GNU Linux-libre 4.9.337-gnu1
[releases.git] / net / ipv4 / inet_fragment.c
1 /*
2  * inet fragments management
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *              Authors:        Pavel Emelyanov <xemul@openvz.org>
10  *                              Started as consolidation of ipv4/ip_fragment.c,
11  *                              ipv6/reassembly. and ipv6 nf conntrack reassembly
12  */
13
14 #include <linux/list.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/timer.h>
18 #include <linux/mm.h>
19 #include <linux/random.h>
20 #include <linux/skbuff.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/slab.h>
23
24 #include <net/sock.h>
25 #include <net/inet_frag.h>
26 #include <net/inet_ecn.h>
27 #include <net/ip.h>
28 #include <net/ipv6.h>
29
30 /* Use skb->cb to track consecutive/adjacent fragments coming at
31  * the end of the queue. Nodes in the rb-tree queue will
32  * contain "runs" of one or more adjacent fragments.
33  *
34  * Invariants:
35  * - next_frag is NULL at the tail of a "run";
36  * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
37  */
38 struct ipfrag_skb_cb {
39         union {
40                 struct inet_skb_parm    h4;
41                 struct inet6_skb_parm   h6;
42         };
43         struct sk_buff          *next_frag;
44         int                     frag_run_len;
45 };
46
47 #define FRAG_CB(skb)            ((struct ipfrag_skb_cb *)((skb)->cb))
48
49 static void fragcb_clear(struct sk_buff *skb)
50 {
51         RB_CLEAR_NODE(&skb->rbnode);
52         FRAG_CB(skb)->next_frag = NULL;
53         FRAG_CB(skb)->frag_run_len = skb->len;
54 }
55
56 /* Append skb to the last "run". */
57 static void fragrun_append_to_last(struct inet_frag_queue *q,
58                                    struct sk_buff *skb)
59 {
60         fragcb_clear(skb);
61
62         FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
63         FRAG_CB(q->fragments_tail)->next_frag = skb;
64         q->fragments_tail = skb;
65 }
66
67 /* Create a new "run" with the skb. */
68 static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
69 {
70         BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
71         fragcb_clear(skb);
72
73         if (q->last_run_head)
74                 rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
75                              &q->last_run_head->rbnode.rb_right);
76         else
77                 rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
78         rb_insert_color(&skb->rbnode, &q->rb_fragments);
79
80         q->fragments_tail = skb;
81         q->last_run_head = skb;
82 }
83
84 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
85  * Value : 0xff if frame should be dropped.
86  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
87  */
88 const u8 ip_frag_ecn_table[16] = {
89         /* at least one fragment had CE, and others ECT_0 or ECT_1 */
90         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]                      = INET_ECN_CE,
91         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]                      = INET_ECN_CE,
92         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]   = INET_ECN_CE,
93
94         /* invalid combinations : drop frame */
95         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
96         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
97         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
98         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
99         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
100         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
101         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
102 };
103 EXPORT_SYMBOL(ip_frag_ecn_table);
104
105 int inet_frags_init(struct inet_frags *f)
106 {
107         f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
108                                             NULL);
109         if (!f->frags_cachep)
110                 return -ENOMEM;
111
112         return 0;
113 }
114 EXPORT_SYMBOL(inet_frags_init);
115
116 void inet_frags_fini(struct inet_frags *f)
117 {
118         /* We must wait that all inet_frag_destroy_rcu() have completed. */
119         rcu_barrier();
120
121         kmem_cache_destroy(f->frags_cachep);
122         f->frags_cachep = NULL;
123 }
124 EXPORT_SYMBOL(inet_frags_fini);
125
126 static void inet_frags_free_cb(void *ptr, void *arg)
127 {
128         struct inet_frag_queue *fq = ptr;
129
130         /* If we can not cancel the timer, it means this frag_queue
131          * is already disappearing, we have nothing to do.
132          * Otherwise, we own a refcount until the end of this function.
133          */
134         if (!del_timer(&fq->timer))
135                 return;
136
137         spin_lock_bh(&fq->lock);
138         if (!(fq->flags & INET_FRAG_COMPLETE)) {
139                 fq->flags |= INET_FRAG_COMPLETE;
140                 atomic_dec(&fq->refcnt);
141         }
142         spin_unlock_bh(&fq->lock);
143
144         inet_frag_put(fq);
145 }
146
147 void inet_frags_exit_net(struct netns_frags *nf)
148 {
149         nf->high_thresh = 0; /* prevent creation of new frags */
150
151         rhashtable_free_and_destroy(&nf->rhashtable, inet_frags_free_cb, NULL);
152 }
153 EXPORT_SYMBOL(inet_frags_exit_net);
154
155 void inet_frag_kill(struct inet_frag_queue *fq)
156 {
157         if (del_timer(&fq->timer))
158                 atomic_dec(&fq->refcnt);
159
160         if (!(fq->flags & INET_FRAG_COMPLETE)) {
161                 struct netns_frags *nf = fq->net;
162
163                 fq->flags |= INET_FRAG_COMPLETE;
164                 rhashtable_remove_fast(&nf->rhashtable, &fq->node, nf->f->rhash_params);
165                 atomic_dec(&fq->refcnt);
166         }
167 }
168 EXPORT_SYMBOL(inet_frag_kill);
169
170 static void inet_frag_destroy_rcu(struct rcu_head *head)
171 {
172         struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
173                                                  rcu);
174         struct inet_frags *f = q->net->f;
175
176         if (f->destructor)
177                 f->destructor(q);
178         kmem_cache_free(f->frags_cachep, q);
179 }
180
181 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
182 {
183         struct rb_node *p = rb_first(root);
184         unsigned int sum = 0;
185
186         while (p) {
187                 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
188
189                 p = rb_next(p);
190                 rb_erase(&skb->rbnode, root);
191                 while (skb) {
192                         struct sk_buff *next = FRAG_CB(skb)->next_frag;
193
194                         sum += skb->truesize;
195                         kfree_skb(skb);
196                         skb = next;
197                 }
198         }
199         return sum;
200 }
201 EXPORT_SYMBOL(inet_frag_rbtree_purge);
202
203 void inet_frag_destroy(struct inet_frag_queue *q)
204 {
205         struct sk_buff *fp;
206         struct netns_frags *nf;
207         unsigned int sum, sum_truesize = 0;
208         struct inet_frags *f;
209
210         WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
211         WARN_ON(del_timer(&q->timer) != 0);
212
213         /* Release all fragment data. */
214         fp = q->fragments;
215         nf = q->net;
216         f = nf->f;
217         if (fp) {
218                 do {
219                         struct sk_buff *xp = fp->next;
220
221                         sum_truesize += fp->truesize;
222                         kfree_skb(fp);
223                         fp = xp;
224                 } while (fp);
225         } else {
226                 sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
227         }
228         sum = sum_truesize + f->qsize;
229
230         call_rcu(&q->rcu, inet_frag_destroy_rcu);
231
232         sub_frag_mem_limit(nf, sum);
233 }
234 EXPORT_SYMBOL(inet_frag_destroy);
235
236 static struct inet_frag_queue *inet_frag_alloc(struct netns_frags *nf,
237                                                struct inet_frags *f,
238                                                void *arg)
239 {
240         struct inet_frag_queue *q;
241
242         if (!nf->high_thresh || frag_mem_limit(nf) > nf->high_thresh)
243                 return NULL;
244
245         q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
246         if (!q)
247                 return NULL;
248
249         q->net = nf;
250         f->constructor(q, arg);
251         add_frag_mem_limit(nf, f->qsize);
252
253         setup_timer(&q->timer, f->frag_expire, (unsigned long)q);
254         spin_lock_init(&q->lock);
255         atomic_set(&q->refcnt, 3);
256
257         return q;
258 }
259
260 static struct inet_frag_queue *inet_frag_create(struct netns_frags *nf,
261                                                 void *arg,
262                                                 struct inet_frag_queue **prev)
263 {
264         struct inet_frags *f = nf->f;
265         struct inet_frag_queue *q;
266
267         q = inet_frag_alloc(nf, f, arg);
268         if (!q) {
269                 *prev = ERR_PTR(-ENOMEM);
270                 return NULL;
271         }
272         mod_timer(&q->timer, jiffies + nf->timeout);
273
274         *prev = rhashtable_lookup_get_insert_key(&nf->rhashtable, &q->key,
275                                                  &q->node, f->rhash_params);
276         if (*prev) {
277                 q->flags |= INET_FRAG_COMPLETE;
278                 inet_frag_kill(q);
279                 inet_frag_destroy(q);
280                 return NULL;
281         }
282         return q;
283 }
284 EXPORT_SYMBOL(inet_frag_create);
285
286 /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
287 struct inet_frag_queue *inet_frag_find(struct netns_frags *nf, void *key)
288 {
289         struct inet_frag_queue *fq = NULL, *prev;
290
291         rcu_read_lock();
292         prev = rhashtable_lookup(&nf->rhashtable, key, nf->f->rhash_params);
293         if (!prev)
294                 fq = inet_frag_create(nf, key, &prev);
295         if (prev && !IS_ERR(prev)) {
296                 fq = prev;
297                 if (!atomic_inc_not_zero(&fq->refcnt))
298                         fq = NULL;
299         }
300         rcu_read_unlock();
301         return fq;
302 }
303 EXPORT_SYMBOL(inet_frag_find);
304
305 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
306                            int offset, int end)
307 {
308         struct sk_buff *last = q->fragments_tail;
309
310         /* RFC5722, Section 4, amended by Errata ID : 3089
311          *                          When reassembling an IPv6 datagram, if
312          *   one or more its constituent fragments is determined to be an
313          *   overlapping fragment, the entire datagram (and any constituent
314          *   fragments) MUST be silently discarded.
315          *
316          * Duplicates, however, should be ignored (i.e. skb dropped, but the
317          * queue/fragments kept for later reassembly).
318          */
319         if (!last)
320                 fragrun_create(q, skb);  /* First fragment. */
321         else if (last->ip_defrag_offset + last->len < end) {
322                 /* This is the common case: skb goes to the end. */
323                 /* Detect and discard overlaps. */
324                 if (offset < last->ip_defrag_offset + last->len)
325                         return IPFRAG_OVERLAP;
326                 if (offset == last->ip_defrag_offset + last->len)
327                         fragrun_append_to_last(q, skb);
328                 else
329                         fragrun_create(q, skb);
330         } else {
331                 /* Binary search. Note that skb can become the first fragment,
332                  * but not the last (covered above).
333                  */
334                 struct rb_node **rbn, *parent;
335
336                 rbn = &q->rb_fragments.rb_node;
337                 do {
338                         struct sk_buff *curr;
339                         int curr_run_end;
340
341                         parent = *rbn;
342                         curr = rb_to_skb(parent);
343                         curr_run_end = curr->ip_defrag_offset +
344                                         FRAG_CB(curr)->frag_run_len;
345                         if (end <= curr->ip_defrag_offset)
346                                 rbn = &parent->rb_left;
347                         else if (offset >= curr_run_end)
348                                 rbn = &parent->rb_right;
349                         else if (offset >= curr->ip_defrag_offset &&
350                                  end <= curr_run_end)
351                                 return IPFRAG_DUP;
352                         else
353                                 return IPFRAG_OVERLAP;
354                 } while (*rbn);
355                 /* Here we have parent properly set, and rbn pointing to
356                  * one of its NULL left/right children. Insert skb.
357                  */
358                 fragcb_clear(skb);
359                 rb_link_node(&skb->rbnode, parent, rbn);
360                 rb_insert_color(&skb->rbnode, &q->rb_fragments);
361         }
362
363         skb->ip_defrag_offset = offset;
364
365         return IPFRAG_OK;
366 }
367 EXPORT_SYMBOL(inet_frag_queue_insert);
368
369 void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
370                               struct sk_buff *parent)
371 {
372         struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
373         struct sk_buff **nextp;
374         int delta;
375
376         if (head != skb) {
377                 fp = skb_clone(skb, GFP_ATOMIC);
378                 if (!fp)
379                         return NULL;
380                 FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
381                 if (RB_EMPTY_NODE(&skb->rbnode))
382                         FRAG_CB(parent)->next_frag = fp;
383                 else
384                         rb_replace_node(&skb->rbnode, &fp->rbnode,
385                                         &q->rb_fragments);
386                 if (q->fragments_tail == skb)
387                         q->fragments_tail = fp;
388                 skb_morph(skb, head);
389                 FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
390                 rb_replace_node(&head->rbnode, &skb->rbnode,
391                                 &q->rb_fragments);
392                 consume_skb(head);
393                 head = skb;
394         }
395         WARN_ON(head->ip_defrag_offset != 0);
396
397         delta = -head->truesize;
398
399         /* Head of list must not be cloned. */
400         if (skb_unclone(head, GFP_ATOMIC))
401                 return NULL;
402
403         delta += head->truesize;
404         if (delta)
405                 add_frag_mem_limit(q->net, delta);
406
407         /* If the first fragment is fragmented itself, we split
408          * it to two chunks: the first with data and paged part
409          * and the second, holding only fragments.
410          */
411         if (skb_has_frag_list(head)) {
412                 struct sk_buff *clone;
413                 int i, plen = 0;
414
415                 clone = alloc_skb(0, GFP_ATOMIC);
416                 if (!clone)
417                         return NULL;
418                 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
419                 skb_frag_list_init(head);
420                 for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
421                         plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
422                 clone->data_len = head->data_len - plen;
423                 clone->len = clone->data_len;
424                 head->truesize += clone->truesize;
425                 clone->csum = 0;
426                 clone->ip_summed = head->ip_summed;
427                 add_frag_mem_limit(q->net, clone->truesize);
428                 skb_shinfo(head)->frag_list = clone;
429                 nextp = &clone->next;
430         } else {
431                 nextp = &skb_shinfo(head)->frag_list;
432         }
433
434         return nextp;
435 }
436 EXPORT_SYMBOL(inet_frag_reasm_prepare);
437
438 void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
439                             void *reasm_data)
440 {
441         struct sk_buff **nextp = (struct sk_buff **)reasm_data;
442         struct rb_node *rbn;
443         struct sk_buff *fp;
444
445         skb_push(head, head->data - skb_network_header(head));
446
447         /* Traverse the tree in order, to build frag_list. */
448         fp = FRAG_CB(head)->next_frag;
449         rbn = rb_next(&head->rbnode);
450         rb_erase(&head->rbnode, &q->rb_fragments);
451         while (rbn || fp) {
452                 /* fp points to the next sk_buff in the current run;
453                  * rbn points to the next run.
454                  */
455                 /* Go through the current run. */
456                 while (fp) {
457                         *nextp = fp;
458                         nextp = &fp->next;
459                         fp->prev = NULL;
460                         memset(&fp->rbnode, 0, sizeof(fp->rbnode));
461                         fp->sk = NULL;
462                         head->data_len += fp->len;
463                         head->len += fp->len;
464                         if (head->ip_summed != fp->ip_summed)
465                                 head->ip_summed = CHECKSUM_NONE;
466                         else if (head->ip_summed == CHECKSUM_COMPLETE)
467                                 head->csum = csum_add(head->csum, fp->csum);
468                         head->truesize += fp->truesize;
469                         fp = FRAG_CB(fp)->next_frag;
470                 }
471                 /* Move to the next run. */
472                 if (rbn) {
473                         struct rb_node *rbnext = rb_next(rbn);
474
475                         fp = rb_to_skb(rbn);
476                         rb_erase(rbn, &q->rb_fragments);
477                         rbn = rbnext;
478                 }
479         }
480         sub_frag_mem_limit(q->net, head->truesize);
481
482         *nextp = NULL;
483         head->next = NULL;
484         head->prev = NULL;
485         head->tstamp = q->stamp;
486 }
487 EXPORT_SYMBOL(inet_frag_reasm_finish);
488
489 struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
490 {
491         struct sk_buff *head;
492
493         if (q->fragments) {
494                 head = q->fragments;
495                 q->fragments = head->next;
496         } else {
497                 struct sk_buff *skb;
498
499                 head = skb_rb_first(&q->rb_fragments);
500                 if (!head)
501                         return NULL;
502                 skb = FRAG_CB(head)->next_frag;
503                 if (skb)
504                         rb_replace_node(&head->rbnode, &skb->rbnode,
505                                         &q->rb_fragments);
506                 else
507                         rb_erase(&head->rbnode, &q->rb_fragments);
508                 memset(&head->rbnode, 0, sizeof(head->rbnode));
509                 barrier();
510         }
511         if (head == q->fragments_tail)
512                 q->fragments_tail = NULL;
513
514         sub_frag_mem_limit(q->net, head->truesize);
515
516         return head;
517 }
518 EXPORT_SYMBOL(inet_frag_pull_head);