GNU Linux-libre 4.19.286-gnu1
[releases.git] / net / ipv4 / inet_connection_sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Support for INET connection oriented protocols.
7  *
8  * Authors:     See the TCP sources
9  *
10  *              This program is free software; you can redistribute it and/or
11  *              modify it under the terms of the GNU General Public License
12  *              as published by the Free Software Foundation; either version
13  *              2 of the License, or(at your option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/jhash.h>
18
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
22 #include <net/ip.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
25 #include <net/xfrm.h>
26 #include <net/tcp.h>
27 #include <net/sock_reuseport.h>
28 #include <net/addrconf.h>
29
30 #if IS_ENABLED(CONFIG_IPV6)
31 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
32  *                              if IPv6 only, and any IPv4 addresses
33  *                              if not IPv6 only
34  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
35  *                              IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
36  *                              and 0.0.0.0 equals to 0.0.0.0 only
37  */
38 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
39                                  const struct in6_addr *sk2_rcv_saddr6,
40                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
41                                  bool sk1_ipv6only, bool sk2_ipv6only,
42                                  bool match_sk1_wildcard,
43                                  bool match_sk2_wildcard)
44 {
45         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
46         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
47
48         /* if both are mapped, treat as IPv4 */
49         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
50                 if (!sk2_ipv6only) {
51                         if (sk1_rcv_saddr == sk2_rcv_saddr)
52                                 return true;
53                         return (match_sk1_wildcard && !sk1_rcv_saddr) ||
54                                 (match_sk2_wildcard && !sk2_rcv_saddr);
55                 }
56                 return false;
57         }
58
59         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
60                 return true;
61
62         if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
63             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
64                 return true;
65
66         if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
67             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
68                 return true;
69
70         if (sk2_rcv_saddr6 &&
71             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
72                 return true;
73
74         return false;
75 }
76 #endif
77
78 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
79  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
80  *                              0.0.0.0 only equals to 0.0.0.0
81  */
82 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
83                                  bool sk2_ipv6only, bool match_sk1_wildcard,
84                                  bool match_sk2_wildcard)
85 {
86         if (!sk2_ipv6only) {
87                 if (sk1_rcv_saddr == sk2_rcv_saddr)
88                         return true;
89                 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
90                         (match_sk2_wildcard && !sk2_rcv_saddr);
91         }
92         return false;
93 }
94
95 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
96                           bool match_wildcard)
97 {
98 #if IS_ENABLED(CONFIG_IPV6)
99         if (sk->sk_family == AF_INET6)
100                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
101                                             inet6_rcv_saddr(sk2),
102                                             sk->sk_rcv_saddr,
103                                             sk2->sk_rcv_saddr,
104                                             ipv6_only_sock(sk),
105                                             ipv6_only_sock(sk2),
106                                             match_wildcard,
107                                             match_wildcard);
108 #endif
109         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
110                                     ipv6_only_sock(sk2), match_wildcard,
111                                     match_wildcard);
112 }
113 EXPORT_SYMBOL(inet_rcv_saddr_equal);
114
115 bool inet_rcv_saddr_any(const struct sock *sk)
116 {
117 #if IS_ENABLED(CONFIG_IPV6)
118         if (sk->sk_family == AF_INET6)
119                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
120 #endif
121         return !sk->sk_rcv_saddr;
122 }
123
124 void inet_get_local_port_range(struct net *net, int *low, int *high)
125 {
126         unsigned int seq;
127
128         do {
129                 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
130
131                 *low = net->ipv4.ip_local_ports.range[0];
132                 *high = net->ipv4.ip_local_ports.range[1];
133         } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
134 }
135 EXPORT_SYMBOL(inet_get_local_port_range);
136
137 static int inet_csk_bind_conflict(const struct sock *sk,
138                                   const struct inet_bind_bucket *tb,
139                                   bool relax, bool reuseport_ok)
140 {
141         struct sock *sk2;
142         bool reuse = sk->sk_reuse;
143         bool reuseport = !!sk->sk_reuseport && reuseport_ok;
144         kuid_t uid = sock_i_uid((struct sock *)sk);
145
146         /*
147          * Unlike other sk lookup places we do not check
148          * for sk_net here, since _all_ the socks listed
149          * in tb->owners list belong to the same net - the
150          * one this bucket belongs to.
151          */
152
153         sk_for_each_bound(sk2, &tb->owners) {
154                 if (sk != sk2 &&
155                     (!sk->sk_bound_dev_if ||
156                      !sk2->sk_bound_dev_if ||
157                      sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
158                         if ((!reuse || !sk2->sk_reuse ||
159                             sk2->sk_state == TCP_LISTEN) &&
160                             (!reuseport || !sk2->sk_reuseport ||
161                              rcu_access_pointer(sk->sk_reuseport_cb) ||
162                              (sk2->sk_state != TCP_TIME_WAIT &&
163                              !uid_eq(uid, sock_i_uid(sk2))))) {
164                                 if (inet_rcv_saddr_equal(sk, sk2, true))
165                                         break;
166                         }
167                         if (!relax && reuse && sk2->sk_reuse &&
168                             sk2->sk_state != TCP_LISTEN) {
169                                 if (inet_rcv_saddr_equal(sk, sk2, true))
170                                         break;
171                         }
172                 }
173         }
174         return sk2 != NULL;
175 }
176
177 /*
178  * Find an open port number for the socket.  Returns with the
179  * inet_bind_hashbucket lock held.
180  */
181 static struct inet_bind_hashbucket *
182 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
183 {
184         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
185         int port = 0;
186         struct inet_bind_hashbucket *head;
187         struct net *net = sock_net(sk);
188         int i, low, high, attempt_half;
189         struct inet_bind_bucket *tb;
190         u32 remaining, offset;
191
192         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
193 other_half_scan:
194         inet_get_local_port_range(net, &low, &high);
195         high++; /* [32768, 60999] -> [32768, 61000[ */
196         if (high - low < 4)
197                 attempt_half = 0;
198         if (attempt_half) {
199                 int half = low + (((high - low) >> 2) << 1);
200
201                 if (attempt_half == 1)
202                         high = half;
203                 else
204                         low = half;
205         }
206         remaining = high - low;
207         if (likely(remaining > 1))
208                 remaining &= ~1U;
209
210         offset = prandom_u32() % remaining;
211         /* __inet_hash_connect() favors ports having @low parity
212          * We do the opposite to not pollute connect() users.
213          */
214         offset |= 1U;
215
216 other_parity_scan:
217         port = low + offset;
218         for (i = 0; i < remaining; i += 2, port += 2) {
219                 if (unlikely(port >= high))
220                         port -= remaining;
221                 if (inet_is_local_reserved_port(net, port))
222                         continue;
223                 head = &hinfo->bhash[inet_bhashfn(net, port,
224                                                   hinfo->bhash_size)];
225                 spin_lock_bh(&head->lock);
226                 inet_bind_bucket_for_each(tb, &head->chain)
227                         if (net_eq(ib_net(tb), net) && tb->port == port) {
228                                 if (!inet_csk_bind_conflict(sk, tb, false, false))
229                                         goto success;
230                                 goto next_port;
231                         }
232                 tb = NULL;
233                 goto success;
234 next_port:
235                 spin_unlock_bh(&head->lock);
236                 cond_resched();
237         }
238
239         offset--;
240         if (!(offset & 1))
241                 goto other_parity_scan;
242
243         if (attempt_half == 1) {
244                 /* OK we now try the upper half of the range */
245                 attempt_half = 2;
246                 goto other_half_scan;
247         }
248         return NULL;
249 success:
250         *port_ret = port;
251         *tb_ret = tb;
252         return head;
253 }
254
255 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
256                                      struct sock *sk)
257 {
258         kuid_t uid = sock_i_uid(sk);
259
260         if (tb->fastreuseport <= 0)
261                 return 0;
262         if (!sk->sk_reuseport)
263                 return 0;
264         if (rcu_access_pointer(sk->sk_reuseport_cb))
265                 return 0;
266         if (!uid_eq(tb->fastuid, uid))
267                 return 0;
268         /* We only need to check the rcv_saddr if this tb was once marked
269          * without fastreuseport and then was reset, as we can only know that
270          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
271          * owners list.
272          */
273         if (tb->fastreuseport == FASTREUSEPORT_ANY)
274                 return 1;
275 #if IS_ENABLED(CONFIG_IPV6)
276         if (tb->fast_sk_family == AF_INET6)
277                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
278                                             inet6_rcv_saddr(sk),
279                                             tb->fast_rcv_saddr,
280                                             sk->sk_rcv_saddr,
281                                             tb->fast_ipv6_only,
282                                             ipv6_only_sock(sk), true, false);
283 #endif
284         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
285                                     ipv6_only_sock(sk), true, false);
286 }
287
288 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
289                                struct sock *sk)
290 {
291         kuid_t uid = sock_i_uid(sk);
292         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
293
294         if (hlist_empty(&tb->owners)) {
295                 tb->fastreuse = reuse;
296                 if (sk->sk_reuseport) {
297                         tb->fastreuseport = FASTREUSEPORT_ANY;
298                         tb->fastuid = uid;
299                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
300                         tb->fast_ipv6_only = ipv6_only_sock(sk);
301                         tb->fast_sk_family = sk->sk_family;
302 #if IS_ENABLED(CONFIG_IPV6)
303                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
304 #endif
305                 } else {
306                         tb->fastreuseport = 0;
307                 }
308         } else {
309                 if (!reuse)
310                         tb->fastreuse = 0;
311                 if (sk->sk_reuseport) {
312                         /* We didn't match or we don't have fastreuseport set on
313                          * the tb, but we have sk_reuseport set on this socket
314                          * and we know that there are no bind conflicts with
315                          * this socket in this tb, so reset our tb's reuseport
316                          * settings so that any subsequent sockets that match
317                          * our current socket will be put on the fast path.
318                          *
319                          * If we reset we need to set FASTREUSEPORT_STRICT so we
320                          * do extra checking for all subsequent sk_reuseport
321                          * socks.
322                          */
323                         if (!sk_reuseport_match(tb, sk)) {
324                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
325                                 tb->fastuid = uid;
326                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
327                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
328                                 tb->fast_sk_family = sk->sk_family;
329 #if IS_ENABLED(CONFIG_IPV6)
330                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
331 #endif
332                         }
333                 } else {
334                         tb->fastreuseport = 0;
335                 }
336         }
337 }
338
339 /* Obtain a reference to a local port for the given sock,
340  * if snum is zero it means select any available local port.
341  * We try to allocate an odd port (and leave even ports for connect())
342  */
343 int inet_csk_get_port(struct sock *sk, unsigned short snum)
344 {
345         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
346         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
347         int ret = 1, port = snum;
348         struct inet_bind_hashbucket *head;
349         struct net *net = sock_net(sk);
350         struct inet_bind_bucket *tb = NULL;
351
352         if (!port) {
353                 head = inet_csk_find_open_port(sk, &tb, &port);
354                 if (!head)
355                         return ret;
356                 if (!tb)
357                         goto tb_not_found;
358                 goto success;
359         }
360         head = &hinfo->bhash[inet_bhashfn(net, port,
361                                           hinfo->bhash_size)];
362         spin_lock_bh(&head->lock);
363         inet_bind_bucket_for_each(tb, &head->chain)
364                 if (net_eq(ib_net(tb), net) && tb->port == port)
365                         goto tb_found;
366 tb_not_found:
367         tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
368                                      net, head, port);
369         if (!tb)
370                 goto fail_unlock;
371 tb_found:
372         if (!hlist_empty(&tb->owners)) {
373                 if (sk->sk_reuse == SK_FORCE_REUSE)
374                         goto success;
375
376                 if ((tb->fastreuse > 0 && reuse) ||
377                     sk_reuseport_match(tb, sk))
378                         goto success;
379                 if (inet_csk_bind_conflict(sk, tb, true, true))
380                         goto fail_unlock;
381         }
382 success:
383         inet_csk_update_fastreuse(tb, sk);
384
385         if (!inet_csk(sk)->icsk_bind_hash)
386                 inet_bind_hash(sk, tb, port);
387         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
388         ret = 0;
389
390 fail_unlock:
391         spin_unlock_bh(&head->lock);
392         return ret;
393 }
394 EXPORT_SYMBOL_GPL(inet_csk_get_port);
395
396 /*
397  * Wait for an incoming connection, avoid race conditions. This must be called
398  * with the socket locked.
399  */
400 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
401 {
402         struct inet_connection_sock *icsk = inet_csk(sk);
403         DEFINE_WAIT(wait);
404         int err;
405
406         /*
407          * True wake-one mechanism for incoming connections: only
408          * one process gets woken up, not the 'whole herd'.
409          * Since we do not 'race & poll' for established sockets
410          * anymore, the common case will execute the loop only once.
411          *
412          * Subtle issue: "add_wait_queue_exclusive()" will be added
413          * after any current non-exclusive waiters, and we know that
414          * it will always _stay_ after any new non-exclusive waiters
415          * because all non-exclusive waiters are added at the
416          * beginning of the wait-queue. As such, it's ok to "drop"
417          * our exclusiveness temporarily when we get woken up without
418          * having to remove and re-insert us on the wait queue.
419          */
420         for (;;) {
421                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
422                                           TASK_INTERRUPTIBLE);
423                 release_sock(sk);
424                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
425                         timeo = schedule_timeout(timeo);
426                 sched_annotate_sleep();
427                 lock_sock(sk);
428                 err = 0;
429                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
430                         break;
431                 err = -EINVAL;
432                 if (sk->sk_state != TCP_LISTEN)
433                         break;
434                 err = sock_intr_errno(timeo);
435                 if (signal_pending(current))
436                         break;
437                 err = -EAGAIN;
438                 if (!timeo)
439                         break;
440         }
441         finish_wait(sk_sleep(sk), &wait);
442         return err;
443 }
444
445 /*
446  * This will accept the next outstanding connection.
447  */
448 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
449 {
450         struct inet_connection_sock *icsk = inet_csk(sk);
451         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
452         struct request_sock *req;
453         struct sock *newsk;
454         int error;
455
456         lock_sock(sk);
457
458         /* We need to make sure that this socket is listening,
459          * and that it has something pending.
460          */
461         error = -EINVAL;
462         if (sk->sk_state != TCP_LISTEN)
463                 goto out_err;
464
465         /* Find already established connection */
466         if (reqsk_queue_empty(queue)) {
467                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
468
469                 /* If this is a non blocking socket don't sleep */
470                 error = -EAGAIN;
471                 if (!timeo)
472                         goto out_err;
473
474                 error = inet_csk_wait_for_connect(sk, timeo);
475                 if (error)
476                         goto out_err;
477         }
478         req = reqsk_queue_remove(queue, sk);
479         newsk = req->sk;
480
481         if (sk->sk_protocol == IPPROTO_TCP &&
482             tcp_rsk(req)->tfo_listener) {
483                 spin_lock_bh(&queue->fastopenq.lock);
484                 if (tcp_rsk(req)->tfo_listener) {
485                         /* We are still waiting for the final ACK from 3WHS
486                          * so can't free req now. Instead, we set req->sk to
487                          * NULL to signify that the child socket is taken
488                          * so reqsk_fastopen_remove() will free the req
489                          * when 3WHS finishes (or is aborted).
490                          */
491                         req->sk = NULL;
492                         req = NULL;
493                 }
494                 spin_unlock_bh(&queue->fastopenq.lock);
495         }
496
497 out:
498         release_sock(sk);
499         if (newsk && mem_cgroup_sockets_enabled) {
500                 int amt;
501
502                 /* atomically get the memory usage, set and charge the
503                  * newsk->sk_memcg.
504                  */
505                 lock_sock(newsk);
506
507                 /* The socket has not been accepted yet, no need to look at
508                  * newsk->sk_wmem_queued.
509                  */
510                 amt = sk_mem_pages(newsk->sk_forward_alloc +
511                                    atomic_read(&newsk->sk_rmem_alloc));
512                 mem_cgroup_sk_alloc(newsk);
513                 if (newsk->sk_memcg && amt)
514                         mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
515
516                 release_sock(newsk);
517         }
518         if (req)
519                 reqsk_put(req);
520         return newsk;
521 out_err:
522         newsk = NULL;
523         req = NULL;
524         *err = error;
525         goto out;
526 }
527 EXPORT_SYMBOL(inet_csk_accept);
528
529 /*
530  * Using different timers for retransmit, delayed acks and probes
531  * We may wish use just one timer maintaining a list of expire jiffies
532  * to optimize.
533  */
534 void inet_csk_init_xmit_timers(struct sock *sk,
535                                void (*retransmit_handler)(struct timer_list *t),
536                                void (*delack_handler)(struct timer_list *t),
537                                void (*keepalive_handler)(struct timer_list *t))
538 {
539         struct inet_connection_sock *icsk = inet_csk(sk);
540
541         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
542         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
543         timer_setup(&sk->sk_timer, keepalive_handler, 0);
544         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
545 }
546 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
547
548 void inet_csk_clear_xmit_timers(struct sock *sk)
549 {
550         struct inet_connection_sock *icsk = inet_csk(sk);
551
552         icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
553
554         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
555         sk_stop_timer(sk, &icsk->icsk_delack_timer);
556         sk_stop_timer(sk, &sk->sk_timer);
557 }
558 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
559
560 void inet_csk_delete_keepalive_timer(struct sock *sk)
561 {
562         sk_stop_timer(sk, &sk->sk_timer);
563 }
564 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
565
566 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
567 {
568         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
569 }
570 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
571
572 struct dst_entry *inet_csk_route_req(const struct sock *sk,
573                                      struct flowi4 *fl4,
574                                      const struct request_sock *req)
575 {
576         const struct inet_request_sock *ireq = inet_rsk(req);
577         struct net *net = read_pnet(&ireq->ireq_net);
578         struct ip_options_rcu *opt;
579         struct rtable *rt;
580
581         rcu_read_lock();
582         opt = rcu_dereference(ireq->ireq_opt);
583
584         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
585                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
586                            sk->sk_protocol, inet_sk_flowi_flags(sk),
587                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
588                            ireq->ir_loc_addr, ireq->ir_rmt_port,
589                            htons(ireq->ir_num), sk->sk_uid);
590         security_req_classify_flow(req, flowi4_to_flowi(fl4));
591         rt = ip_route_output_flow(net, fl4, sk);
592         if (IS_ERR(rt))
593                 goto no_route;
594         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
595                 goto route_err;
596         rcu_read_unlock();
597         return &rt->dst;
598
599 route_err:
600         ip_rt_put(rt);
601 no_route:
602         rcu_read_unlock();
603         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
604         return NULL;
605 }
606 EXPORT_SYMBOL_GPL(inet_csk_route_req);
607
608 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
609                                             struct sock *newsk,
610                                             const struct request_sock *req)
611 {
612         const struct inet_request_sock *ireq = inet_rsk(req);
613         struct net *net = read_pnet(&ireq->ireq_net);
614         struct inet_sock *newinet = inet_sk(newsk);
615         struct ip_options_rcu *opt;
616         struct flowi4 *fl4;
617         struct rtable *rt;
618
619         opt = rcu_dereference(ireq->ireq_opt);
620         fl4 = &newinet->cork.fl.u.ip4;
621
622         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
623                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
624                            sk->sk_protocol, inet_sk_flowi_flags(sk),
625                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
626                            ireq->ir_loc_addr, ireq->ir_rmt_port,
627                            htons(ireq->ir_num), sk->sk_uid);
628         security_req_classify_flow(req, flowi4_to_flowi(fl4));
629         rt = ip_route_output_flow(net, fl4, sk);
630         if (IS_ERR(rt))
631                 goto no_route;
632         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
633                 goto route_err;
634         return &rt->dst;
635
636 route_err:
637         ip_rt_put(rt);
638 no_route:
639         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
640         return NULL;
641 }
642 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
643
644 #if IS_ENABLED(CONFIG_IPV6)
645 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
646 #else
647 #define AF_INET_FAMILY(fam) true
648 #endif
649
650 /* Decide when to expire the request and when to resend SYN-ACK */
651 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
652                                   const int max_retries,
653                                   const u8 rskq_defer_accept,
654                                   int *expire, int *resend)
655 {
656         if (!rskq_defer_accept) {
657                 *expire = req->num_timeout >= thresh;
658                 *resend = 1;
659                 return;
660         }
661         *expire = req->num_timeout >= thresh &&
662                   (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
663         /*
664          * Do not resend while waiting for data after ACK,
665          * start to resend on end of deferring period to give
666          * last chance for data or ACK to create established socket.
667          */
668         *resend = !inet_rsk(req)->acked ||
669                   req->num_timeout >= rskq_defer_accept - 1;
670 }
671
672 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
673 {
674         int err = req->rsk_ops->rtx_syn_ack(parent, req);
675
676         if (!err)
677                 req->num_retrans++;
678         return err;
679 }
680 EXPORT_SYMBOL(inet_rtx_syn_ack);
681
682 /* return true if req was found in the ehash table */
683 static bool reqsk_queue_unlink(struct request_sock_queue *queue,
684                                struct request_sock *req)
685 {
686         struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
687         bool found = false;
688
689         if (sk_hashed(req_to_sk(req))) {
690                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
691
692                 spin_lock(lock);
693                 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
694                 spin_unlock(lock);
695         }
696         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
697                 reqsk_put(req);
698         return found;
699 }
700
701 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
702 {
703         bool unlinked = reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req);
704
705         if (unlinked) {
706                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
707                 reqsk_put(req);
708         }
709         return unlinked;
710 }
711 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
712
713 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
714 {
715         inet_csk_reqsk_queue_drop(sk, req);
716         reqsk_put(req);
717 }
718 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
719
720 static void reqsk_timer_handler(struct timer_list *t)
721 {
722         struct request_sock *req = from_timer(req, t, rsk_timer);
723         struct sock *sk_listener = req->rsk_listener;
724         struct net *net = sock_net(sk_listener);
725         struct inet_connection_sock *icsk = inet_csk(sk_listener);
726         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
727         int qlen, expire = 0, resend = 0;
728         int max_retries, thresh;
729         u8 defer_accept;
730
731         if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
732                 goto drop;
733
734         max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
735         thresh = max_retries;
736         /* Normally all the openreqs are young and become mature
737          * (i.e. converted to established socket) for first timeout.
738          * If synack was not acknowledged for 1 second, it means
739          * one of the following things: synack was lost, ack was lost,
740          * rtt is high or nobody planned to ack (i.e. synflood).
741          * When server is a bit loaded, queue is populated with old
742          * open requests, reducing effective size of queue.
743          * When server is well loaded, queue size reduces to zero
744          * after several minutes of work. It is not synflood,
745          * it is normal operation. The solution is pruning
746          * too old entries overriding normal timeout, when
747          * situation becomes dangerous.
748          *
749          * Essentially, we reserve half of room for young
750          * embrions; and abort old ones without pity, if old
751          * ones are about to clog our table.
752          */
753         qlen = reqsk_queue_len(queue);
754         if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
755                 int young = reqsk_queue_len_young(queue) << 1;
756
757                 while (thresh > 2) {
758                         if (qlen < young)
759                                 break;
760                         thresh--;
761                         young <<= 1;
762                 }
763         }
764         defer_accept = READ_ONCE(queue->rskq_defer_accept);
765         if (defer_accept)
766                 max_retries = defer_accept;
767         syn_ack_recalc(req, thresh, max_retries, defer_accept,
768                        &expire, &resend);
769         req->rsk_ops->syn_ack_timeout(req);
770         if (!expire &&
771             (!resend ||
772              !inet_rtx_syn_ack(sk_listener, req) ||
773              inet_rsk(req)->acked)) {
774                 unsigned long timeo;
775
776                 if (req->num_timeout++ == 0)
777                         atomic_dec(&queue->young);
778                 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
779                 mod_timer(&req->rsk_timer, jiffies + timeo);
780                 return;
781         }
782 drop:
783         inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
784 }
785
786 static void reqsk_queue_hash_req(struct request_sock *req,
787                                  unsigned long timeout)
788 {
789         req->num_retrans = 0;
790         req->num_timeout = 0;
791         req->sk = NULL;
792
793         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
794         mod_timer(&req->rsk_timer, jiffies + timeout);
795
796         inet_ehash_insert(req_to_sk(req), NULL, NULL);
797         /* before letting lookups find us, make sure all req fields
798          * are committed to memory and refcnt initialized.
799          */
800         smp_wmb();
801         refcount_set(&req->rsk_refcnt, 2 + 1);
802 }
803
804 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
805                                    unsigned long timeout)
806 {
807         reqsk_queue_hash_req(req, timeout);
808         inet_csk_reqsk_queue_added(sk);
809 }
810 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
811
812 /**
813  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
814  *      @sk: the socket to clone
815  *      @req: request_sock
816  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
817  *
818  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
819  */
820 struct sock *inet_csk_clone_lock(const struct sock *sk,
821                                  const struct request_sock *req,
822                                  const gfp_t priority)
823 {
824         struct sock *newsk = sk_clone_lock(sk, priority);
825
826         if (newsk) {
827                 struct inet_connection_sock *newicsk = inet_csk(newsk);
828
829                 newsk->sk_wait_pending = 0;
830                 inet_sk_set_state(newsk, TCP_SYN_RECV);
831                 newicsk->icsk_bind_hash = NULL;
832
833                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
834                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
835                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
836
837                 /* listeners have SOCK_RCU_FREE, not the children */
838                 sock_reset_flag(newsk, SOCK_RCU_FREE);
839
840                 inet_sk(newsk)->mc_list = NULL;
841
842                 newsk->sk_mark = inet_rsk(req)->ir_mark;
843                 atomic64_set(&newsk->sk_cookie,
844                              atomic64_read(&inet_rsk(req)->ir_cookie));
845
846                 newicsk->icsk_retransmits = 0;
847                 newicsk->icsk_backoff     = 0;
848                 newicsk->icsk_probes_out  = 0;
849
850                 /* Deinitialize accept_queue to trap illegal accesses. */
851                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
852
853                 security_inet_csk_clone(newsk, req);
854         }
855         return newsk;
856 }
857 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
858
859 /*
860  * At this point, there should be no process reference to this
861  * socket, and thus no user references at all.  Therefore we
862  * can assume the socket waitqueue is inactive and nobody will
863  * try to jump onto it.
864  */
865 void inet_csk_destroy_sock(struct sock *sk)
866 {
867         WARN_ON(sk->sk_state != TCP_CLOSE);
868         WARN_ON(!sock_flag(sk, SOCK_DEAD));
869
870         /* It cannot be in hash table! */
871         WARN_ON(!sk_unhashed(sk));
872
873         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
874         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
875
876         sk->sk_prot->destroy(sk);
877
878         sk_stream_kill_queues(sk);
879
880         xfrm_sk_free_policy(sk);
881
882         sk_refcnt_debug_release(sk);
883
884         percpu_counter_dec(sk->sk_prot->orphan_count);
885
886         sock_put(sk);
887 }
888 EXPORT_SYMBOL(inet_csk_destroy_sock);
889
890 /* This function allows to force a closure of a socket after the call to
891  * tcp/dccp_create_openreq_child().
892  */
893 void inet_csk_prepare_forced_close(struct sock *sk)
894         __releases(&sk->sk_lock.slock)
895 {
896         /* sk_clone_lock locked the socket and set refcnt to 2 */
897         bh_unlock_sock(sk);
898         sock_put(sk);
899
900         /* The below has to be done to allow calling inet_csk_destroy_sock */
901         sock_set_flag(sk, SOCK_DEAD);
902         percpu_counter_inc(sk->sk_prot->orphan_count);
903         inet_sk(sk)->inet_num = 0;
904 }
905 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
906
907 static int inet_ulp_can_listen(const struct sock *sk)
908 {
909         const struct inet_connection_sock *icsk = inet_csk(sk);
910
911         if (icsk->icsk_ulp_ops)
912                 return -EINVAL;
913
914         return 0;
915 }
916
917 int inet_csk_listen_start(struct sock *sk, int backlog)
918 {
919         struct inet_connection_sock *icsk = inet_csk(sk);
920         struct inet_sock *inet = inet_sk(sk);
921         int err;
922
923         err = inet_ulp_can_listen(sk);
924         if (unlikely(err))
925                 return err;
926
927         reqsk_queue_alloc(&icsk->icsk_accept_queue);
928
929         sk->sk_max_ack_backlog = backlog;
930         sk->sk_ack_backlog = 0;
931         inet_csk_delack_init(sk);
932
933         /* There is race window here: we announce ourselves listening,
934          * but this transition is still not validated by get_port().
935          * It is OK, because this socket enters to hash table only
936          * after validation is complete.
937          */
938         err = -EADDRINUSE;
939         inet_sk_state_store(sk, TCP_LISTEN);
940         if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
941                 inet->inet_sport = htons(inet->inet_num);
942
943                 sk_dst_reset(sk);
944                 err = sk->sk_prot->hash(sk);
945
946                 if (likely(!err))
947                         return 0;
948         }
949
950         inet_sk_set_state(sk, TCP_CLOSE);
951         return err;
952 }
953 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
954
955 static void inet_child_forget(struct sock *sk, struct request_sock *req,
956                               struct sock *child)
957 {
958         sk->sk_prot->disconnect(child, O_NONBLOCK);
959
960         sock_orphan(child);
961
962         percpu_counter_inc(sk->sk_prot->orphan_count);
963
964         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
965                 BUG_ON(tcp_sk(child)->fastopen_rsk != req);
966                 BUG_ON(sk != req->rsk_listener);
967
968                 /* Paranoid, to prevent race condition if
969                  * an inbound pkt destined for child is
970                  * blocked by sock lock in tcp_v4_rcv().
971                  * Also to satisfy an assertion in
972                  * tcp_v4_destroy_sock().
973                  */
974                 tcp_sk(child)->fastopen_rsk = NULL;
975         }
976         inet_csk_destroy_sock(child);
977 }
978
979 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
980                                       struct request_sock *req,
981                                       struct sock *child)
982 {
983         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
984
985         spin_lock(&queue->rskq_lock);
986         if (unlikely(sk->sk_state != TCP_LISTEN)) {
987                 inet_child_forget(sk, req, child);
988                 child = NULL;
989         } else {
990                 req->sk = child;
991                 req->dl_next = NULL;
992                 if (queue->rskq_accept_head == NULL)
993                         WRITE_ONCE(queue->rskq_accept_head, req);
994                 else
995                         queue->rskq_accept_tail->dl_next = req;
996                 queue->rskq_accept_tail = req;
997                 sk_acceptq_added(sk);
998         }
999         spin_unlock(&queue->rskq_lock);
1000         return child;
1001 }
1002 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1003
1004 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1005                                          struct request_sock *req, bool own_req)
1006 {
1007         if (own_req) {
1008                 inet_csk_reqsk_queue_drop(sk, req);
1009                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1010                 if (inet_csk_reqsk_queue_add(sk, req, child))
1011                         return child;
1012         }
1013         /* Too bad, another child took ownership of the request, undo. */
1014         bh_unlock_sock(child);
1015         sock_put(child);
1016         return NULL;
1017 }
1018 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1019
1020 /*
1021  *      This routine closes sockets which have been at least partially
1022  *      opened, but not yet accepted.
1023  */
1024 void inet_csk_listen_stop(struct sock *sk)
1025 {
1026         struct inet_connection_sock *icsk = inet_csk(sk);
1027         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1028         struct request_sock *next, *req;
1029
1030         /* Following specs, it would be better either to send FIN
1031          * (and enter FIN-WAIT-1, it is normal close)
1032          * or to send active reset (abort).
1033          * Certainly, it is pretty dangerous while synflood, but it is
1034          * bad justification for our negligence 8)
1035          * To be honest, we are not able to make either
1036          * of the variants now.                 --ANK
1037          */
1038         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1039                 struct sock *child = req->sk;
1040
1041                 local_bh_disable();
1042                 bh_lock_sock(child);
1043                 WARN_ON(sock_owned_by_user(child));
1044                 sock_hold(child);
1045
1046                 inet_child_forget(sk, req, child);
1047                 reqsk_put(req);
1048                 bh_unlock_sock(child);
1049                 local_bh_enable();
1050                 sock_put(child);
1051
1052                 cond_resched();
1053         }
1054         if (queue->fastopenq.rskq_rst_head) {
1055                 /* Free all the reqs queued in rskq_rst_head. */
1056                 spin_lock_bh(&queue->fastopenq.lock);
1057                 req = queue->fastopenq.rskq_rst_head;
1058                 queue->fastopenq.rskq_rst_head = NULL;
1059                 spin_unlock_bh(&queue->fastopenq.lock);
1060                 while (req != NULL) {
1061                         next = req->dl_next;
1062                         reqsk_put(req);
1063                         req = next;
1064                 }
1065         }
1066         WARN_ON_ONCE(sk->sk_ack_backlog);
1067 }
1068 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1069
1070 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1071 {
1072         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1073         const struct inet_sock *inet = inet_sk(sk);
1074
1075         sin->sin_family         = AF_INET;
1076         sin->sin_addr.s_addr    = inet->inet_daddr;
1077         sin->sin_port           = inet->inet_dport;
1078 }
1079 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1080
1081 #ifdef CONFIG_COMPAT
1082 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1083                                char __user *optval, int __user *optlen)
1084 {
1085         const struct inet_connection_sock *icsk = inet_csk(sk);
1086
1087         if (icsk->icsk_af_ops->compat_getsockopt)
1088                 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1089                                                             optval, optlen);
1090         return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1091                                              optval, optlen);
1092 }
1093 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1094
1095 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1096                                char __user *optval, unsigned int optlen)
1097 {
1098         const struct inet_connection_sock *icsk = inet_csk(sk);
1099
1100         if (icsk->icsk_af_ops->compat_setsockopt)
1101                 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1102                                                             optval, optlen);
1103         return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1104                                              optval, optlen);
1105 }
1106 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1107 #endif
1108
1109 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1110 {
1111         const struct inet_sock *inet = inet_sk(sk);
1112         const struct ip_options_rcu *inet_opt;
1113         __be32 daddr = inet->inet_daddr;
1114         struct flowi4 *fl4;
1115         struct rtable *rt;
1116
1117         rcu_read_lock();
1118         inet_opt = rcu_dereference(inet->inet_opt);
1119         if (inet_opt && inet_opt->opt.srr)
1120                 daddr = inet_opt->opt.faddr;
1121         fl4 = &fl->u.ip4;
1122         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1123                                    inet->inet_saddr, inet->inet_dport,
1124                                    inet->inet_sport, sk->sk_protocol,
1125                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1126         if (IS_ERR(rt))
1127                 rt = NULL;
1128         if (rt)
1129                 sk_setup_caps(sk, &rt->dst);
1130         rcu_read_unlock();
1131
1132         return &rt->dst;
1133 }
1134
1135 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1136 {
1137         struct dst_entry *dst = __sk_dst_check(sk, 0);
1138         struct inet_sock *inet = inet_sk(sk);
1139
1140         if (!dst) {
1141                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1142                 if (!dst)
1143                         goto out;
1144         }
1145         dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1146
1147         dst = __sk_dst_check(sk, 0);
1148         if (!dst)
1149                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1150 out:
1151         return dst;
1152 }
1153 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);