj_dev->name);
6215                 WARN_ON(1);
6216                 return;
6217         }
6218
6219         if (adj->ref_nr > ref_nr) {
6220                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6221                          dev->name, adj_dev->name, ref_nr,
6222                          adj->ref_nr - ref_nr);
6223                 adj->ref_nr -= ref_nr;
6224                 return;
6225         }
6226
6227         if (adj->master)
6228                 sysfs_remove_link(&(dev->dev.kobj), "master");
6229
6230         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6231                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6232
6233         list_del_rcu(&adj->list);
6234         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6235                  adj_dev->name, dev->name, adj_dev->name);
6236         dev_put(adj_dev);
6237         kfree_rcu(adj, rcu);
6238 }
6239
6240 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6241                                             struct net_device *upper_dev,
6242                                             struct list_head *up_list,
6243                                             struct list_head *down_list,
6244                                             void *private, bool master)
6245 {
6246         int ret;
6247
6248         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6249                                            private, master);
6250         if (ret)
6251                 return ret;
6252
6253         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6254                                            private, false);
6255         if (ret) {
6256                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6257                 return ret;
6258         }
6259
6260         return 0;
6261 }
6262
6263 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6264                                                struct net_device *upper_dev,
6265                                                u16 ref_nr,
6266                                                struct list_head *up_list,
6267                                                struct list_head *down_list)
6268 {
6269         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6270         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6271 }
6272
6273 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6274                                                 struct net_device *upper_dev,
6275                                                 void *private, bool master)
6276 {
6277         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6278                                                 &dev->adj_list.upper,
6279                                                 &upper_dev->adj_list.lower,
6280                                                 private, master);
6281 }
6282
6283 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6284                                                    struct net_device *upper_dev)
6285 {
6286         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6287                                            &dev->adj_list.upper,
6288                                            &upper_dev->adj_list.lower);
6289 }
6290
6291 static int __netdev_upper_dev_link(struct net_device *dev,
6292                                    struct net_device *upper_dev, bool master,
6293                                    void *upper_priv, void *upper_info)
6294 {
6295         struct netdev_notifier_changeupper_info changeupper_info;
6296         int ret = 0;
6297
6298         ASSERT_RTNL();
6299
6300         if (dev == upper_dev)
6301                 return -EBUSY;
6302
6303         /* To prevent loops, check if dev is not upper device to upper_dev. */
6304         if (netdev_has_upper_dev(upper_dev, dev))
6305                 return -EBUSY;
6306
6307         if (netdev_has_upper_dev(dev, upper_dev))
6308                 return -EEXIST;
6309
6310         if (master && netdev_master_upper_dev_get(dev))
6311                 return -EBUSY;
6312
6313         changeupper_info.upper_dev = upper_dev;
6314         changeupper_info.master = master;
6315         changeupper_info.linking = true;
6316         changeupper_info.upper_info = upper_info;
6317
6318         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6319                                             &changeupper_info.info);
6320         ret = notifier_to_errno(ret);
6321         if (ret)
6322                 return ret;
6323
6324         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6325                                                    master);
6326         if (ret)
6327                 return ret;
6328
6329         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6330                                             &changeupper_info.info);
6331         ret = notifier_to_errno(ret);
6332         if (ret)
6333                 goto rollback;
6334
6335         return 0;
6336
6337 rollback:
6338         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6339
6340         return ret;
6341 }
6342
6343 /**
6344  * netdev_upper_dev_link - Add a link to the upper device
6345  * @dev: device
6346  * @upper_dev: new upper device
6347  *
6348  * Adds a link to device which is upper to this one. The caller must hold
6349  * the RTNL lock. On a failure a negative errno code is returned.
6350  * On success the reference counts are adjusted and the function
6351  * returns zero.
6352  */
6353 int netdev_upper_dev_link(struct net_device *dev,
6354                           struct net_device *upper_dev)
6355 {
6356         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6357 }
6358 EXPORT_SYMBOL(netdev_upper_dev_link);
6359
6360 /**
6361  * netdev_master_upper_dev_link - Add a master link to the upper device
6362  * @dev: device
6363  * @upper_dev: new upper device
6364  * @upper_priv: upper device private
6365  * @upper_info: upper info to be passed down via notifier
6366  *
6367  * Adds a link to device which is upper to this one. In this case, only
6368  * one master upper device can be linked, although other non-master devices
6369  * might be linked as well. The caller must hold the RTNL lock.
6370  * On a failure a negative errno code is returned. On success the reference
6371  * counts are adjusted and the function returns zero.
6372  */
6373 int netdev_master_upper_dev_link(struct net_device *dev,
6374                                  struct net_device *upper_dev,
6375                                  void *upper_priv, void *upper_info)
6376 {
6377         return __netdev_upper_dev_link(dev, upper_dev, true,
6378                                        upper_priv, upper_info);
6379 }
6380 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6381
6382 /**
6383  * netdev_upper_dev_unlink - Removes a link to upper device
6384  * @dev: device
6385  * @upper_dev: new upper device
6386  *
6387  * Removes a link to device which is upper to this one. The caller must hold
6388  * the RTNL lock.
6389  */
6390 void netdev_upper_dev_unlink(struct net_device *dev,
6391                              struct net_device *upper_dev)
6392 {
6393         struct netdev_notifier_changeupper_info changeupper_info;
6394
6395         ASSERT_RTNL();
6396
6397         changeupper_info.upper_dev = upper_dev;
6398         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6399         changeupper_info.linking = false;
6400
6401         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6402                                       &changeupper_info.info);
6403
6404         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6405
6406         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6407                                       &changeupper_info.info);
6408 }
6409 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6410
6411 /**
6412  * netdev_bonding_info_change - Dispatch event about slave change
6413  * @dev: device
6414  * @bonding_info: info to dispatch
6415  *
6416  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6417  * The caller must hold the RTNL lock.
6418  */
6419 void netdev_bonding_info_change(struct net_device *dev,
6420                                 struct netdev_bonding_info *bonding_info)
6421 {
6422         struct netdev_notifier_bonding_info     info;
6423
6424         memcpy(&info.bonding_info, bonding_info,
6425                sizeof(struct netdev_bonding_info));
6426         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6427                                       &info.info);
6428 }
6429 EXPORT_SYMBOL(netdev_bonding_info_change);
6430
6431 static void netdev_adjacent_add_links(struct net_device *dev)
6432 {
6433         struct netdev_adjacent *iter;
6434
6435         struct net *net = dev_net(dev);
6436
6437         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6438                 if (!net_eq(net, dev_net(iter->dev)))
6439                         continue;
6440                 netdev_adjacent_sysfs_add(iter->dev, dev,
6441                                           &iter->dev->adj_list.lower);
6442                 netdev_adjacent_sysfs_add(dev, iter->dev,
6443                                           &dev->adj_list.upper);
6444         }
6445
6446         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6447                 if (!net_eq(net, dev_net(iter->dev)))
6448                         continue;
6449                 netdev_adjacent_sysfs_add(iter->dev, dev,
6450                                           &iter->dev->adj_list.upper);
6451                 netdev_adjacent_sysfs_add(dev, iter->dev,
6452                                           &dev->adj_list.lower);
6453         }
6454 }
6455
6456 static void netdev_adjacent_del_links(struct net_device *dev)
6457 {
6458         struct netdev_adjacent *iter;
6459
6460         struct net *net = dev_net(dev);
6461
6462         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6463                 if (!net_eq(net, dev_net(iter->dev)))
6464                         continue;
6465                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6466                                           &iter->dev->adj_list.lower);
6467                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6468                                           &dev->adj_list.upper);
6469         }
6470
6471         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6472                 if (!net_eq(net, dev_net(iter->dev)))
6473                         continue;
6474                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6475                                           &iter->dev->adj_list.upper);
6476                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6477                                           &dev->adj_list.lower);
6478         }
6479 }
6480
6481 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6482 {
6483         struct netdev_adjacent *iter;
6484
6485         struct net *net = dev_net(dev);
6486
6487         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6488                 if (!net_eq(net, dev_net(iter->dev)))
6489                         continue;
6490                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6491                                           &iter->dev->adj_list.lower);
6492                 netdev_adjacent_sysfs_add(iter->dev, dev,
6493                                           &iter->dev->adj_list.lower);
6494         }
6495
6496         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6497                 if (!net_eq(net, dev_net(iter->dev)))
6498                         continue;
6499                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6500                                           &iter->dev->adj_list.upper);
6501                 netdev_adjacent_sysfs_add(iter->dev, dev,
6502                                           &iter->dev->adj_list.upper);
6503         }
6504 }
6505
6506 void *netdev_lower_dev_get_private(struct net_device *dev,
6507                                    struct net_device *lower_dev)
6508 {
6509         struct netdev_adjacent *lower;
6510
6511         if (!lower_dev)
6512                 return NULL;
6513         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6514         if (!lower)
6515                 return NULL;
6516
6517         return lower->private;
6518 }
6519 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6520
6521
6522 int dev_get_nest_level(struct net_device *dev)
6523 {
6524         struct net_device *lower = NULL;
6525         struct list_head *iter;
6526         int max_nest = -1;
6527         int nest;
6528
6529         ASSERT_RTNL();
6530
6531         netdev_for_each_lower_dev(dev, lower, iter) {
6532                 nest = dev_get_nest_level(lower);
6533                 if (max_nest < nest)
6534                         max_nest = nest;
6535         }
6536
6537         return max_nest + 1;
6538 }
6539 EXPORT_SYMBOL(dev_get_nest_level);
6540
6541 /**
6542  * netdev_lower_change - Dispatch event about lower device state change
6543  * @lower_dev: device
6544  * @lower_state_info: state to dispatch
6545  *
6546  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6547  * The caller must hold the RTNL lock.
6548  */
6549 void netdev_lower_state_changed(struct net_device *lower_dev,
6550                                 void *lower_state_info)
6551 {
6552         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6553
6554         ASSERT_RTNL();
6555         changelowerstate_info.lower_state_info = lower_state_info;
6556         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6557                                       &changelowerstate_info.info);
6558 }
6559 EXPORT_SYMBOL(netdev_lower_state_changed);
6560
6561 static void dev_change_rx_flags(struct net_device *dev, int flags)
6562 {
6563         const struct net_device_ops *ops = dev->netdev_ops;
6564
6565         if (ops->ndo_change_rx_flags)
6566                 ops->ndo_change_rx_flags(dev, flags);
6567 }
6568
6569 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6570 {
6571         unsigned int old_flags = dev->flags;
6572         kuid_t uid;
6573         kgid_t gid;
6574
6575         ASSERT_RTNL();
6576
6577         dev->flags |= IFF_PROMISC;
6578         dev->promiscuity += inc;
6579         if (dev->promiscuity == 0) {
6580                 /*
6581                  * Avoid overflow.
6582                  * If inc causes overflow, untouch promisc and return error.
6583                  */
6584                 if (inc < 0)
6585                         dev->flags &= ~IFF_PROMISC;
6586                 else {
6587                         dev->promiscuity -= inc;
6588                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6589                                 dev->name);
6590                         return -EOVERFLOW;
6591                 }
6592         }
6593         if (dev->flags != old_flags) {
6594                 pr_info("device %s %s promiscuous mode\n",
6595                         dev->name,
6596                         dev->flags & IFF_PROMISC ? "entered" : "left");
6597                 if (audit_enabled) {
6598                         current_uid_gid(&uid, &gid);
6599                         audit_log(current->audit_context, GFP_ATOMIC,
6600                                 AUDIT_ANOM_PROMISCUOUS,
6601                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6602                                 dev->name, (dev->flags & IFF_PROMISC),
6603                                 (old_flags & IFF_PROMISC),
6604                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6605                                 from_kuid(&init_user_ns, uid),
6606                                 from_kgid(&init_user_ns, gid),
6607                                 audit_get_sessionid(current));
6608                 }
6609
6610                 dev_change_rx_flags(dev, IFF_PROMISC);
6611         }
6612         if (notify)
6613                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6614         return 0;
6615 }
6616
6617 /**
6618  *      dev_set_promiscuity     - update promiscuity count on a device
6619  *      @dev: device
6620  *      @inc: modifier
6621  *
6622  *      Add or remove promiscuity from a device. While the count in the device
6623  *      remains above zero the interface remains promiscuous. Once it hits zero
6624  *      the device reverts back to normal filtering operation. A negative inc
6625  *      value is used to drop promiscuity on the device.
6626  *      Return 0 if successful or a negative errno code on error.
6627  */
6628 int dev_set_promiscuity(struct net_device *dev, int inc)
6629 {
6630         unsigned int old_flags = dev->flags;
6631         int err;
6632
6633         err = __dev_set_promiscuity(dev, inc, true);
6634         if (err < 0)
6635                 return err;
6636         if (dev->flags != old_flags)
6637                 dev_set_rx_mode(dev);
6638         return err;
6639 }
6640 EXPORT_SYMBOL(dev_set_promiscuity);
6641
6642 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6643 {
6644         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6645
6646         ASSERT_RTNL();
6647
6648         dev->flags |= IFF_ALLMULTI;
6649         dev->allmulti += inc;
6650         if (dev->allmulti == 0) {
6651                 /*
6652                  * Avoid overflow.
6653                  * If inc causes overflow, untouch allmulti and return error.
6654                  */
6655                 if (inc < 0)
6656                         dev->flags &= ~IFF_ALLMULTI;
6657                 else {
6658                         dev->allmulti -= inc;
6659                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6660                                 dev->name);
6661                         return -EOVERFLOW;
6662                 }
6663         }
6664         if (dev->flags ^ old_flags) {
6665                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6666                 dev_set_rx_mode(dev);
6667                 if (notify)
6668                         __dev_notify_flags(dev, old_flags,
6669                                            dev->gflags ^ old_gflags);
6670         }
6671         return 0;
6672 }
6673
6674 /**
6675  *      dev_set_allmulti        - update allmulti count on a device
6676  *      @dev: device
6677  *      @inc: modifier
6678  *
6679  *      Add or remove reception of all multicast frames to a device. While the
6680  *      count in the device remains above zero the interface remains listening
6681  *      to all interfaces. Once it hits zero the device reverts back to normal
6682  *      filtering operation. A negative @inc value is used to drop the counter
6683  *      when releasing a resource needing all multicasts.
6684  *      Return 0 if successful or a negative errno code on error.
6685  */
6686
6687 int dev_set_allmulti(struct net_device *dev, int inc)
6688 {
6689         return __dev_set_allmulti(dev, inc, true);
6690 }
6691 EXPORT_SYMBOL(dev_set_allmulti);
6692
6693 /*
6694  *      Upload unicast and multicast address lists to device and
6695  *      configure RX filtering. When the device doesn't support unicast
6696  *      filtering it is put in promiscuous mode while unicast addresses
6697  *      are present.
6698  */
6699 void __dev_set_rx_mode(struct net_device *dev)
6700 {
6701         const struct net_device_ops *ops = dev->netdev_ops;
6702
6703         /* dev_open will call this function so the list will stay sane. */
6704         if (!(dev->flags&IFF_UP))
6705                 return;
6706
6707         if (!netif_device_present(dev))
6708                 return;
6709
6710         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6711                 /* Unicast addresses changes may only happen under the rtnl,
6712                  * therefore calling __dev_set_promiscuity here is safe.
6713                  */
6714                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6715                         __dev_set_promiscuity(dev, 1, false);
6716                         dev->uc_promisc = true;
6717                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6718                         __dev_set_promiscuity(dev, -1, false);
6719                         dev->uc_promisc = false;
6720                 }
6721         }
6722
6723         if (ops->ndo_set_rx_mode)
6724                 ops->ndo_set_rx_mode(dev);
6725 }
6726
6727 void dev_set_rx_mode(struct net_device *dev)
6728 {
6729         netif_addr_lock_bh(dev);
6730         __dev_set_rx_mode(dev);
6731         netif_addr_unlock_bh(dev);
6732 }
6733
6734 /**
6735  *      dev_get_flags - get flags reported to userspace
6736  *      @dev: device
6737  *
6738  *      Get the combination of flag bits exported through APIs to userspace.
6739  */
6740 unsigned int dev_get_flags(const struct net_device *dev)
6741 {
6742         unsigned int flags;
6743
6744         flags = (dev->flags & ~(IFF_PROMISC |
6745                                 IFF_ALLMULTI |
6746                                 IFF_RUNNING |
6747                                 IFF_LOWER_UP |
6748                                 IFF_DORMANT)) |
6749                 (dev->gflags & (IFF_PROMISC |
6750                                 IFF_ALLMULTI));
6751
6752         if (netif_running(dev)) {
6753                 if (netif_oper_up(dev))
6754                         flags |= IFF_RUNNING;
6755                 if (netif_carrier_ok(dev))
6756                         flags |= IFF_LOWER_UP;
6757                 if (netif_dormant(dev))
6758                         flags |= IFF_DORMANT;
6759         }
6760
6761         return flags;
6762 }
6763 EXPORT_SYMBOL(dev_get_flags);
6764
6765 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6766 {
6767         unsigned int old_flags = dev->flags;
6768         int ret;
6769
6770         ASSERT_RTNL();
6771
6772         /*
6773          *      Set the flags on our device.
6774          */
6775
6776         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6777                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6778                                IFF_AUTOMEDIA)) |
6779                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6780                                     IFF_ALLMULTI));
6781
6782         /*
6783          *      Load in the correct multicast list now the flags have changed.
6784          */
6785
6786         if ((old_flags ^ flags) & IFF_MULTICAST)
6787                 dev_change_rx_flags(dev, IFF_MULTICAST);
6788
6789         dev_set_rx_mode(dev);
6790
6791         /*
6792          *      Have we downed the interface. We handle IFF_UP ourselves
6793          *      according to user attempts to set it, rather than blindly
6794          *      setting it.
6795          */
6796
6797         ret = 0;
6798         if ((old_flags ^ flags) & IFF_UP) {
6799                 if (old_flags & IFF_UP)
6800                         __dev_close(dev);
6801                 else
6802                         ret = __dev_open(dev);
6803         }
6804
6805         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6806                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6807                 unsigned int old_flags = dev->flags;
6808
6809                 dev->gflags ^= IFF_PROMISC;
6810
6811                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6812                         if (dev->flags != old_flags)
6813                                 dev_set_rx_mode(dev);
6814         }
6815
6816         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6817          * is important. Some (broken) drivers set IFF_PROMISC, when
6818          * IFF_ALLMULTI is requested not asking us and not reporting.
6819          */
6820         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6821                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6822
6823                 dev->gflags ^= IFF_ALLMULTI;
6824                 __dev_set_allmulti(dev, inc, false);
6825         }
6826
6827         return ret;
6828 }
6829
6830 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6831                         unsigned int gchanges)
6832 {
6833         unsigned int changes = dev->flags ^ old_flags;
6834
6835         if (gchanges)
6836                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6837
6838         if (changes & IFF_UP) {
6839                 if (dev->flags & IFF_UP)
6840                         call_netdevice_notifiers(NETDEV_UP, dev);
6841                 else
6842                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6843         }
6844
6845         if (dev->flags & IFF_UP &&
6846             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6847                 struct netdev_notifier_change_info change_info;
6848
6849                 change_info.flags_changed = changes;
6850                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6851                                               &change_info.info);
6852         }
6853 }
6854
6855 /**
6856  *      dev_change_flags - change device settings
6857  *      @dev: device
6858  *      @flags: device state flags
6859  *
6860  *      Change settings on device based state flags. The flags are
6861  *      in the userspace exported format.
6862  */
6863 int dev_change_flags(struct net_device *dev, unsigned int flags)
6864 {
6865         int ret;
6866         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6867
6868         ret = __dev_change_flags(dev, flags);
6869         if (ret < 0)
6870                 return ret;
6871
6872         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6873         __dev_notify_flags(dev, old_flags, changes);
6874         return ret;
6875 }
6876 EXPORT_SYMBOL(dev_change_flags);
6877
6878 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6879 {
6880         const struct net_device_ops *ops = dev->netdev_ops;
6881
6882         if (ops->ndo_change_mtu)
6883                 return ops->ndo_change_mtu(dev, new_mtu);
6884
6885         /* Pairs with all the lockless reads of dev->mtu in the stack */
6886         WRITE_ONCE(dev->mtu, new_mtu);
6887         return 0;
6888 }
6889 EXPORT_SYMBOL(__dev_set_mtu);
6890
6891 /**
6892  *      dev_set_mtu - Change maximum transfer unit
6893  *      @dev: device
6894  *      @new_mtu: new transfer unit
6895  *
6896  *      Change the maximum transfer size of the network device.
6897  */
6898 int dev_set_mtu(struct net_device *dev, int new_mtu)
6899 {
6900         int err, orig_mtu;
6901
6902         if (new_mtu == dev->mtu)
6903                 return 0;
6904
6905         err = dev_validate_mtu(dev, new_mtu);
6906         if (err)
6907                 return err;
6908
6909         if (!netif_device_present(dev))
6910                 return -ENODEV;
6911
6912         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6913         err = notifier_to_errno(err);
6914         if (err)
6915                 return err;
6916
6917         orig_mtu = dev->mtu;
6918         err = __dev_set_mtu(dev, new_mtu);
6919
6920         if (!err) {
6921                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
6922                                                    orig_mtu);
6923                 err = notifier_to_errno(err);
6924                 if (err) {
6925                         /* setting mtu back and notifying everyone again,
6926                          * so that they have a chance to revert changes.
6927                          */
6928                         __dev_set_mtu(dev, orig_mtu);
6929                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
6930                                                      new_mtu);
6931                 }
6932         }
6933         return err;
6934 }
6935 EXPORT_SYMBOL(dev_set_mtu);
6936
6937 /**
6938  *      dev_set_group - Change group this device belongs to
6939  *      @dev: device
6940  *      @new_group: group this device should belong to
6941  */
6942 void dev_set_group(struct net_device *dev, int new_group)
6943 {
6944         dev->group = new_group;
6945 }
6946 EXPORT_SYMBOL(dev_set_group);
6947
6948 /**
6949  *      dev_set_mac_address - Change Media Access Control Address
6950  *      @dev: device
6951  *      @sa: new address
6952  *
6953  *      Change the hardware (MAC) address of the device
6954  */
6955 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6956 {
6957         const struct net_device_ops *ops = dev->netdev_ops;
6958         int err;
6959
6960         if (!ops->ndo_set_mac_address)
6961                 return -EOPNOTSUPP;
6962         if (sa->sa_family != dev->type)
6963                 return -EINVAL;
6964         if (!netif_device_present(dev))
6965                 return -ENODEV;
6966         err = ops->ndo_set_mac_address(dev, sa);
6967         if (err)
6968                 return err;
6969         dev->addr_assign_type = NET_ADDR_SET;
6970         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6971         add_device_randomness(dev->dev_addr, dev->addr_len);
6972         return 0;
6973 }
6974 EXPORT_SYMBOL(dev_set_mac_address);
6975
6976 /**
6977  *      dev_change_carrier - Change device carrier
6978  *      @dev: device
6979  *      @new_carrier: new value
6980  *
6981  *      Change device carrier
6982  */
6983 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6984 {
6985         const struct net_device_ops *ops = dev->netdev_ops;
6986
6987         if (!ops->ndo_change_carrier)
6988                 return -EOPNOTSUPP;
6989         if (!netif_device_present(dev))
6990                 return -ENODEV;
6991         return ops->ndo_change_carrier(dev, new_carrier);
6992 }
6993 EXPORT_SYMBOL(dev_change_carrier);
6994
6995 /**
6996  *      dev_get_phys_port_id - Get device physical port ID
6997  *      @dev: device
6998  *      @ppid: port ID
6999  *
7000  *      Get device physical port ID
7001  */
7002 int dev_get_phys_port_id(struct net_device *dev,
7003                          struct netdev_phys_item_id *ppid)
7004 {
7005         const struct net_device_ops *ops = dev->netdev_ops;
7006
7007         if (!ops->ndo_get_phys_port_id)
7008                 return -EOPNOTSUPP;
7009         return ops->ndo_get_phys_port_id(dev, ppid);
7010 }
7011 EXPORT_SYMBOL(dev_get_phys_port_id);
7012
7013 /**
7014  *      dev_get_phys_port_name - Get device physical port name
7015  *      @dev: device
7016  *      @name: port name
7017  *      @len: limit of bytes to copy to name
7018  *
7019  *      Get device physical port name
7020  */
7021 int dev_get_phys_port_name(struct net_device *dev,
7022                            char *name, size_t len)
7023 {
7024         const struct net_device_ops *ops = dev->netdev_ops;
7025
7026         if (!ops->ndo_get_phys_port_name)
7027                 return -EOPNOTSUPP;
7028         return ops->ndo_get_phys_port_name(dev, name, len);
7029 }
7030 EXPORT_SYMBOL(dev_get_phys_port_name);
7031
7032 /**
7033  *      dev_change_proto_down - update protocol port state information
7034  *      @dev: device
7035  *      @proto_down: new value
7036  *
7037  *      This info can be used by switch drivers to set the phys state of the
7038  *      port.
7039  */
7040 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7041 {
7042         const struct net_device_ops *ops = dev->netdev_ops;
7043
7044         if (!ops->ndo_change_proto_down)
7045                 return -EOPNOTSUPP;
7046         if (!netif_device_present(dev))
7047                 return -ENODEV;
7048         return ops->ndo_change_proto_down(dev, proto_down);
7049 }
7050 EXPORT_SYMBOL(dev_change_proto_down);
7051
7052 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
7053 {
7054         struct netdev_xdp xdp;
7055
7056         memset(&xdp, 0, sizeof(xdp));
7057         xdp.command = XDP_QUERY_PROG;
7058
7059         /* Query must always succeed. */
7060         WARN_ON(xdp_op(dev, &xdp) < 0);
7061         if (prog_id)
7062                 *prog_id = xdp.prog_id;
7063
7064         return xdp.prog_attached;
7065 }
7066
7067 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
7068                            struct netlink_ext_ack *extack, u32 flags,
7069                            struct bpf_prog *prog)
7070 {
7071         struct netdev_xdp xdp;
7072
7073         memset(&xdp, 0, sizeof(xdp));
7074         if (flags & XDP_FLAGS_HW_MODE)
7075                 xdp.command = XDP_SETUP_PROG_HW;
7076         else
7077                 xdp.command = XDP_SETUP_PROG;
7078         xdp.extack = extack;
7079         xdp.flags = flags;
7080         xdp.prog = prog;
7081
7082         return xdp_op(dev, &xdp);
7083 }
7084
7085 /**
7086  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7087  *      @dev: device
7088  *      @extack: netlink extended ack
7089  *      @fd: new program fd or negative value to clear
7090  *      @flags: xdp-related flags
7091  *
7092  *      Set or clear a bpf program for a device
7093  */
7094 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7095                       int fd, u32 flags)
7096 {
7097         const struct net_device_ops *ops = dev->netdev_ops;
7098         struct bpf_prog *prog = NULL;
7099         xdp_op_t xdp_op, xdp_chk;
7100         int err;
7101
7102         ASSERT_RTNL();
7103
7104         xdp_op = xdp_chk = ops->ndo_xdp;
7105         if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7106                 return -EOPNOTSUPP;
7107         if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7108                 xdp_op = generic_xdp_install;
7109         if (xdp_op == xdp_chk)
7110                 xdp_chk = generic_xdp_install;
7111
7112         if (fd >= 0) {
7113                 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7114                         return -EEXIST;
7115                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7116                     __dev_xdp_attached(dev, xdp_op, NULL))
7117                         return -EBUSY;
7118
7119                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7120                 if (IS_ERR(prog))
7121                         return PTR_ERR(prog);
7122         }
7123
7124         err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7125         if (err < 0 && prog)
7126                 bpf_prog_put(prog);
7127
7128         return err;
7129 }
7130
7131 /**
7132  *      dev_new_index   -       allocate an ifindex
7133  *      @net: the applicable net namespace
7134  *
7135  *      Returns a suitable unique value for a new device interface
7136  *      number.  The caller must hold the rtnl semaphore or the
7137  *      dev_base_lock to be sure it remains unique.
7138  */
7139 static int dev_new_index(struct net *net)
7140 {
7141         int ifindex = net->ifindex;
7142
7143         for (;;) {
7144                 if (++ifindex <= 0)
7145                         ifindex = 1;
7146                 if (!__dev_get_by_index(net, ifindex))
7147                         return net->ifindex = ifindex;
7148         }
7149 }
7150
7151 /* Delayed registration/unregisteration */
7152 static LIST_HEAD(net_todo_list);
7153 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7154
7155 static void net_set_todo(struct net_device *dev)
7156 {
7157         list_add_tail(&dev->todo_list, &net_todo_list);
7158         dev_net(dev)->dev_unreg_count++;
7159 }
7160
7161 static void rollback_registered_many(struct list_head *head)
7162 {
7163         struct net_device *dev, *tmp;
7164         LIST_HEAD(close_head);
7165
7166         BUG_ON(dev_boot_phase);
7167         ASSERT_RTNL();
7168
7169         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7170                 /* Some devices call without registering
7171                  * for initialization unwind. Remove those
7172                  * devices and proceed with the remaining.
7173                  */
7174                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7175                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7176                                  dev->name, dev);
7177
7178                         WARN_ON(1);
7179                         list_del(&dev->unreg_list);
7180                         continue;
7181                 }
7182                 dev->dismantle = true;
7183                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7184         }
7185
7186         /* If device is running, close it first. */
7187         list_for_each_entry(dev, head, unreg_list)
7188                 list_add_tail(&dev->close_list, &close_head);
7189         dev_close_many(&close_head, true);
7190
7191         list_for_each_entry(dev, head, unreg_list) {
7192                 /* And unlink it from device chain. */
7193                 unlist_netdevice(dev);
7194
7195                 dev->reg_state = NETREG_UNREGISTERING;
7196         }
7197         flush_all_backlogs();
7198
7199         synchronize_net();
7200
7201         list_for_each_entry(dev, head, unreg_list) {
7202                 struct sk_buff *skb = NULL;
7203
7204                 /* Shutdown queueing discipline. */
7205                 dev_shutdown(dev);
7206
7207
7208                 /* Notify protocols, that we are about to destroy
7209                  * this device. They should clean all the things.
7210                  */
7211                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7212
7213                 if (!dev->rtnl_link_ops ||
7214                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7215                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7216                                                      GFP_KERNEL);
7217
7218                 /*
7219                  *      Flush the unicast and multicast chains
7220                  */
7221                 dev_uc_flush(dev);
7222                 dev_mc_flush(dev);
7223
7224                 if (dev->netdev_ops->ndo_uninit)
7225                         dev->netdev_ops->ndo_uninit(dev);
7226
7227                 if (skb)
7228                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7229
7230                 /* Notifier chain MUST detach us all upper devices. */
7231                 WARN_ON(netdev_has_any_upper_dev(dev));
7232                 WARN_ON(netdev_has_any_lower_dev(dev));
7233
7234                 /* Remove entries from kobject tree */
7235                 netdev_unregister_kobject(dev);
7236 #ifdef CONFIG_XPS
7237                 /* Remove XPS queueing entries */
7238                 netif_reset_xps_queues_gt(dev, 0);
7239 #endif
7240         }
7241
7242         synchronize_net();
7243
7244         list_for_each_entry(dev, head, unreg_list)
7245                 dev_put(dev);
7246 }
7247
7248 static void rollback_registered(struct net_device *dev)
7249 {
7250         LIST_HEAD(single);
7251
7252         list_add(&dev->unreg_list, &single);
7253         rollback_registered_many(&single);
7254         list_del(&single);
7255 }
7256
7257 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7258         struct net_device *upper, netdev_features_t features)
7259 {
7260         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7261         netdev_features_t feature;
7262         int feature_bit;
7263
7264         for_each_netdev_feature(upper_disables, feature_bit) {
7265                 feature = __NETIF_F_BIT(feature_bit);
7266                 if (!(upper->wanted_features & feature)
7267                     && (features & feature)) {
7268                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7269                                    &feature, upper->name);
7270                         features &= ~feature;
7271                 }
7272         }
7273
7274         return features;
7275 }
7276
7277 static void netdev_sync_lower_features(struct net_device *upper,
7278         struct net_device *lower, netdev_features_t features)
7279 {
7280         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7281         netdev_features_t feature;
7282         int feature_bit;
7283
7284         for_each_netdev_feature(upper_disables, feature_bit) {
7285                 feature = __NETIF_F_BIT(feature_bit);
7286                 if (!(features & feature) && (lower->features & feature)) {
7287                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7288                                    &feature, lower->name);
7289                         lower->wanted_features &= ~feature;
7290                         __netdev_update_features(lower);
7291
7292                         if (unlikely(lower->features & feature))
7293                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7294                                             &feature, lower->name);
7295                         else
7296                                 netdev_features_change(lower);
7297                 }
7298         }
7299 }
7300
7301 static netdev_features_t netdev_fix_features(struct net_device *dev,
7302         netdev_features_t features)
7303 {
7304         /* Fix illegal checksum combinations */
7305         if ((features & NETIF_F_HW_CSUM) &&
7306             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7307                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7308                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7309         }
7310
7311         /* TSO requires that SG is present as well. */
7312         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7313                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7314                 features &= ~NETIF_F_ALL_TSO;
7315         }
7316
7317         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7318                                         !(features & NETIF_F_IP_CSUM)) {
7319                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7320                 features &= ~NETIF_F_TSO;
7321                 features &= ~NETIF_F_TSO_ECN;
7322         }
7323
7324         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7325                                          !(features & NETIF_F_IPV6_CSUM)) {
7326                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7327                 features &= ~NETIF_F_TSO6;
7328         }
7329
7330         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7331         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7332                 features &= ~NETIF_F_TSO_MANGLEID;
7333
7334         /* TSO ECN requires that TSO is present as well. */
7335         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7336                 features &= ~NETIF_F_TSO_ECN;
7337
7338         /* Software GSO depends on SG. */
7339         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7340                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7341                 features &= ~NETIF_F_GSO;
7342         }
7343
7344         /* GSO partial features require GSO partial be set */
7345         if ((features & dev->gso_partial_features) &&
7346             !(features & NETIF_F_GSO_PARTIAL)) {
7347                 netdev_dbg(dev,
7348                            "Dropping partially supported GSO features since no GSO partial.\n");
7349                 features &= ~dev->gso_partial_features;
7350         }
7351
7352         return features;
7353 }
7354
7355 int __netdev_update_features(struct net_device *dev)
7356 {
7357         struct net_device *upper, *lower;
7358         netdev_features_t features;
7359         struct list_head *iter;
7360         int err = -1;
7361
7362         ASSERT_RTNL();
7363
7364         features = netdev_get_wanted_features(dev);
7365
7366         if (dev->netdev_ops->ndo_fix_features)
7367                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7368
7369         /* driver might be less strict about feature dependencies */
7370         features = netdev_fix_features(dev, features);
7371
7372         /* some features can't be enabled if they're off an an upper device */
7373         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7374                 features = netdev_sync_upper_features(dev, upper, features);
7375
7376         if (dev->features == features)
7377                 goto sync_lower;
7378
7379         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7380                 &dev->features, &features);
7381
7382         if (dev->netdev_ops->ndo_set_features)
7383                 err = dev->netdev_ops->ndo_set_features(dev, features);
7384         else
7385                 err = 0;
7386
7387         if (unlikely(err < 0)) {
7388                 netdev_err(dev,
7389                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7390                         err, &features, &dev->features);
7391                 /* return non-0 since some features might have changed and
7392                  * it's better to fire a spurious notification than miss it
7393                  */
7394                 return -1;
7395         }
7396
7397 sync_lower:
7398         /* some features must be disabled on lower devices when disabled
7399          * on an upper device (think: bonding master or bridge)
7400          */
7401         netdev_for_each_lower_dev(dev, lower, iter)
7402                 netdev_sync_lower_features(dev, lower, features);
7403
7404         if (!err) {
7405                 netdev_features_t diff = features ^ dev->features;
7406
7407                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7408                         /* udp_tunnel_{get,drop}_rx_info both need
7409                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7410                          * device, or they won't do anything.
7411                          * Thus we need to update dev->features
7412                          * *before* calling udp_tunnel_get_rx_info,
7413                          * but *after* calling udp_tunnel_drop_rx_info.
7414                          */
7415                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7416                                 dev->features = features;
7417                                 udp_tunnel_get_rx_info(dev);
7418                         } else {
7419                                 udp_tunnel_drop_rx_info(dev);
7420                         }
7421                 }
7422
7423                 dev->features = features;
7424         }
7425
7426         return err < 0 ? 0 : 1;
7427 }
7428
7429 /**
7430  *      netdev_update_features - recalculate device features
7431  *      @dev: the device to check
7432  *
7433  *      Recalculate dev->features set and send notifications if it
7434  *      has changed. Should be called after driver or hardware dependent
7435  *      conditions might have changed that influence the features.
7436  */
7437 void netdev_update_features(struct net_device *dev)
7438 {
7439         if (__netdev_update_features(dev))
7440                 netdev_features_change(dev);
7441 }
7442 EXPORT_SYMBOL(netdev_update_features);
7443
7444 /**
7445  *      netdev_change_features - recalculate device features
7446  *      @dev: the device to check
7447  *
7448  *      Recalculate dev->features set and send notifications even
7449  *      if they have not changed. Should be called instead of
7450  *      netdev_update_features() if also dev->vlan_features might
7451  *      have changed to allow the changes to be propagated to stacked
7452  *      VLAN devices.
7453  */
7454 void netdev_change_features(struct net_device *dev)
7455 {
7456         __netdev_update_features(dev);
7457         netdev_features_change(dev);
7458 }
7459 EXPORT_SYMBOL(netdev_change_features);
7460
7461 /**
7462  *      netif_stacked_transfer_operstate -      transfer operstate
7463  *      @rootdev: the root or lower level device to transfer state from
7464  *      @dev: the device to transfer operstate to
7465  *
7466  *      Transfer operational state from root to device. This is normally
7467  *      called when a stacking relationship exists between the root
7468  *      device and the device(a leaf device).
7469  */
7470 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7471                                         struct net_device *dev)
7472 {
7473         if (rootdev->operstate == IF_OPER_DORMANT)
7474                 netif_dormant_on(dev);
7475         else
7476                 netif_dormant_off(dev);
7477
7478         if (netif_carrier_ok(rootdev))
7479                 netif_carrier_on(dev);
7480         else
7481                 netif_carrier_off(dev);
7482 }
7483 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7484
7485 #ifdef CONFIG_SYSFS
7486 static int netif_alloc_rx_queues(struct net_device *dev)
7487 {
7488         unsigned int i, count = dev->num_rx_queues;
7489         struct netdev_rx_queue *rx;
7490         size_t sz = count * sizeof(*rx);
7491
7492         BUG_ON(count < 1);
7493
7494         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7495         if (!rx)
7496                 return -ENOMEM;
7497
7498         dev->_rx = rx;
7499
7500         for (i = 0; i < count; i++)
7501                 rx[i].dev = dev;
7502         return 0;
7503 }
7504 #endif
7505
7506 static void netdev_init_one_queue(struct net_device *dev,
7507                                   struct netdev_queue *queue, void *_unused)
7508 {
7509         /* Initialize queue lock */
7510         spin_lock_init(&queue->_xmit_lock);
7511         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7512         queue->xmit_lock_owner = -1;
7513         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7514         queue->dev = dev;
7515 #ifdef CONFIG_BQL
7516         dql_init(&queue->dql, HZ);
7517 #endif
7518 }
7519
7520 static void netif_free_tx_queues(struct net_device *dev)
7521 {
7522         kvfree(dev->_tx);
7523 }
7524
7525 static int netif_alloc_netdev_queues(struct net_device *dev)
7526 {
7527         unsigned int count = dev->num_tx_queues;
7528         struct netdev_queue *tx;
7529         size_t sz = count * sizeof(*tx);
7530
7531         if (count < 1 || count > 0xffff)
7532                 return -EINVAL;
7533
7534         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7535         if (!tx)
7536                 return -ENOMEM;
7537
7538         dev->_tx = tx;
7539
7540         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7541         spin_lock_init(&dev->tx_global_lock);
7542
7543         return 0;
7544 }
7545
7546 void netif_tx_stop_all_queues(struct net_device *dev)
7547 {
7548         unsigned int i;
7549
7550         for (i = 0; i < dev->num_tx_queues; i++) {
7551                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7552
7553                 netif_tx_stop_queue(txq);
7554         }
7555 }
7556 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7557
7558 /**
7559  *      register_netdevice      - register a network device
7560  *      @dev: device to register
7561  *
7562  *      Take a completed network device structure and add it to the kernel
7563  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7564  *      chain. 0 is returned on success. A negative errno code is returned
7565  *      on a failure to set up the device, or if the name is a duplicate.
7566  *
7567  *      Callers must hold the rtnl semaphore. You may want
7568  *      register_netdev() instead of this.
7569  *
7570  *      BUGS:
7571  *      The locking appears insufficient to guarantee two parallel registers
7572  *      will not get the same name.
7573  */
7574
7575 int register_netdevice(struct net_device *dev)
7576 {
7577         int ret;
7578         struct net *net = dev_net(dev);
7579
7580         BUG_ON(dev_boot_phase);
7581         ASSERT_RTNL();
7582
7583         might_sleep();
7584
7585         /* When net_device's are persistent, this will be fatal. */
7586         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7587         BUG_ON(!net);
7588
7589         spin_lock_init(&dev->addr_list_lock);
7590         netdev_set_addr_lockdep_class(dev);
7591
7592         ret = dev_get_valid_name(net, dev, dev->name);
7593         if (ret < 0)
7594                 goto out;
7595
7596         /* Init, if this function is available */
7597         if (dev->netdev_ops->ndo_init) {
7598                 ret = dev->netdev_ops->ndo_init(dev);
7599                 if (ret) {
7600                         if (ret > 0)
7601                                 ret = -EIO;
7602                         goto out;
7603                 }
7604         }
7605
7606         if (((dev->hw_features | dev->features) &
7607              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7608             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7609              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7610                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7611                 ret = -EINVAL;
7612                 goto err_uninit;
7613         }
7614
7615         ret = -EBUSY;
7616         if (!dev->ifindex)
7617                 dev->ifindex = dev_new_index(net);
7618         else if (__dev_get_by_index(net, dev->ifindex))
7619                 goto err_uninit;
7620
7621         /* Transfer changeable features to wanted_features and enable
7622          * software offloads (GSO and GRO).
7623          */
7624         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7625         dev->features |= NETIF_F_SOFT_FEATURES;
7626
7627         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7628                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7629                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7630         }
7631
7632         dev->wanted_features = dev->features & dev->hw_features;
7633
7634         if (!(dev->flags & IFF_LOOPBACK))
7635                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7636
7637         /* If IPv4 TCP segmentation offload is supported we should also
7638          * allow the device to enable segmenting the frame with the option
7639          * of ignoring a static IP ID value.  This doesn't enable the
7640          * feature itself but allows the user to enable it later.
7641          */
7642         if (dev->hw_features & NETIF_F_TSO)
7643                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7644         if (dev->vlan_features & NETIF_F_TSO)
7645                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7646         if (dev->mpls_features & NETIF_F_TSO)
7647                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7648         if (dev->hw_enc_features & NETIF_F_TSO)
7649                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7650
7651         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7652          */
7653         dev->vlan_features |= NETIF_F_HIGHDMA;
7654
7655         /* Make NETIF_F_SG inheritable to tunnel devices.
7656          */
7657         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7658
7659         /* Make NETIF_F_SG inheritable to MPLS.
7660          */
7661         dev->mpls_features |= NETIF_F_SG;
7662
7663         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7664         ret = notifier_to_errno(ret);
7665         if (ret)
7666                 goto err_uninit;
7667
7668         ret = netdev_register_kobject(dev);
7669         if (ret) {
7670                 dev->reg_state = NETREG_UNREGISTERED;
7671                 goto err_uninit;
7672         }
7673         dev->reg_state = NETREG_REGISTERED;
7674
7675         __netdev_update_features(dev);
7676
7677         /*
7678          *      Default initial state at registry is that the
7679          *      device is present.
7680          */
7681
7682         set_bit(__LINK_STATE_PRESENT, &dev->state);
7683
7684         linkwatch_init_dev(dev);
7685
7686         dev_init_scheduler(dev);
7687         dev_hold(dev);
7688         list_netdevice(dev);
7689         add_device_randomness(dev->dev_addr, dev->addr_len);
7690
7691         /* If the device has permanent device address, driver should
7692          * set dev_addr and also addr_assign_type should be set to
7693          * NET_ADDR_PERM (default value).
7694          */
7695         if (dev->addr_assign_type == NET_ADDR_PERM)
7696                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7697
7698         /* Notify protocols, that a new device appeared. */
7699         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7700         ret = notifier_to_errno(ret);
7701         if (ret) {
7702                 rollback_registered(dev);
7703                 rcu_barrier();
7704
7705                 dev->reg_state = NETREG_UNREGISTERED;
7706                 /* We should put the kobject that hold in
7707                  * netdev_unregister_kobject(), otherwise
7708                  * the net device cannot be freed when
7709                  * driver calls free_netdev(), because the
7710                  * kobject is being hold.
7711                  */
7712                 kobject_put(&dev->dev.kobj);
7713         }
7714         /*
7715          *      Prevent userspace races by waiting until the network
7716          *      device is fully setup before sending notifications.
7717          */
7718         if (!dev->rtnl_link_ops ||
7719             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7720                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7721
7722 out:
7723         return ret;
7724
7725 err_uninit:
7726         if (dev->netdev_ops->ndo_uninit)
7727                 dev->netdev_ops->ndo_uninit(dev);
7728         if (dev->priv_destructor)
7729                 dev->priv_destructor(dev);
7730         goto out;
7731 }
7732 EXPORT_SYMBOL(register_netdevice);
7733
7734 /**
7735  *      init_dummy_netdev       - init a dummy network device for NAPI
7736  *      @dev: device to init
7737  *
7738  *      This takes a network device structure and initialize the minimum
7739  *      amount of fields so it can be used to schedule NAPI polls without
7740  *      registering a full blown interface. This is to be used by drivers
7741  *      that need to tie several hardware interfaces to a single NAPI
7742  *      poll scheduler due to HW limitations.
7743  */
7744 int init_dummy_netdev(struct net_device *dev)
7745 {
7746         /* Clear everything. Note we don't initialize spinlocks
7747          * are they aren't supposed to be taken by any of the
7748          * NAPI code and this dummy netdev is supposed to be
7749          * only ever used for NAPI polls
7750          */
7751         memset(dev, 0, sizeof(struct net_device));
7752
7753         /* make sure we BUG if trying to hit standard
7754          * register/unregister code path
7755          */
7756         dev->reg_state = NETREG_DUMMY;
7757
7758         /* NAPI wants this */
7759         INIT_LIST_HEAD(&dev->napi_list);
7760
7761         /* a dummy interface is started by default */
7762         set_bit(__LINK_STATE_PRESENT, &dev->state);
7763         set_bit(__LINK_STATE_START, &dev->state);
7764
7765         /* napi_busy_loop stats accounting wants this */
7766         dev_net_set(dev, &init_net);
7767
7768         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7769          * because users of this 'device' dont need to change
7770          * its refcount.
7771          */
7772
7773         return 0;
7774 }
7775 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7776
7777
7778 int dev_validate_mtu(struct net_device *dev, int new_mtu)
7779 {
7780         /* MTU must be positive, and in range */
7781         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7782                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7783                                     dev->name, new_mtu, dev->min_mtu);
7784                 return -EINVAL;
7785         }
7786
7787         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7788                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7789                                     dev->name, new_mtu, dev->max_mtu);
7790                 return -EINVAL;
7791         }
7792         return 0;
7793 }
7794
7795 /**
7796  *      register_netdev - register a network device
7797  *      @dev: device to register
7798  *
7799  *      Take a completed network device structure and add it to the kernel
7800  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7801  *      chain. 0 is returned on success. A negative errno code is returned
7802  *      on a failure to set up the device, or if the name is a duplicate.
7803  *
7804  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7805  *      and expands the device name if you passed a format string to
7806  *      alloc_netdev.
7807  */
7808 int register_netdev(struct net_device *dev)
7809 {
7810         int err;
7811
7812         rtnl_lock();
7813         err = register_netdevice(dev);
7814         rtnl_unlock();
7815         return err;
7816 }
7817 EXPORT_SYMBOL(register_netdev);
7818
7819 int netdev_refcnt_read(const struct net_device *dev)
7820 {
7821         int i, refcnt = 0;
7822
7823         for_each_possible_cpu(i)
7824                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7825         return refcnt;
7826 }
7827 EXPORT_SYMBOL(netdev_refcnt_read);
7828
7829 /**
7830  * netdev_wait_allrefs - wait until all references are gone.
7831  * @dev: target net_device
7832  *
7833  * This is called when unregistering network devices.
7834  *
7835  * Any protocol or device that holds a reference should register
7836  * for netdevice notification, and cleanup and put back the
7837  * reference if they receive an UNREGISTER event.
7838  * We can get stuck here if buggy protocols don't correctly
7839  * call dev_put.
7840  */
7841 static void netdev_wait_allrefs(struct net_device *dev)
7842 {
7843         unsigned long rebroadcast_time, warning_time;
7844         int refcnt;
7845
7846         linkwatch_forget_dev(dev);
7847
7848         rebroadcast_time = warning_time = jiffies;
7849         refcnt = netdev_refcnt_read(dev);
7850
7851         while (refcnt != 0) {
7852                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7853                         rtnl_lock();
7854
7855                         /* Rebroadcast unregister notification */
7856                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7857
7858                         __rtnl_unlock();
7859                         rcu_barrier();
7860                         rtnl_lock();
7861
7862                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7863                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7864                                      &dev->state)) {
7865                                 /* We must not have linkwatch events
7866                                  * pending on unregister. If this
7867                                  * happens, we simply run the queue
7868                                  * unscheduled, resulting in a noop
7869                                  * for this device.
7870                                  */
7871                                 linkwatch_run_queue();
7872                         }
7873
7874                         __rtnl_unlock();
7875
7876                         rebroadcast_time = jiffies;
7877                 }
7878
7879                 msleep(250);
7880
7881                 refcnt = netdev_refcnt_read(dev);
7882
7883                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7884                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7885                                  dev->name, refcnt);
7886                         warning_time = jiffies;
7887                 }
7888         }
7889 }
7890
7891 /* The sequence is:
7892  *
7893  *      rtnl_lock();
7894  *      ...
7895  *      register_netdevice(x1);
7896  *      register_netdevice(x2);
7897  *      ...
7898  *      unregister_netdevice(y1);
7899  *      unregister_netdevice(y2);
7900  *      ...
7901  *      rtnl_unlock();
7902  *      free_netdev(y1);
7903  *      free_netdev(y2);
7904  *
7905  * We are invoked by rtnl_unlock().
7906  * This allows us to deal with problems:
7907  * 1) We can delete sysfs objects which invoke hotplug
7908  *    without deadlocking with linkwatch via keventd.
7909  * 2) Since we run with the RTNL semaphore not held, we can sleep
7910  *    safely in order to wait for the netdev refcnt to drop to zero.
7911  *
7912  * We must not return until all unregister events added during
7913  * the interval the lock was held have been completed.
7914  */
7915 void netdev_run_todo(void)
7916 {
7917         struct list_head list;
7918
7919         /* Snapshot list, allow later requests */
7920         list_replace_init(&net_todo_list, &list);
7921
7922         __rtnl_unlock();
7923
7924
7925         /* Wait for rcu callbacks to finish before next phase */
7926         if (!list_empty(&list))
7927                 rcu_barrier();
7928
7929         while (!list_empty(&list)) {
7930                 struct net_device *dev
7931                         = list_first_entry(&list, struct net_device, todo_list);
7932                 list_del(&dev->todo_list);
7933
7934                 rtnl_lock();
7935                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7936                 __rtnl_unlock();
7937
7938                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7939                         pr_err("network todo '%s' but state %d\n",
7940                                dev->name, dev->reg_state);
7941                         dump_stack();
7942                         continue;
7943                 }
7944
7945                 dev->reg_state = NETREG_UNREGISTERED;
7946
7947                 netdev_wait_allrefs(dev);
7948
7949                 /* paranoia */
7950                 BUG_ON(netdev_refcnt_read(dev));
7951                 BUG_ON(!list_empty(&dev->ptype_all));
7952                 BUG_ON(!list_empty(&dev->ptype_specific));
7953                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7954                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7955                 WARN_ON(dev->dn_ptr);
7956
7957                 if (dev->priv_destructor)
7958                         dev->priv_destructor(dev);
7959                 if (dev->needs_free_netdev)
7960                         free_netdev(dev);
7961
7962                 /* Report a network device has been unregistered */
7963                 rtnl_lock();
7964                 dev_net(dev)->dev_unreg_count--;
7965                 __rtnl_unlock();
7966                 wake_up(&netdev_unregistering_wq);
7967
7968                 /* Free network device */
7969                 kobject_put(&dev->dev.kobj);
7970         }
7971 }
7972
7973 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7974  * all the same fields in the same order as net_device_stats, with only
7975  * the type differing, but rtnl_link_stats64 may have additional fields
7976  * at the end for newer counters.
7977  */
7978 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7979                              const struct net_device_stats *netdev_stats)
7980 {
7981 #if BITS_PER_LONG == 64
7982         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7983         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7984         /* zero out counters that only exist in rtnl_link_stats64 */
7985         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7986                sizeof(*stats64) - sizeof(*netdev_stats));
7987 #else
7988         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7989         const unsigned long *src = (const unsigned long *)netdev_stats;
7990         u64 *dst = (u64 *)stats64;
7991
7992         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7993         for (i = 0; i < n; i++)
7994                 dst[i] = src[i];
7995         /* zero out counters that only exist in rtnl_link_stats64 */
7996         memset((char *)stats64 + n * sizeof(u64), 0,
7997                sizeof(*stats64) - n * sizeof(u64));
7998 #endif
7999 }
8000 EXPORT_SYMBOL(netdev_stats_to_stats64);
8001
8002 /**
8003  *      dev_get_stats   - get network device statistics
8004  *      @dev: device to get statistics from
8005  *      @storage: place to store stats
8006  *
8007  *      Get network statistics from device. Return @storage.
8008  *      The device driver may provide its own method by setting
8009  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8010  *      otherwise the internal statistics structure is used.
8011  */
8012 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8013                                         struct rtnl_link_stats64 *storage)
8014 {
8015         const struct net_device_ops *ops = dev->netdev_ops;
8016
8017         if (ops->ndo_get_stats64) {
8018                 memset(storage, 0, sizeof(*storage));
8019                 ops->ndo_get_stats64(dev, storage);
8020         } else if (ops->ndo_get_stats) {
8021                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8022         } else {
8023                 netdev_stats_to_stats64(storage, &dev->stats);
8024         }
8025         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8026         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8027         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8028         return storage;
8029 }
8030 EXPORT_SYMBOL(dev_get_stats);
8031
8032 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8033 {
8034         struct netdev_queue *queue = dev_ingress_queue(dev);
8035
8036 #ifdef CONFIG_NET_CLS_ACT
8037         if (queue)
8038                 return queue;
8039         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8040         if (!queue)
8041                 return NULL;
8042         netdev_init_one_queue(dev, queue, NULL);
8043         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8044         queue->qdisc_sleeping = &noop_qdisc;
8045         rcu_assign_pointer(dev->ingress_queue, queue);
8046 #endif
8047         return queue;
8048 }
8049
8050 static const struct ethtool_ops default_ethtool_ops;
8051
8052 void netdev_set_default_ethtool_ops(struct net_device *dev,
8053                                     const struct ethtool_ops *ops)
8054 {
8055         if (dev->ethtool_ops == &default_ethtool_ops)
8056                 dev->ethtool_ops = ops;
8057 }
8058 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8059
8060 void netdev_freemem(struct net_device *dev)
8061 {
8062         char *addr = (char *)dev - dev->padded;
8063
8064         kvfree(addr);
8065 }
8066
8067 /**
8068  * alloc_netdev_mqs - allocate network device
8069  * @sizeof_priv: size of private data to allocate space for
8070  * @name: device name format string
8071  * @name_assign_type: origin of device name
8072  * @setup: callback to initialize device
8073  * @txqs: the number of TX subqueues to allocate
8074  * @rxqs: the number of RX subqueues to allocate
8075  *
8076  * Allocates a struct net_device with private data area for driver use
8077  * and performs basic initialization.  Also allocates subqueue structs
8078  * for each queue on the device.
8079  */
8080 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8081                 unsigned char name_assign_type,
8082                 void (*setup)(struct net_device *),
8083                 unsigned int txqs, unsigned int rxqs)
8084 {
8085         struct net_device *dev;
8086         size_t alloc_size;
8087         struct net_device *p;
8088
8089         BUG_ON(strlen(name) >= sizeof(dev->name));
8090
8091         if (txqs < 1) {
8092                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8093                 return NULL;
8094         }
8095
8096 #ifdef CONFIG_SYSFS
8097         if (rxqs < 1) {
8098                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8099                 return NULL;
8100         }
8101 #endif
8102
8103         alloc_size = sizeof(struct net_device);
8104         if (sizeof_priv) {
8105                 /* ensure 32-byte alignment of private area */
8106                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8107                 alloc_size += sizeof_priv;
8108         }
8109         /* ensure 32-byte alignment of whole construct */
8110         alloc_size += NETDEV_ALIGN - 1;
8111
8112         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8113         if (!p)
8114                 return NULL;
8115
8116         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8117         dev->padded = (char *)dev - (char *)p;
8118
8119         dev->pcpu_refcnt = alloc_percpu(int);
8120         if (!dev->pcpu_refcnt)
8121                 goto free_dev;
8122
8123         if (dev_addr_init(dev))
8124                 goto free_pcpu;
8125
8126         dev_mc_init(dev);
8127         dev_uc_init(dev);
8128
8129         dev_net_set(dev, &init_net);
8130
8131         dev->gso_max_size = GSO_MAX_SIZE;
8132         dev->gso_max_segs = GSO_MAX_SEGS;
8133
8134         INIT_LIST_HEAD(&dev->napi_list);
8135         INIT_LIST_HEAD(&dev->unreg_list);
8136         INIT_LIST_HEAD(&dev->close_list);
8137         INIT_LIST_HEAD(&dev->link_watch_list);
8138         INIT_LIST_HEAD(&dev->adj_list.upper);
8139         INIT_LIST_HEAD(&dev->adj_list.lower);
8140         INIT_LIST_HEAD(&dev->ptype_all);
8141         INIT_LIST_HEAD(&dev->ptype_specific);
8142 #ifdef CONFIG_NET_SCHED
8143         hash_init(dev->qdisc_hash);
8144 #endif
8145         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8146         setup(dev);
8147
8148         if (!dev->tx_queue_len) {
8149                 dev->priv_flags |= IFF_NO_QUEUE;
8150                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8151         }
8152
8153         dev->num_tx_queues = txqs;
8154         dev->real_num_tx_queues = txqs;
8155         if (netif_alloc_netdev_queues(dev))
8156                 goto free_all;
8157
8158 #ifdef CONFIG_SYSFS
8159         dev->num_rx_queues = rxqs;
8160         dev->real_num_rx_queues = rxqs;
8161         if (netif_alloc_rx_queues(dev))
8162                 goto free_all;
8163 #endif
8164
8165         strcpy(dev->name, name);
8166         dev->name_assign_type = name_assign_type;
8167         dev->group = INIT_NETDEV_GROUP;
8168         if (!dev->ethtool_ops)
8169                 dev->ethtool_ops = &default_ethtool_ops;
8170
8171         nf_hook_ingress_init(dev);
8172
8173         return dev;
8174
8175 free_all:
8176         free_netdev(dev);
8177         return NULL;
8178
8179 free_pcpu:
8180         free_percpu(dev->pcpu_refcnt);
8181 free_dev:
8182         netdev_freemem(dev);
8183         return NULL;
8184 }
8185 EXPORT_SYMBOL(alloc_netdev_mqs);
8186
8187 /**
8188  * free_netdev - free network device
8189  * @dev: device
8190  *
8191  * This function does the last stage of destroying an allocated device
8192  * interface. The reference to the device object is released. If this
8193  * is the last reference then it will be freed.Must be called in process
8194  * context.
8195  */
8196 void free_netdev(struct net_device *dev)
8197 {
8198         struct napi_struct *p, *n;
8199         struct bpf_prog *prog;
8200
8201         might_sleep();
8202         netif_free_tx_queues(dev);
8203 #ifdef CONFIG_SYSFS
8204         kvfree(dev->_rx);
8205 #endif
8206
8207         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8208
8209         /* Flush device addresses */
8210         dev_addr_flush(dev);
8211
8212         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8213                 netif_napi_del(p);
8214
8215         free_percpu(dev->pcpu_refcnt);
8216         dev->pcpu_refcnt = NULL;
8217
8218         prog = rcu_dereference_protected(dev->xdp_prog, 1);
8219         if (prog) {
8220                 bpf_prog_put(prog);
8221                 static_key_slow_dec(&generic_xdp_needed);
8222         }
8223
8224         /*  Compatibility with error handling in drivers */
8225         if (dev->reg_state == NETREG_UNINITIALIZED) {
8226                 netdev_freemem(dev);
8227                 return;
8228         }
8229
8230         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8231         dev->reg_state = NETREG_RELEASED;
8232
8233         /* will free via device release */
8234         put_device(&dev->dev);
8235 }
8236 EXPORT_SYMBOL(free_netdev);
8237
8238 /**
8239  *      synchronize_net -  Synchronize with packet receive processing
8240  *
8241  *      Wait for packets currently being received to be done.
8242  *      Does not block later packets from starting.
8243  */
8244 void synchronize_net(void)
8245 {
8246         might_sleep();
8247         if (rtnl_is_locked())
8248                 synchronize_rcu_expedited();
8249         else
8250                 synchronize_rcu();
8251 }
8252 EXPORT_SYMBOL(synchronize_net);
8253
8254 /**
8255  *      unregister_netdevice_queue - remove device from the kernel
8256  *      @dev: device
8257  *      @head: list
8258  *
8259  *      This function shuts down a device interface and removes it
8260  *      from the kernel tables.
8261  *      If head not NULL, device is queued to be unregistered later.
8262  *
8263  *      Callers must hold the rtnl semaphore.  You may want
8264  *      unregister_netdev() instead of this.
8265  */
8266
8267 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8268 {
8269         ASSERT_RTNL();
8270
8271         if (head) {
8272                 list_move_tail(&dev->unreg_list, head);
8273         } else {
8274                 rollback_registered(dev);
8275                 /* Finish processing unregister after unlock */
8276                 net_set_todo(dev);
8277         }
8278 }
8279 EXPORT_SYMBOL(unregister_netdevice_queue);
8280
8281 /**
8282  *      unregister_netdevice_many - unregister many devices
8283  *      @head: list of devices
8284  *
8285  *  Note: As most callers use a stack allocated list_head,
8286  *  we force a list_del() to make sure stack wont be corrupted later.
8287  */
8288 void unregister_netdevice_many(struct list_head *head)
8289 {
8290         struct net_device *dev;
8291
8292         if (!list_empty(head)) {
8293                 rollback_registered_many(head);
8294                 list_for_each_entry(dev, head, unreg_list)
8295                         net_set_todo(dev);
8296                 list_del(head);
8297         }
8298 }
8299 EXPORT_SYMBOL(unregister_netdevice_many);
8300
8301 /**
8302  *      unregister_netdev - remove device from the kernel
8303  *      @dev: device
8304  *
8305  *      This function shuts down a device interface and removes it
8306  *      from the kernel tables.
8307  *
8308  *      This is just a wrapper for unregister_netdevice that takes
8309  *      the rtnl semaphore.  In general you want to use this and not
8310  *      unregister_netdevice.
8311  */
8312 void unregister_netdev(struct net_device *dev)
8313 {
8314         rtnl_lock();
8315         unregister_netdevice(dev);
8316         rtnl_unlock();
8317 }
8318 EXPORT_SYMBOL(unregister_netdev);
8319
8320 /**
8321  *      dev_change_net_namespace - move device to different nethost namespace
8322  *      @dev: device
8323  *      @net: network namespace
8324  *      @pat: If not NULL name pattern to try if the current device name
8325  *            is already taken in the destination network namespace.
8326  *
8327  *      This function shuts down a device interface and moves it
8328  *      to a new network namespace. On success 0 is returned, on
8329  *      a failure a netagive errno code is returned.
8330  *
8331  *      Callers must hold the rtnl semaphore.
8332  */
8333
8334 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8335 {
8336         int err;
8337
8338         ASSERT_RTNL();
8339
8340         /* Don't allow namespace local devices to be moved. */
8341         err = -EINVAL;
8342         if (dev->features & NETIF_F_NETNS_LOCAL)
8343                 goto out;
8344
8345         /* Ensure the device has been registrered */
8346         if (dev->reg_state != NETREG_REGISTERED)
8347                 goto out;
8348
8349         /* Get out if there is nothing todo */
8350         err = 0;
8351         if (net_eq(dev_net(dev), net))
8352                 goto out;
8353
8354         /* Pick the destination device name, and ensure
8355          * we can use it in the destination network namespace.
8356          */
8357         err = -EEXIST;
8358         if (__dev_get_by_name(net, dev->name)) {
8359                 /* We get here if we can't use the current device name */
8360                 if (!pat)
8361                         goto out;
8362                 err = dev_get_valid_name(net, dev, pat);
8363                 if (err < 0)
8364                         goto out;
8365         }
8366
8367         /*
8368          * And now a mini version of register_netdevice unregister_netdevice.
8369          */
8370
8371         /* If device is running close it first. */
8372         dev_close(dev);
8373
8374         /* And unlink it from device chain */
8375         unlist_netdevice(dev);
8376
8377         synchronize_net();
8378
8379         /* Shutdown queueing discipline. */
8380         dev_shutdown(dev);
8381
8382         /* Notify protocols, that we are about to destroy
8383          * this device. They should clean all the things.
8384          *
8385          * Note that dev->reg_state stays at NETREG_REGISTERED.
8386          * This is wanted because this way 8021q and macvlan know
8387          * the device is just moving and can keep their slaves up.
8388          */
8389         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8390         rcu_barrier();
8391         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8392         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8393
8394         /*
8395          *      Flush the unicast and multicast chains
8396          */
8397         dev_uc_flush(dev);
8398         dev_mc_flush(dev);
8399
8400         /* Send a netdev-removed uevent to the old namespace */
8401         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8402         netdev_adjacent_del_links(dev);
8403
8404         /* Actually switch the network namespace */
8405         dev_net_set(dev, net);
8406
8407         /* If there is an ifindex conflict assign a new one */
8408         if (__dev_get_by_index(net, dev->ifindex))
8409                 dev->ifindex = dev_new_index(net);
8410
8411         /* Send a netdev-add uevent to the new namespace */
8412         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8413         netdev_adjacent_add_links(dev);
8414
8415         /* Fixup kobjects */
8416         err = device_rename(&dev->dev, dev->name);
8417         WARN_ON(err);
8418
8419         /* Add the device back in the hashes */
8420         list_netdevice(dev);
8421
8422         /* Notify protocols, that a new device appeared. */
8423         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8424
8425         /*
8426          *      Prevent userspace races by waiting until the network
8427          *      device is fully setup before sending notifications.
8428          */
8429         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8430
8431         synchronize_net();
8432         err = 0;
8433 out:
8434         return err;
8435 }
8436 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8437
8438 static int dev_cpu_dead(unsigned int oldcpu)
8439 {
8440         struct sk_buff **list_skb;
8441         struct sk_buff *skb;
8442         unsigned int cpu;
8443         struct softnet_data *sd, *oldsd, *remsd = NULL;
8444
8445         local_irq_disable();
8446         cpu = smp_processor_id();
8447         sd = &per_cpu(softnet_data, cpu);
8448         oldsd = &per_cpu(softnet_data, oldcpu);
8449
8450         /* Find end of our completion_queue. */
8451         list_skb = &sd->completion_queue;
8452         while (*list_skb)
8453                 list_skb = &(*list_skb)->next;
8454         /* Append completion queue from offline CPU. */
8455         *list_skb = oldsd->completion_queue;
8456         oldsd->completion_queue = NULL;
8457
8458         /* Append output queue from offline CPU. */
8459         if (oldsd->output_queue) {
8460                 *sd->output_queue_tailp = oldsd->output_queue;
8461                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8462                 oldsd->output_queue = NULL;
8463                 oldsd->output_queue_tailp = &oldsd->output_queue;
8464         }
8465         /* Append NAPI poll list from offline CPU, with one exception :
8466          * process_backlog() must be called by cpu owning percpu backlog.
8467          * We properly handle process_queue & input_pkt_queue later.
8468          */
8469         while (!list_empty(&oldsd->poll_list)) {
8470                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8471                                                             struct napi_struct,
8472                                                             poll_list);
8473
8474                 list_del_init(&napi->poll_list);
8475                 if (napi->poll == process_backlog)
8476                         napi->state = 0;
8477                 else
8478                         ____napi_schedule(sd, napi);
8479         }
8480
8481         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8482         local_irq_enable();
8483
8484 #ifdef CONFIG_RPS
8485         remsd = oldsd->rps_ipi_list;
8486         oldsd->rps_ipi_list = NULL;
8487 #endif
8488         /* send out pending IPI's on offline CPU */
8489         net_rps_send_ipi(remsd);
8490
8491         /* Process offline CPU's input_pkt_queue */
8492         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8493                 netif_rx_ni(skb);
8494                 input_queue_head_incr(oldsd);
8495         }
8496         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8497                 netif_rx_ni(skb);
8498                 input_queue_head_incr(oldsd);
8499         }
8500
8501         return 0;
8502 }
8503
8504 /**
8505  *      netdev_increment_features - increment feature set by one
8506  *      @all: current feature set
8507  *      @one: new feature set
8508  *      @mask: mask feature set
8509  *
8510  *      Computes a new feature set after adding a device with feature set
8511  *      @one to the master device with current feature set @all.  Will not
8512  *      enable anything that is off in @mask. Returns the new feature set.
8513  */
8514 netdev_features_t netdev_increment_features(netdev_features_t all,
8515         netdev_features_t one, netdev_features_t mask)
8516 {
8517         if (mask & NETIF_F_HW_CSUM)
8518                 mask |= NETIF_F_CSUM_MASK;
8519         mask |= NETIF_F_VLAN_CHALLENGED;
8520
8521         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8522         all &= one | ~NETIF_F_ALL_FOR_ALL;
8523
8524         /* If one device supports hw checksumming, set for all. */
8525         if (all & NETIF_F_HW_CSUM)
8526                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8527
8528         return all;
8529 }
8530 EXPORT_SYMBOL(netdev_increment_features);
8531
8532 static struct hlist_head * __net_init netdev_create_hash(void)
8533 {
8534         int i;
8535         struct hlist_head *hash;
8536
8537         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8538         if (hash != NULL)
8539                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8540                         INIT_HLIST_HEAD(&hash[i]);
8541
8542         return hash;
8543 }
8544
8545 /* Initialize per network namespace state */
8546 static int __net_init netdev_init(struct net *net)
8547 {
8548         if (net != &init_net)
8549                 INIT_LIST_HEAD(&net->dev_base_head);
8550
8551         net->dev_name_head = netdev_create_hash();
8552         if (net->dev_name_head == NULL)
8553                 goto err_name;
8554
8555         net->dev_index_head = netdev_create_hash();
8556         if (net->dev_index_head == NULL)
8557                 goto err_idx;
8558
8559         return 0;
8560
8561 err_idx:
8562         kfree(net->dev_name_head);
8563 err_name:
8564         return -ENOMEM;
8565 }
8566
8567 /**
8568  *      netdev_drivername - network driver for the device
8569  *      @dev: network device
8570  *
8571  *      Determine network driver for device.
8572  */
8573 const char *netdev_drivername(const struct net_device *dev)
8574 {
8575         const struct device_driver *driver;
8576         const struct device *parent;
8577         const char *empty = "";
8578
8579         parent = dev->dev.parent;
8580         if (!parent)
8581                 return empty;
8582
8583         driver = parent->driver;
8584         if (driver && driver->name)
8585                 return driver->name;
8586         return empty;
8587 }
8588
8589 static void __netdev_printk(const char *level, const struct net_device *dev,
8590                             struct va_format *vaf)
8591 {
8592         if (dev && dev->dev.parent) {
8593                 dev_printk_emit(level[1] - '0',
8594                                 dev->dev.parent,
8595                                 "%s %s %s%s: %pV",
8596                                 dev_driver_string(dev->dev.parent),
8597                                 dev_name(dev->dev.parent),
8598                                 netdev_name(dev), netdev_reg_state(dev),
8599                                 vaf);
8600         } else if (dev) {
8601                 printk("%s%s%s: %pV",
8602                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8603         } else {
8604                 printk("%s(NULL net_device): %pV", level, vaf);
8605         }
8606 }
8607
8608 void netdev_printk(const char *level, const struct net_device *dev,
8609                    const char *format, ...)
8610 {
8611         struct va_format vaf;
8612         va_list args;
8613
8614         va_start(args, format);
8615
8616         vaf.fmt = format;
8617         vaf.va = &args;
8618
8619         __netdev_printk(level, dev, &vaf);
8620
8621         va_end(args);
8622 }
8623 EXPORT_SYMBOL(netdev_printk);
8624
8625 #define define_netdev_printk_level(func, level)                 \
8626 void func(const struct net_device *dev, const char *fmt, ...)   \
8627 {                                                               \
8628         struct va_format vaf;                                   \
8629         va_list args;                                           \
8630                                                                 \
8631         va_start(args, fmt);                                    \
8632                                                                 \
8633         vaf.fmt = fmt;                                          \
8634         vaf.va = &args;                                         \
8635                                                                 \
8636         __netdev_printk(level, dev, &vaf);                      \
8637                                                                 \
8638         va_end(args);                                           \
8639 }                                                               \
8640 EXPORT_SYMBOL(func);
8641
8642 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8643 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8644 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8645 define_netdev_printk_level(netdev_err, KERN_ERR);
8646 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8647 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8648 define_netdev_printk_level(netdev_info, KERN_INFO);
8649
8650 static void __net_exit netdev_exit(struct net *net)
8651 {
8652         kfree(net->dev_name_head);
8653         kfree(net->dev_index_head);
8654 }
8655
8656 static struct pernet_operations __net_initdata netdev_net_ops = {
8657         .init = netdev_init,
8658         .exit = netdev_exit,
8659 };
8660
8661 static void __net_exit default_device_exit(struct net *net)
8662 {
8663         struct net_device *dev, *aux;
8664         /*
8665          * Push all migratable network devices back to the
8666          * initial network namespace
8667          */
8668         rtnl_lock();
8669         for_each_netdev_safe(net, dev, aux) {
8670                 int err;
8671                 char fb_name[IFNAMSIZ];
8672
8673                 /* Ignore unmoveable devices (i.e. loopback) */
8674                 if (dev->features & NETIF_F_NETNS_LOCAL)
8675                         continue;
8676
8677                 /* Leave virtual devices for the generic cleanup */
8678                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
8679                         continue;
8680
8681                 /* Push remaining network devices to init_net */
8682                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8683                 if (__dev_get_by_name(&init_net, fb_name))
8684                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
8685                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8686                 if (err) {
8687                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8688                                  __func__, dev->name, err);
8689                         BUG();
8690                 }
8691         }
8692         rtnl_unlock();
8693 }
8694
8695 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8696 {
8697         /* Return with the rtnl_lock held when there are no network
8698          * devices unregistering in any network namespace in net_list.
8699          */
8700         struct net *net;
8701         bool unregistering;
8702         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8703
8704         add_wait_queue(&netdev_unregistering_wq, &wait);
8705         for (;;) {
8706                 unregistering = false;
8707                 rtnl_lock();
8708                 list_for_each_entry(net, net_list, exit_list) {
8709                         if (net->dev_unreg_count > 0) {
8710                                 unregistering = true;
8711                                 break;
8712                         }
8713                 }
8714                 if (!unregistering)
8715                         break;
8716                 __rtnl_unlock();
8717
8718                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8719         }
8720         remove_wait_queue(&netdev_unregistering_wq, &wait);
8721 }
8722
8723 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8724 {
8725         /* At exit all network devices most be removed from a network
8726          * namespace.  Do this in the reverse order of registration.
8727          * Do this across as many network namespaces as possible to
8728          * improve batching efficiency.
8729          */
8730         struct net_device *dev;
8731         struct net *net;
8732         LIST_HEAD(dev_kill_list);
8733
8734         /* To prevent network device cleanup code from dereferencing
8735          * loopback devices or network devices that have been freed
8736          * wait here for all pending unregistrations to complete,
8737          * before unregistring the loopback device and allowing the
8738          * network namespace be freed.
8739          *
8740          * The netdev todo list containing all network devices
8741          * unregistrations that happen in default_device_exit_batch
8742          * will run in the rtnl_unlock() at the end of
8743          * default_device_exit_batch.
8744          */
8745         rtnl_lock_unregistering(net_list);
8746         list_for_each_entry(net, net_list, exit_list) {
8747                 for_each_netdev_reverse(net, dev) {
8748                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8749                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8750                         else
8751                                 unregister_netdevice_queue(dev, &dev_kill_list);
8752                 }
8753         }
8754         unregister_netdevice_many(&dev_kill_list);
8755         rtnl_unlock();
8756 }
8757
8758 static struct pernet_operations __net_initdata default_device_ops = {
8759         .exit = default_device_exit,
8760         .exit_batch = default_device_exit_batch,
8761 };
8762
8763 /*
8764  *      Initialize the DEV module. At boot time this walks the device list and
8765  *      unhooks any devices that fail to initialise (normally hardware not
8766  *      present) and leaves us with a valid list of present and active devices.
8767  *
8768  */
8769
8770 /*
8771  *       This is called single threaded during boot, so no need
8772  *       to take the rtnl semaphore.
8773  */
8774 static int __init net_dev_init(void)
8775 {
8776         int i, rc = -ENOMEM;
8777
8778         BUG_ON(!dev_boot_phase);
8779
8780         if (dev_proc_init())
8781                 goto out;
8782
8783         if (netdev_kobject_init())
8784                 goto out;
8785
8786         INIT_LIST_HEAD(&ptype_all);
8787         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8788                 INIT_LIST_HEAD(&ptype_base[i]);
8789
8790         INIT_LIST_HEAD(&offload_base);
8791
8792         if (register_pernet_subsys(&netdev_net_ops))
8793                 goto out;
8794
8795         /*
8796          *      Initialise the packet receive queues.
8797          */
8798
8799         for_each_possible_cpu(i) {
8800                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8801                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8802
8803                 INIT_WORK(flush, flush_backlog);
8804
8805                 skb_queue_head_init(&sd->input_pkt_queue);
8806                 skb_queue_head_init(&sd->process_queue);
8807                 INIT_LIST_HEAD(&sd->poll_list);
8808                 sd->output_queue_tailp = &sd->output_queue;
8809 #ifdef CONFIG_RPS
8810                 sd->csd.func = rps_trigger_softirq;
8811                 sd->csd.info = sd;
8812                 sd->cpu = i;
8813 #endif
8814
8815                 sd->backlog.poll = process_backlog;
8816                 sd->backlog.weight = weight_p;
8817         }
8818
8819         dev_boot_phase = 0;
8820
8821         /* The loopback device is special if any other network devices
8822          * is present in a network namespace the loopback device must
8823          * be present. Since we now dynamically allocate and free the
8824          * loopback device ensure this invariant is maintained by
8825          * keeping the loopback device as the first device on the
8826          * list of network devices.  Ensuring the loopback devices
8827          * is the first device that appears and the last network device
8828          * that disappears.
8829          */
8830         if (register_pernet_device(&loopback_net_ops))
8831                 goto out;
8832
8833         if (register_pernet_device(&default_device_ops))
8834                 goto out;
8835
8836         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8837         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8838
8839         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8840                                        NULL, dev_cpu_dead);
8841         WARN_ON(rc < 0);
8842         rc = 0;
8843 out:
8844         return rc;
8845 }
8846
8847 subsys_initcall(net_dev_init);