GNU Linux-libre 4.19.264-gnu1
[releases.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #include "pcm_local.h"
37
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50
51 /*
52  * fill ring buffer with silence
53  * runtime->silence_start: starting pointer to silence area
54  * runtime->silence_filled: size filled with silence
55  * runtime->silence_threshold: threshold from application
56  * runtime->silence_size: maximal size from application
57  *
58  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59  */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62         struct snd_pcm_runtime *runtime = substream->runtime;
63         snd_pcm_uframes_t frames, ofs, transfer;
64         int err;
65
66         if (runtime->silence_size < runtime->boundary) {
67                 snd_pcm_sframes_t noise_dist, n;
68                 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69                 if (runtime->silence_start != appl_ptr) {
70                         n = appl_ptr - runtime->silence_start;
71                         if (n < 0)
72                                 n += runtime->boundary;
73                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74                                 runtime->silence_filled -= n;
75                         else
76                                 runtime->silence_filled = 0;
77                         runtime->silence_start = appl_ptr;
78                 }
79                 if (runtime->silence_filled >= runtime->buffer_size)
80                         return;
81                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83                         return;
84                 frames = runtime->silence_threshold - noise_dist;
85                 if (frames > runtime->silence_size)
86                         frames = runtime->silence_size;
87         } else {
88                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
89                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90                         if (avail > runtime->buffer_size)
91                                 avail = runtime->buffer_size;
92                         runtime->silence_filled = avail > 0 ? avail : 0;
93                         runtime->silence_start = (runtime->status->hw_ptr +
94                                                   runtime->silence_filled) %
95                                                  runtime->boundary;
96                 } else {
97                         ofs = runtime->status->hw_ptr;
98                         frames = new_hw_ptr - ofs;
99                         if ((snd_pcm_sframes_t)frames < 0)
100                                 frames += runtime->boundary;
101                         runtime->silence_filled -= frames;
102                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103                                 runtime->silence_filled = 0;
104                                 runtime->silence_start = new_hw_ptr;
105                         } else {
106                                 runtime->silence_start = ofs;
107                         }
108                 }
109                 frames = runtime->buffer_size - runtime->silence_filled;
110         }
111         if (snd_BUG_ON(frames > runtime->buffer_size))
112                 return;
113         if (frames == 0)
114                 return;
115         ofs = runtime->silence_start % runtime->buffer_size;
116         while (frames > 0) {
117                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118                 err = fill_silence_frames(substream, ofs, transfer);
119                 snd_BUG_ON(err < 0);
120                 runtime->silence_filled += transfer;
121                 frames -= transfer;
122                 ofs = 0;
123         }
124 }
125
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128                            char *name, size_t len)
129 {
130         snprintf(name, len, "pcmC%dD%d%c:%d",
131                  substream->pcm->card->number,
132                  substream->pcm->device,
133                  substream->stream ? 'c' : 'p',
134                  substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138
139 #define XRUN_DEBUG_BASIC        (1<<0)
140 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
142
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144
145 #define xrun_debug(substream, mask) \
146                         ((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask)     0
149 #endif
150
151 #define dump_stack_on_xrun(substream) do {                      \
152                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
153                         dump_stack();                           \
154         } while (0)
155
156 /* call with stream lock held */
157 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
158 {
159         struct snd_pcm_runtime *runtime = substream->runtime;
160
161         trace_xrun(substream);
162         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
163                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
164         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
165         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
166                 char name[16];
167                 snd_pcm_debug_name(substream, name, sizeof(name));
168                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
169                 dump_stack_on_xrun(substream);
170         }
171 }
172
173 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
174 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
175         do {                                                            \
176                 trace_hw_ptr_error(substream, reason);  \
177                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
178                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
179                                            (in_interrupt) ? 'Q' : 'P', ##args); \
180                         dump_stack_on_xrun(substream);                  \
181                 }                                                       \
182         } while (0)
183
184 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
185
186 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
187
188 #endif
189
190 int snd_pcm_update_state(struct snd_pcm_substream *substream,
191                          struct snd_pcm_runtime *runtime)
192 {
193         snd_pcm_uframes_t avail;
194
195         avail = snd_pcm_avail(substream);
196         if (avail > runtime->avail_max)
197                 runtime->avail_max = avail;
198         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
199                 if (avail >= runtime->buffer_size) {
200                         snd_pcm_drain_done(substream);
201                         return -EPIPE;
202                 }
203         } else {
204                 if (avail >= runtime->stop_threshold) {
205                         __snd_pcm_xrun(substream);
206                         return -EPIPE;
207                 }
208         }
209         if (runtime->twake) {
210                 if (avail >= runtime->twake)
211                         wake_up(&runtime->tsleep);
212         } else if (avail >= runtime->control->avail_min)
213                 wake_up(&runtime->sleep);
214         return 0;
215 }
216
217 static void update_audio_tstamp(struct snd_pcm_substream *substream,
218                                 struct timespec *curr_tstamp,
219                                 struct timespec *audio_tstamp)
220 {
221         struct snd_pcm_runtime *runtime = substream->runtime;
222         u64 audio_frames, audio_nsecs;
223         struct timespec driver_tstamp;
224
225         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
226                 return;
227
228         if (!(substream->ops->get_time_info) ||
229                 (runtime->audio_tstamp_report.actual_type ==
230                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
231
232                 /*
233                  * provide audio timestamp derived from pointer position
234                  * add delay only if requested
235                  */
236
237                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
238
239                 if (runtime->audio_tstamp_config.report_delay) {
240                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
241                                 audio_frames -=  runtime->delay;
242                         else
243                                 audio_frames +=  runtime->delay;
244                 }
245                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
246                                 runtime->rate);
247                 *audio_tstamp = ns_to_timespec(audio_nsecs);
248         }
249         if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
250                 runtime->status->audio_tstamp = *audio_tstamp;
251                 runtime->status->tstamp = *curr_tstamp;
252         }
253
254         /*
255          * re-take a driver timestamp to let apps detect if the reference tstamp
256          * read by low-level hardware was provided with a delay
257          */
258         snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
259         runtime->driver_tstamp = driver_tstamp;
260 }
261
262 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
263                                   unsigned int in_interrupt)
264 {
265         struct snd_pcm_runtime *runtime = substream->runtime;
266         snd_pcm_uframes_t pos;
267         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
268         snd_pcm_sframes_t hdelta, delta;
269         unsigned long jdelta;
270         unsigned long curr_jiffies;
271         struct timespec curr_tstamp;
272         struct timespec audio_tstamp;
273         int crossed_boundary = 0;
274
275         old_hw_ptr = runtime->status->hw_ptr;
276
277         /*
278          * group pointer, time and jiffies reads to allow for more
279          * accurate correlations/corrections.
280          * The values are stored at the end of this routine after
281          * corrections for hw_ptr position
282          */
283         pos = substream->ops->pointer(substream);
284         curr_jiffies = jiffies;
285         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
286                 if ((substream->ops->get_time_info) &&
287                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
288                         substream->ops->get_time_info(substream, &curr_tstamp,
289                                                 &audio_tstamp,
290                                                 &runtime->audio_tstamp_config,
291                                                 &runtime->audio_tstamp_report);
292
293                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
294                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
295                                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
296                 } else
297                         snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298         }
299
300         if (pos == SNDRV_PCM_POS_XRUN) {
301                 __snd_pcm_xrun(substream);
302                 return -EPIPE;
303         }
304         if (pos >= runtime->buffer_size) {
305                 if (printk_ratelimit()) {
306                         char name[16];
307                         snd_pcm_debug_name(substream, name, sizeof(name));
308                         pcm_err(substream->pcm,
309                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
310                                 name, pos, runtime->buffer_size,
311                                 runtime->period_size);
312                 }
313                 pos = 0;
314         }
315         pos -= pos % runtime->min_align;
316         trace_hwptr(substream, pos, in_interrupt);
317         hw_base = runtime->hw_ptr_base;
318         new_hw_ptr = hw_base + pos;
319         if (in_interrupt) {
320                 /* we know that one period was processed */
321                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
322                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
323                 if (delta > new_hw_ptr) {
324                         /* check for double acknowledged interrupts */
325                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
326                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
327                                 hw_base += runtime->buffer_size;
328                                 if (hw_base >= runtime->boundary) {
329                                         hw_base = 0;
330                                         crossed_boundary++;
331                                 }
332                                 new_hw_ptr = hw_base + pos;
333                                 goto __delta;
334                         }
335                 }
336         }
337         /* new_hw_ptr might be lower than old_hw_ptr in case when */
338         /* pointer crosses the end of the ring buffer */
339         if (new_hw_ptr < old_hw_ptr) {
340                 hw_base += runtime->buffer_size;
341                 if (hw_base >= runtime->boundary) {
342                         hw_base = 0;
343                         crossed_boundary++;
344                 }
345                 new_hw_ptr = hw_base + pos;
346         }
347       __delta:
348         delta = new_hw_ptr - old_hw_ptr;
349         if (delta < 0)
350                 delta += runtime->boundary;
351
352         if (runtime->no_period_wakeup) {
353                 snd_pcm_sframes_t xrun_threshold;
354                 /*
355                  * Without regular period interrupts, we have to check
356                  * the elapsed time to detect xruns.
357                  */
358                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
359                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
360                         goto no_delta_check;
361                 hdelta = jdelta - delta * HZ / runtime->rate;
362                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
363                 while (hdelta > xrun_threshold) {
364                         delta += runtime->buffer_size;
365                         hw_base += runtime->buffer_size;
366                         if (hw_base >= runtime->boundary) {
367                                 hw_base = 0;
368                                 crossed_boundary++;
369                         }
370                         new_hw_ptr = hw_base + pos;
371                         hdelta -= runtime->hw_ptr_buffer_jiffies;
372                 }
373                 goto no_delta_check;
374         }
375
376         /* something must be really wrong */
377         if (delta >= runtime->buffer_size + runtime->period_size) {
378                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
379                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
380                              substream->stream, (long)pos,
381                              (long)new_hw_ptr, (long)old_hw_ptr);
382                 return 0;
383         }
384
385         /* Do jiffies check only in xrun_debug mode */
386         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
387                 goto no_jiffies_check;
388
389         /* Skip the jiffies check for hardwares with BATCH flag.
390          * Such hardware usually just increases the position at each IRQ,
391          * thus it can't give any strange position.
392          */
393         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
394                 goto no_jiffies_check;
395         hdelta = delta;
396         if (hdelta < runtime->delay)
397                 goto no_jiffies_check;
398         hdelta -= runtime->delay;
399         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
400         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
401                 delta = jdelta /
402                         (((runtime->period_size * HZ) / runtime->rate)
403                                                                 + HZ/100);
404                 /* move new_hw_ptr according jiffies not pos variable */
405                 new_hw_ptr = old_hw_ptr;
406                 hw_base = delta;
407                 /* use loop to avoid checks for delta overflows */
408                 /* the delta value is small or zero in most cases */
409                 while (delta > 0) {
410                         new_hw_ptr += runtime->period_size;
411                         if (new_hw_ptr >= runtime->boundary) {
412                                 new_hw_ptr -= runtime->boundary;
413                                 crossed_boundary--;
414                         }
415                         delta--;
416                 }
417                 /* align hw_base to buffer_size */
418                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
419                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
420                              (long)pos, (long)hdelta,
421                              (long)runtime->period_size, jdelta,
422                              ((hdelta * HZ) / runtime->rate), hw_base,
423                              (unsigned long)old_hw_ptr,
424                              (unsigned long)new_hw_ptr);
425                 /* reset values to proper state */
426                 delta = 0;
427                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
428         }
429  no_jiffies_check:
430         if (delta > runtime->period_size + runtime->period_size / 2) {
431                 hw_ptr_error(substream, in_interrupt,
432                              "Lost interrupts?",
433                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
434                              substream->stream, (long)delta,
435                              (long)new_hw_ptr,
436                              (long)old_hw_ptr);
437         }
438
439  no_delta_check:
440         if (runtime->status->hw_ptr == new_hw_ptr) {
441                 runtime->hw_ptr_jiffies = curr_jiffies;
442                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
443                 return 0;
444         }
445
446         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
447             runtime->silence_size > 0)
448                 snd_pcm_playback_silence(substream, new_hw_ptr);
449
450         if (in_interrupt) {
451                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
452                 if (delta < 0)
453                         delta += runtime->boundary;
454                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
455                 runtime->hw_ptr_interrupt += delta;
456                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
457                         runtime->hw_ptr_interrupt -= runtime->boundary;
458         }
459         runtime->hw_ptr_base = hw_base;
460         runtime->status->hw_ptr = new_hw_ptr;
461         runtime->hw_ptr_jiffies = curr_jiffies;
462         if (crossed_boundary) {
463                 snd_BUG_ON(crossed_boundary != 1);
464                 runtime->hw_ptr_wrap += runtime->boundary;
465         }
466
467         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
468
469         return snd_pcm_update_state(substream, runtime);
470 }
471
472 /* CAUTION: call it with irq disabled */
473 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
474 {
475         return snd_pcm_update_hw_ptr0(substream, 0);
476 }
477
478 /**
479  * snd_pcm_set_ops - set the PCM operators
480  * @pcm: the pcm instance
481  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
482  * @ops: the operator table
483  *
484  * Sets the given PCM operators to the pcm instance.
485  */
486 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
487                      const struct snd_pcm_ops *ops)
488 {
489         struct snd_pcm_str *stream = &pcm->streams[direction];
490         struct snd_pcm_substream *substream;
491         
492         for (substream = stream->substream; substream != NULL; substream = substream->next)
493                 substream->ops = ops;
494 }
495 EXPORT_SYMBOL(snd_pcm_set_ops);
496
497 /**
498  * snd_pcm_sync - set the PCM sync id
499  * @substream: the pcm substream
500  *
501  * Sets the PCM sync identifier for the card.
502  */
503 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
504 {
505         struct snd_pcm_runtime *runtime = substream->runtime;
506         
507         runtime->sync.id32[0] = substream->pcm->card->number;
508         runtime->sync.id32[1] = -1;
509         runtime->sync.id32[2] = -1;
510         runtime->sync.id32[3] = -1;
511 }
512 EXPORT_SYMBOL(snd_pcm_set_sync);
513
514 /*
515  *  Standard ioctl routine
516  */
517
518 static inline unsigned int div32(unsigned int a, unsigned int b, 
519                                  unsigned int *r)
520 {
521         if (b == 0) {
522                 *r = 0;
523                 return UINT_MAX;
524         }
525         *r = a % b;
526         return a / b;
527 }
528
529 static inline unsigned int div_down(unsigned int a, unsigned int b)
530 {
531         if (b == 0)
532                 return UINT_MAX;
533         return a / b;
534 }
535
536 static inline unsigned int div_up(unsigned int a, unsigned int b)
537 {
538         unsigned int r;
539         unsigned int q;
540         if (b == 0)
541                 return UINT_MAX;
542         q = div32(a, b, &r);
543         if (r)
544                 ++q;
545         return q;
546 }
547
548 static inline unsigned int mul(unsigned int a, unsigned int b)
549 {
550         if (a == 0)
551                 return 0;
552         if (div_down(UINT_MAX, a) < b)
553                 return UINT_MAX;
554         return a * b;
555 }
556
557 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
558                                     unsigned int c, unsigned int *r)
559 {
560         u_int64_t n = (u_int64_t) a * b;
561         if (c == 0) {
562                 *r = 0;
563                 return UINT_MAX;
564         }
565         n = div_u64_rem(n, c, r);
566         if (n >= UINT_MAX) {
567                 *r = 0;
568                 return UINT_MAX;
569         }
570         return n;
571 }
572
573 /**
574  * snd_interval_refine - refine the interval value of configurator
575  * @i: the interval value to refine
576  * @v: the interval value to refer to
577  *
578  * Refines the interval value with the reference value.
579  * The interval is changed to the range satisfying both intervals.
580  * The interval status (min, max, integer, etc.) are evaluated.
581  *
582  * Return: Positive if the value is changed, zero if it's not changed, or a
583  * negative error code.
584  */
585 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
586 {
587         int changed = 0;
588         if (snd_BUG_ON(snd_interval_empty(i)))
589                 return -EINVAL;
590         if (i->min < v->min) {
591                 i->min = v->min;
592                 i->openmin = v->openmin;
593                 changed = 1;
594         } else if (i->min == v->min && !i->openmin && v->openmin) {
595                 i->openmin = 1;
596                 changed = 1;
597         }
598         if (i->max > v->max) {
599                 i->max = v->max;
600                 i->openmax = v->openmax;
601                 changed = 1;
602         } else if (i->max == v->max && !i->openmax && v->openmax) {
603                 i->openmax = 1;
604                 changed = 1;
605         }
606         if (!i->integer && v->integer) {
607                 i->integer = 1;
608                 changed = 1;
609         }
610         if (i->integer) {
611                 if (i->openmin) {
612                         i->min++;
613                         i->openmin = 0;
614                 }
615                 if (i->openmax) {
616                         i->max--;
617                         i->openmax = 0;
618                 }
619         } else if (!i->openmin && !i->openmax && i->min == i->max)
620                 i->integer = 1;
621         if (snd_interval_checkempty(i)) {
622                 snd_interval_none(i);
623                 return -EINVAL;
624         }
625         return changed;
626 }
627 EXPORT_SYMBOL(snd_interval_refine);
628
629 static int snd_interval_refine_first(struct snd_interval *i)
630 {
631         const unsigned int last_max = i->max;
632
633         if (snd_BUG_ON(snd_interval_empty(i)))
634                 return -EINVAL;
635         if (snd_interval_single(i))
636                 return 0;
637         i->max = i->min;
638         if (i->openmin)
639                 i->max++;
640         /* only exclude max value if also excluded before refine */
641         i->openmax = (i->openmax && i->max >= last_max);
642         return 1;
643 }
644
645 static int snd_interval_refine_last(struct snd_interval *i)
646 {
647         const unsigned int last_min = i->min;
648
649         if (snd_BUG_ON(snd_interval_empty(i)))
650                 return -EINVAL;
651         if (snd_interval_single(i))
652                 return 0;
653         i->min = i->max;
654         if (i->openmax)
655                 i->min--;
656         /* only exclude min value if also excluded before refine */
657         i->openmin = (i->openmin && i->min <= last_min);
658         return 1;
659 }
660
661 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
662 {
663         if (a->empty || b->empty) {
664                 snd_interval_none(c);
665                 return;
666         }
667         c->empty = 0;
668         c->min = mul(a->min, b->min);
669         c->openmin = (a->openmin || b->openmin);
670         c->max = mul(a->max,  b->max);
671         c->openmax = (a->openmax || b->openmax);
672         c->integer = (a->integer && b->integer);
673 }
674
675 /**
676  * snd_interval_div - refine the interval value with division
677  * @a: dividend
678  * @b: divisor
679  * @c: quotient
680  *
681  * c = a / b
682  *
683  * Returns non-zero if the value is changed, zero if not changed.
684  */
685 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
686 {
687         unsigned int r;
688         if (a->empty || b->empty) {
689                 snd_interval_none(c);
690                 return;
691         }
692         c->empty = 0;
693         c->min = div32(a->min, b->max, &r);
694         c->openmin = (r || a->openmin || b->openmax);
695         if (b->min > 0) {
696                 c->max = div32(a->max, b->min, &r);
697                 if (r) {
698                         c->max++;
699                         c->openmax = 1;
700                 } else
701                         c->openmax = (a->openmax || b->openmin);
702         } else {
703                 c->max = UINT_MAX;
704                 c->openmax = 0;
705         }
706         c->integer = 0;
707 }
708
709 /**
710  * snd_interval_muldivk - refine the interval value
711  * @a: dividend 1
712  * @b: dividend 2
713  * @k: divisor (as integer)
714  * @c: result
715   *
716  * c = a * b / k
717  *
718  * Returns non-zero if the value is changed, zero if not changed.
719  */
720 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
721                       unsigned int k, struct snd_interval *c)
722 {
723         unsigned int r;
724         if (a->empty || b->empty) {
725                 snd_interval_none(c);
726                 return;
727         }
728         c->empty = 0;
729         c->min = muldiv32(a->min, b->min, k, &r);
730         c->openmin = (r || a->openmin || b->openmin);
731         c->max = muldiv32(a->max, b->max, k, &r);
732         if (r) {
733                 c->max++;
734                 c->openmax = 1;
735         } else
736                 c->openmax = (a->openmax || b->openmax);
737         c->integer = 0;
738 }
739
740 /**
741  * snd_interval_mulkdiv - refine the interval value
742  * @a: dividend 1
743  * @k: dividend 2 (as integer)
744  * @b: divisor
745  * @c: result
746  *
747  * c = a * k / b
748  *
749  * Returns non-zero if the value is changed, zero if not changed.
750  */
751 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
752                       const struct snd_interval *b, struct snd_interval *c)
753 {
754         unsigned int r;
755         if (a->empty || b->empty) {
756                 snd_interval_none(c);
757                 return;
758         }
759         c->empty = 0;
760         c->min = muldiv32(a->min, k, b->max, &r);
761         c->openmin = (r || a->openmin || b->openmax);
762         if (b->min > 0) {
763                 c->max = muldiv32(a->max, k, b->min, &r);
764                 if (r) {
765                         c->max++;
766                         c->openmax = 1;
767                 } else
768                         c->openmax = (a->openmax || b->openmin);
769         } else {
770                 c->max = UINT_MAX;
771                 c->openmax = 0;
772         }
773         c->integer = 0;
774 }
775
776 /* ---- */
777
778
779 /**
780  * snd_interval_ratnum - refine the interval value
781  * @i: interval to refine
782  * @rats_count: number of ratnum_t 
783  * @rats: ratnum_t array
784  * @nump: pointer to store the resultant numerator
785  * @denp: pointer to store the resultant denominator
786  *
787  * Return: Positive if the value is changed, zero if it's not changed, or a
788  * negative error code.
789  */
790 int snd_interval_ratnum(struct snd_interval *i,
791                         unsigned int rats_count, const struct snd_ratnum *rats,
792                         unsigned int *nump, unsigned int *denp)
793 {
794         unsigned int best_num, best_den;
795         int best_diff;
796         unsigned int k;
797         struct snd_interval t;
798         int err;
799         unsigned int result_num, result_den;
800         int result_diff;
801
802         best_num = best_den = best_diff = 0;
803         for (k = 0; k < rats_count; ++k) {
804                 unsigned int num = rats[k].num;
805                 unsigned int den;
806                 unsigned int q = i->min;
807                 int diff;
808                 if (q == 0)
809                         q = 1;
810                 den = div_up(num, q);
811                 if (den < rats[k].den_min)
812                         continue;
813                 if (den > rats[k].den_max)
814                         den = rats[k].den_max;
815                 else {
816                         unsigned int r;
817                         r = (den - rats[k].den_min) % rats[k].den_step;
818                         if (r != 0)
819                                 den -= r;
820                 }
821                 diff = num - q * den;
822                 if (diff < 0)
823                         diff = -diff;
824                 if (best_num == 0 ||
825                     diff * best_den < best_diff * den) {
826                         best_diff = diff;
827                         best_den = den;
828                         best_num = num;
829                 }
830         }
831         if (best_den == 0) {
832                 i->empty = 1;
833                 return -EINVAL;
834         }
835         t.min = div_down(best_num, best_den);
836         t.openmin = !!(best_num % best_den);
837         
838         result_num = best_num;
839         result_diff = best_diff;
840         result_den = best_den;
841         best_num = best_den = best_diff = 0;
842         for (k = 0; k < rats_count; ++k) {
843                 unsigned int num = rats[k].num;
844                 unsigned int den;
845                 unsigned int q = i->max;
846                 int diff;
847                 if (q == 0) {
848                         i->empty = 1;
849                         return -EINVAL;
850                 }
851                 den = div_down(num, q);
852                 if (den > rats[k].den_max)
853                         continue;
854                 if (den < rats[k].den_min)
855                         den = rats[k].den_min;
856                 else {
857                         unsigned int r;
858                         r = (den - rats[k].den_min) % rats[k].den_step;
859                         if (r != 0)
860                                 den += rats[k].den_step - r;
861                 }
862                 diff = q * den - num;
863                 if (diff < 0)
864                         diff = -diff;
865                 if (best_num == 0 ||
866                     diff * best_den < best_diff * den) {
867                         best_diff = diff;
868                         best_den = den;
869                         best_num = num;
870                 }
871         }
872         if (best_den == 0) {
873                 i->empty = 1;
874                 return -EINVAL;
875         }
876         t.max = div_up(best_num, best_den);
877         t.openmax = !!(best_num % best_den);
878         t.integer = 0;
879         err = snd_interval_refine(i, &t);
880         if (err < 0)
881                 return err;
882
883         if (snd_interval_single(i)) {
884                 if (best_diff * result_den < result_diff * best_den) {
885                         result_num = best_num;
886                         result_den = best_den;
887                 }
888                 if (nump)
889                         *nump = result_num;
890                 if (denp)
891                         *denp = result_den;
892         }
893         return err;
894 }
895 EXPORT_SYMBOL(snd_interval_ratnum);
896
897 /**
898  * snd_interval_ratden - refine the interval value
899  * @i: interval to refine
900  * @rats_count: number of struct ratden
901  * @rats: struct ratden array
902  * @nump: pointer to store the resultant numerator
903  * @denp: pointer to store the resultant denominator
904  *
905  * Return: Positive if the value is changed, zero if it's not changed, or a
906  * negative error code.
907  */
908 static int snd_interval_ratden(struct snd_interval *i,
909                                unsigned int rats_count,
910                                const struct snd_ratden *rats,
911                                unsigned int *nump, unsigned int *denp)
912 {
913         unsigned int best_num, best_diff, best_den;
914         unsigned int k;
915         struct snd_interval t;
916         int err;
917
918         best_num = best_den = best_diff = 0;
919         for (k = 0; k < rats_count; ++k) {
920                 unsigned int num;
921                 unsigned int den = rats[k].den;
922                 unsigned int q = i->min;
923                 int diff;
924                 num = mul(q, den);
925                 if (num > rats[k].num_max)
926                         continue;
927                 if (num < rats[k].num_min)
928                         num = rats[k].num_max;
929                 else {
930                         unsigned int r;
931                         r = (num - rats[k].num_min) % rats[k].num_step;
932                         if (r != 0)
933                                 num += rats[k].num_step - r;
934                 }
935                 diff = num - q * den;
936                 if (best_num == 0 ||
937                     diff * best_den < best_diff * den) {
938                         best_diff = diff;
939                         best_den = den;
940                         best_num = num;
941                 }
942         }
943         if (best_den == 0) {
944                 i->empty = 1;
945                 return -EINVAL;
946         }
947         t.min = div_down(best_num, best_den);
948         t.openmin = !!(best_num % best_den);
949         
950         best_num = best_den = best_diff = 0;
951         for (k = 0; k < rats_count; ++k) {
952                 unsigned int num;
953                 unsigned int den = rats[k].den;
954                 unsigned int q = i->max;
955                 int diff;
956                 num = mul(q, den);
957                 if (num < rats[k].num_min)
958                         continue;
959                 if (num > rats[k].num_max)
960                         num = rats[k].num_max;
961                 else {
962                         unsigned int r;
963                         r = (num - rats[k].num_min) % rats[k].num_step;
964                         if (r != 0)
965                                 num -= r;
966                 }
967                 diff = q * den - num;
968                 if (best_num == 0 ||
969                     diff * best_den < best_diff * den) {
970                         best_diff = diff;
971                         best_den = den;
972                         best_num = num;
973                 }
974         }
975         if (best_den == 0) {
976                 i->empty = 1;
977                 return -EINVAL;
978         }
979         t.max = div_up(best_num, best_den);
980         t.openmax = !!(best_num % best_den);
981         t.integer = 0;
982         err = snd_interval_refine(i, &t);
983         if (err < 0)
984                 return err;
985
986         if (snd_interval_single(i)) {
987                 if (nump)
988                         *nump = best_num;
989                 if (denp)
990                         *denp = best_den;
991         }
992         return err;
993 }
994
995 /**
996  * snd_interval_list - refine the interval value from the list
997  * @i: the interval value to refine
998  * @count: the number of elements in the list
999  * @list: the value list
1000  * @mask: the bit-mask to evaluate
1001  *
1002  * Refines the interval value from the list.
1003  * When mask is non-zero, only the elements corresponding to bit 1 are
1004  * evaluated.
1005  *
1006  * Return: Positive if the value is changed, zero if it's not changed, or a
1007  * negative error code.
1008  */
1009 int snd_interval_list(struct snd_interval *i, unsigned int count,
1010                       const unsigned int *list, unsigned int mask)
1011 {
1012         unsigned int k;
1013         struct snd_interval list_range;
1014
1015         if (!count) {
1016                 i->empty = 1;
1017                 return -EINVAL;
1018         }
1019         snd_interval_any(&list_range);
1020         list_range.min = UINT_MAX;
1021         list_range.max = 0;
1022         for (k = 0; k < count; k++) {
1023                 if (mask && !(mask & (1 << k)))
1024                         continue;
1025                 if (!snd_interval_test(i, list[k]))
1026                         continue;
1027                 list_range.min = min(list_range.min, list[k]);
1028                 list_range.max = max(list_range.max, list[k]);
1029         }
1030         return snd_interval_refine(i, &list_range);
1031 }
1032 EXPORT_SYMBOL(snd_interval_list);
1033
1034 /**
1035  * snd_interval_ranges - refine the interval value from the list of ranges
1036  * @i: the interval value to refine
1037  * @count: the number of elements in the list of ranges
1038  * @ranges: the ranges list
1039  * @mask: the bit-mask to evaluate
1040  *
1041  * Refines the interval value from the list of ranges.
1042  * When mask is non-zero, only the elements corresponding to bit 1 are
1043  * evaluated.
1044  *
1045  * Return: Positive if the value is changed, zero if it's not changed, or a
1046  * negative error code.
1047  */
1048 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1049                         const struct snd_interval *ranges, unsigned int mask)
1050 {
1051         unsigned int k;
1052         struct snd_interval range_union;
1053         struct snd_interval range;
1054
1055         if (!count) {
1056                 snd_interval_none(i);
1057                 return -EINVAL;
1058         }
1059         snd_interval_any(&range_union);
1060         range_union.min = UINT_MAX;
1061         range_union.max = 0;
1062         for (k = 0; k < count; k++) {
1063                 if (mask && !(mask & (1 << k)))
1064                         continue;
1065                 snd_interval_copy(&range, &ranges[k]);
1066                 if (snd_interval_refine(&range, i) < 0)
1067                         continue;
1068                 if (snd_interval_empty(&range))
1069                         continue;
1070
1071                 if (range.min < range_union.min) {
1072                         range_union.min = range.min;
1073                         range_union.openmin = 1;
1074                 }
1075                 if (range.min == range_union.min && !range.openmin)
1076                         range_union.openmin = 0;
1077                 if (range.max > range_union.max) {
1078                         range_union.max = range.max;
1079                         range_union.openmax = 1;
1080                 }
1081                 if (range.max == range_union.max && !range.openmax)
1082                         range_union.openmax = 0;
1083         }
1084         return snd_interval_refine(i, &range_union);
1085 }
1086 EXPORT_SYMBOL(snd_interval_ranges);
1087
1088 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1089 {
1090         unsigned int n;
1091         int changed = 0;
1092         n = i->min % step;
1093         if (n != 0 || i->openmin) {
1094                 i->min += step - n;
1095                 i->openmin = 0;
1096                 changed = 1;
1097         }
1098         n = i->max % step;
1099         if (n != 0 || i->openmax) {
1100                 i->max -= n;
1101                 i->openmax = 0;
1102                 changed = 1;
1103         }
1104         if (snd_interval_checkempty(i)) {
1105                 i->empty = 1;
1106                 return -EINVAL;
1107         }
1108         return changed;
1109 }
1110
1111 /* Info constraints helpers */
1112
1113 /**
1114  * snd_pcm_hw_rule_add - add the hw-constraint rule
1115  * @runtime: the pcm runtime instance
1116  * @cond: condition bits
1117  * @var: the variable to evaluate
1118  * @func: the evaluation function
1119  * @private: the private data pointer passed to function
1120  * @dep: the dependent variables
1121  *
1122  * Return: Zero if successful, or a negative error code on failure.
1123  */
1124 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1125                         int var,
1126                         snd_pcm_hw_rule_func_t func, void *private,
1127                         int dep, ...)
1128 {
1129         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1130         struct snd_pcm_hw_rule *c;
1131         unsigned int k;
1132         va_list args;
1133         va_start(args, dep);
1134         if (constrs->rules_num >= constrs->rules_all) {
1135                 struct snd_pcm_hw_rule *new;
1136                 unsigned int new_rules = constrs->rules_all + 16;
1137                 new = krealloc(constrs->rules, new_rules * sizeof(*c),
1138                                GFP_KERNEL);
1139                 if (!new) {
1140                         va_end(args);
1141                         return -ENOMEM;
1142                 }
1143                 constrs->rules = new;
1144                 constrs->rules_all = new_rules;
1145         }
1146         c = &constrs->rules[constrs->rules_num];
1147         c->cond = cond;
1148         c->func = func;
1149         c->var = var;
1150         c->private = private;
1151         k = 0;
1152         while (1) {
1153                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1154                         va_end(args);
1155                         return -EINVAL;
1156                 }
1157                 c->deps[k++] = dep;
1158                 if (dep < 0)
1159                         break;
1160                 dep = va_arg(args, int);
1161         }
1162         constrs->rules_num++;
1163         va_end(args);
1164         return 0;
1165 }
1166 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1167
1168 /**
1169  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1170  * @runtime: PCM runtime instance
1171  * @var: hw_params variable to apply the mask
1172  * @mask: the bitmap mask
1173  *
1174  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1175  *
1176  * Return: Zero if successful, or a negative error code on failure.
1177  */
1178 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1179                                u_int32_t mask)
1180 {
1181         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1182         struct snd_mask *maskp = constrs_mask(constrs, var);
1183         *maskp->bits &= mask;
1184         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1185         if (*maskp->bits == 0)
1186                 return -EINVAL;
1187         return 0;
1188 }
1189
1190 /**
1191  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1192  * @runtime: PCM runtime instance
1193  * @var: hw_params variable to apply the mask
1194  * @mask: the 64bit bitmap mask
1195  *
1196  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1197  *
1198  * Return: Zero if successful, or a negative error code on failure.
1199  */
1200 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1201                                  u_int64_t mask)
1202 {
1203         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1204         struct snd_mask *maskp = constrs_mask(constrs, var);
1205         maskp->bits[0] &= (u_int32_t)mask;
1206         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1207         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1208         if (! maskp->bits[0] && ! maskp->bits[1])
1209                 return -EINVAL;
1210         return 0;
1211 }
1212 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1213
1214 /**
1215  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1216  * @runtime: PCM runtime instance
1217  * @var: hw_params variable to apply the integer constraint
1218  *
1219  * Apply the constraint of integer to an interval parameter.
1220  *
1221  * Return: Positive if the value is changed, zero if it's not changed, or a
1222  * negative error code.
1223  */
1224 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1225 {
1226         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1227         return snd_interval_setinteger(constrs_interval(constrs, var));
1228 }
1229 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1230
1231 /**
1232  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1233  * @runtime: PCM runtime instance
1234  * @var: hw_params variable to apply the range
1235  * @min: the minimal value
1236  * @max: the maximal value
1237  * 
1238  * Apply the min/max range constraint to an interval parameter.
1239  *
1240  * Return: Positive if the value is changed, zero if it's not changed, or a
1241  * negative error code.
1242  */
1243 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1244                                  unsigned int min, unsigned int max)
1245 {
1246         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1247         struct snd_interval t;
1248         t.min = min;
1249         t.max = max;
1250         t.openmin = t.openmax = 0;
1251         t.integer = 0;
1252         return snd_interval_refine(constrs_interval(constrs, var), &t);
1253 }
1254 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1255
1256 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1257                                 struct snd_pcm_hw_rule *rule)
1258 {
1259         struct snd_pcm_hw_constraint_list *list = rule->private;
1260         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1261 }               
1262
1263
1264 /**
1265  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1266  * @runtime: PCM runtime instance
1267  * @cond: condition bits
1268  * @var: hw_params variable to apply the list constraint
1269  * @l: list
1270  * 
1271  * Apply the list of constraints to an interval parameter.
1272  *
1273  * Return: Zero if successful, or a negative error code on failure.
1274  */
1275 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1276                                unsigned int cond,
1277                                snd_pcm_hw_param_t var,
1278                                const struct snd_pcm_hw_constraint_list *l)
1279 {
1280         return snd_pcm_hw_rule_add(runtime, cond, var,
1281                                    snd_pcm_hw_rule_list, (void *)l,
1282                                    var, -1);
1283 }
1284 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1285
1286 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1287                                   struct snd_pcm_hw_rule *rule)
1288 {
1289         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1290         return snd_interval_ranges(hw_param_interval(params, rule->var),
1291                                    r->count, r->ranges, r->mask);
1292 }
1293
1294
1295 /**
1296  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1297  * @runtime: PCM runtime instance
1298  * @cond: condition bits
1299  * @var: hw_params variable to apply the list of range constraints
1300  * @r: ranges
1301  *
1302  * Apply the list of range constraints to an interval parameter.
1303  *
1304  * Return: Zero if successful, or a negative error code on failure.
1305  */
1306 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1307                                  unsigned int cond,
1308                                  snd_pcm_hw_param_t var,
1309                                  const struct snd_pcm_hw_constraint_ranges *r)
1310 {
1311         return snd_pcm_hw_rule_add(runtime, cond, var,
1312                                    snd_pcm_hw_rule_ranges, (void *)r,
1313                                    var, -1);
1314 }
1315 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1316
1317 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1318                                    struct snd_pcm_hw_rule *rule)
1319 {
1320         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1321         unsigned int num = 0, den = 0;
1322         int err;
1323         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1324                                   r->nrats, r->rats, &num, &den);
1325         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1326                 params->rate_num = num;
1327                 params->rate_den = den;
1328         }
1329         return err;
1330 }
1331
1332 /**
1333  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1334  * @runtime: PCM runtime instance
1335  * @cond: condition bits
1336  * @var: hw_params variable to apply the ratnums constraint
1337  * @r: struct snd_ratnums constriants
1338  *
1339  * Return: Zero if successful, or a negative error code on failure.
1340  */
1341 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1342                                   unsigned int cond,
1343                                   snd_pcm_hw_param_t var,
1344                                   const struct snd_pcm_hw_constraint_ratnums *r)
1345 {
1346         return snd_pcm_hw_rule_add(runtime, cond, var,
1347                                    snd_pcm_hw_rule_ratnums, (void *)r,
1348                                    var, -1);
1349 }
1350 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1351
1352 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1353                                    struct snd_pcm_hw_rule *rule)
1354 {
1355         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1356         unsigned int num = 0, den = 0;
1357         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1358                                   r->nrats, r->rats, &num, &den);
1359         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1360                 params->rate_num = num;
1361                 params->rate_den = den;
1362         }
1363         return err;
1364 }
1365
1366 /**
1367  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1368  * @runtime: PCM runtime instance
1369  * @cond: condition bits
1370  * @var: hw_params variable to apply the ratdens constraint
1371  * @r: struct snd_ratdens constriants
1372  *
1373  * Return: Zero if successful, or a negative error code on failure.
1374  */
1375 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1376                                   unsigned int cond,
1377                                   snd_pcm_hw_param_t var,
1378                                   const struct snd_pcm_hw_constraint_ratdens *r)
1379 {
1380         return snd_pcm_hw_rule_add(runtime, cond, var,
1381                                    snd_pcm_hw_rule_ratdens, (void *)r,
1382                                    var, -1);
1383 }
1384 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1385
1386 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1387                                   struct snd_pcm_hw_rule *rule)
1388 {
1389         unsigned int l = (unsigned long) rule->private;
1390         int width = l & 0xffff;
1391         unsigned int msbits = l >> 16;
1392         const struct snd_interval *i =
1393                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1394
1395         if (!snd_interval_single(i))
1396                 return 0;
1397
1398         if ((snd_interval_value(i) == width) ||
1399             (width == 0 && snd_interval_value(i) > msbits))
1400                 params->msbits = min_not_zero(params->msbits, msbits);
1401
1402         return 0;
1403 }
1404
1405 /**
1406  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1407  * @runtime: PCM runtime instance
1408  * @cond: condition bits
1409  * @width: sample bits width
1410  * @msbits: msbits width
1411  *
1412  * This constraint will set the number of most significant bits (msbits) if a
1413  * sample format with the specified width has been select. If width is set to 0
1414  * the msbits will be set for any sample format with a width larger than the
1415  * specified msbits.
1416  *
1417  * Return: Zero if successful, or a negative error code on failure.
1418  */
1419 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1420                                  unsigned int cond,
1421                                  unsigned int width,
1422                                  unsigned int msbits)
1423 {
1424         unsigned long l = (msbits << 16) | width;
1425         return snd_pcm_hw_rule_add(runtime, cond, -1,
1426                                     snd_pcm_hw_rule_msbits,
1427                                     (void*) l,
1428                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1429 }
1430 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1431
1432 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1433                                 struct snd_pcm_hw_rule *rule)
1434 {
1435         unsigned long step = (unsigned long) rule->private;
1436         return snd_interval_step(hw_param_interval(params, rule->var), step);
1437 }
1438
1439 /**
1440  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1441  * @runtime: PCM runtime instance
1442  * @cond: condition bits
1443  * @var: hw_params variable to apply the step constraint
1444  * @step: step size
1445  *
1446  * Return: Zero if successful, or a negative error code on failure.
1447  */
1448 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1449                                unsigned int cond,
1450                                snd_pcm_hw_param_t var,
1451                                unsigned long step)
1452 {
1453         return snd_pcm_hw_rule_add(runtime, cond, var, 
1454                                    snd_pcm_hw_rule_step, (void *) step,
1455                                    var, -1);
1456 }
1457 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1458
1459 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1460 {
1461         static unsigned int pow2_sizes[] = {
1462                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1463                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1464                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1465                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1466         };
1467         return snd_interval_list(hw_param_interval(params, rule->var),
1468                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1469 }               
1470
1471 /**
1472  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1473  * @runtime: PCM runtime instance
1474  * @cond: condition bits
1475  * @var: hw_params variable to apply the power-of-2 constraint
1476  *
1477  * Return: Zero if successful, or a negative error code on failure.
1478  */
1479 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1480                                unsigned int cond,
1481                                snd_pcm_hw_param_t var)
1482 {
1483         return snd_pcm_hw_rule_add(runtime, cond, var, 
1484                                    snd_pcm_hw_rule_pow2, NULL,
1485                                    var, -1);
1486 }
1487 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1488
1489 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1490                                            struct snd_pcm_hw_rule *rule)
1491 {
1492         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1493         struct snd_interval *rate;
1494
1495         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1496         return snd_interval_list(rate, 1, &base_rate, 0);
1497 }
1498
1499 /**
1500  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1501  * @runtime: PCM runtime instance
1502  * @base_rate: the rate at which the hardware does not resample
1503  *
1504  * Return: Zero if successful, or a negative error code on failure.
1505  */
1506 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1507                                unsigned int base_rate)
1508 {
1509         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1510                                    SNDRV_PCM_HW_PARAM_RATE,
1511                                    snd_pcm_hw_rule_noresample_func,
1512                                    (void *)(uintptr_t)base_rate,
1513                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1514 }
1515 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1516
1517 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1518                                   snd_pcm_hw_param_t var)
1519 {
1520         if (hw_is_mask(var)) {
1521                 snd_mask_any(hw_param_mask(params, var));
1522                 params->cmask |= 1 << var;
1523                 params->rmask |= 1 << var;
1524                 return;
1525         }
1526         if (hw_is_interval(var)) {
1527                 snd_interval_any(hw_param_interval(params, var));
1528                 params->cmask |= 1 << var;
1529                 params->rmask |= 1 << var;
1530                 return;
1531         }
1532         snd_BUG();
1533 }
1534
1535 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1536 {
1537         unsigned int k;
1538         memset(params, 0, sizeof(*params));
1539         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1540                 _snd_pcm_hw_param_any(params, k);
1541         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1542                 _snd_pcm_hw_param_any(params, k);
1543         params->info = ~0U;
1544 }
1545 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1546
1547 /**
1548  * snd_pcm_hw_param_value - return @params field @var value
1549  * @params: the hw_params instance
1550  * @var: parameter to retrieve
1551  * @dir: pointer to the direction (-1,0,1) or %NULL
1552  *
1553  * Return: The value for field @var if it's fixed in configuration space
1554  * defined by @params. -%EINVAL otherwise.
1555  */
1556 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1557                            snd_pcm_hw_param_t var, int *dir)
1558 {
1559         if (hw_is_mask(var)) {
1560                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1561                 if (!snd_mask_single(mask))
1562                         return -EINVAL;
1563                 if (dir)
1564                         *dir = 0;
1565                 return snd_mask_value(mask);
1566         }
1567         if (hw_is_interval(var)) {
1568                 const struct snd_interval *i = hw_param_interval_c(params, var);
1569                 if (!snd_interval_single(i))
1570                         return -EINVAL;
1571                 if (dir)
1572                         *dir = i->openmin;
1573                 return snd_interval_value(i);
1574         }
1575         return -EINVAL;
1576 }
1577 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1578
1579 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1580                                 snd_pcm_hw_param_t var)
1581 {
1582         if (hw_is_mask(var)) {
1583                 snd_mask_none(hw_param_mask(params, var));
1584                 params->cmask |= 1 << var;
1585                 params->rmask |= 1 << var;
1586         } else if (hw_is_interval(var)) {
1587                 snd_interval_none(hw_param_interval(params, var));
1588                 params->cmask |= 1 << var;
1589                 params->rmask |= 1 << var;
1590         } else {
1591                 snd_BUG();
1592         }
1593 }
1594 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1595
1596 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1597                                    snd_pcm_hw_param_t var)
1598 {
1599         int changed;
1600         if (hw_is_mask(var))
1601                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1602         else if (hw_is_interval(var))
1603                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1604         else
1605                 return -EINVAL;
1606         if (changed > 0) {
1607                 params->cmask |= 1 << var;
1608                 params->rmask |= 1 << var;
1609         }
1610         return changed;
1611 }
1612
1613
1614 /**
1615  * snd_pcm_hw_param_first - refine config space and return minimum value
1616  * @pcm: PCM instance
1617  * @params: the hw_params instance
1618  * @var: parameter to retrieve
1619  * @dir: pointer to the direction (-1,0,1) or %NULL
1620  *
1621  * Inside configuration space defined by @params remove from @var all
1622  * values > minimum. Reduce configuration space accordingly.
1623  *
1624  * Return: The minimum, or a negative error code on failure.
1625  */
1626 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1627                            struct snd_pcm_hw_params *params, 
1628                            snd_pcm_hw_param_t var, int *dir)
1629 {
1630         int changed = _snd_pcm_hw_param_first(params, var);
1631         if (changed < 0)
1632                 return changed;
1633         if (params->rmask) {
1634                 int err = snd_pcm_hw_refine(pcm, params);
1635                 if (err < 0)
1636                         return err;
1637         }
1638         return snd_pcm_hw_param_value(params, var, dir);
1639 }
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641
1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643                                   snd_pcm_hw_param_t var)
1644 {
1645         int changed;
1646         if (hw_is_mask(var))
1647                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1648         else if (hw_is_interval(var))
1649                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1650         else
1651                 return -EINVAL;
1652         if (changed > 0) {
1653                 params->cmask |= 1 << var;
1654                 params->rmask |= 1 << var;
1655         }
1656         return changed;
1657 }
1658
1659
1660 /**
1661  * snd_pcm_hw_param_last - refine config space and return maximum value
1662  * @pcm: PCM instance
1663  * @params: the hw_params instance
1664  * @var: parameter to retrieve
1665  * @dir: pointer to the direction (-1,0,1) or %NULL
1666  *
1667  * Inside configuration space defined by @params remove from @var all
1668  * values < maximum. Reduce configuration space accordingly.
1669  *
1670  * Return: The maximum, or a negative error code on failure.
1671  */
1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1673                           struct snd_pcm_hw_params *params,
1674                           snd_pcm_hw_param_t var, int *dir)
1675 {
1676         int changed = _snd_pcm_hw_param_last(params, var);
1677         if (changed < 0)
1678                 return changed;
1679         if (params->rmask) {
1680                 int err = snd_pcm_hw_refine(pcm, params);
1681                 if (err < 0)
1682                         return err;
1683         }
1684         return snd_pcm_hw_param_value(params, var, dir);
1685 }
1686 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1687
1688 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1689                                    void *arg)
1690 {
1691         struct snd_pcm_runtime *runtime = substream->runtime;
1692         unsigned long flags;
1693         snd_pcm_stream_lock_irqsave(substream, flags);
1694         if (snd_pcm_running(substream) &&
1695             snd_pcm_update_hw_ptr(substream) >= 0)
1696                 runtime->status->hw_ptr %= runtime->buffer_size;
1697         else {
1698                 runtime->status->hw_ptr = 0;
1699                 runtime->hw_ptr_wrap = 0;
1700         }
1701         snd_pcm_stream_unlock_irqrestore(substream, flags);
1702         return 0;
1703 }
1704
1705 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1706                                           void *arg)
1707 {
1708         struct snd_pcm_channel_info *info = arg;
1709         struct snd_pcm_runtime *runtime = substream->runtime;
1710         int width;
1711         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1712                 info->offset = -1;
1713                 return 0;
1714         }
1715         width = snd_pcm_format_physical_width(runtime->format);
1716         if (width < 0)
1717                 return width;
1718         info->offset = 0;
1719         switch (runtime->access) {
1720         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1721         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1722                 info->first = info->channel * width;
1723                 info->step = runtime->channels * width;
1724                 break;
1725         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1726         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1727         {
1728                 size_t size = runtime->dma_bytes / runtime->channels;
1729                 info->first = info->channel * size * 8;
1730                 info->step = width;
1731                 break;
1732         }
1733         default:
1734                 snd_BUG();
1735                 break;
1736         }
1737         return 0;
1738 }
1739
1740 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1741                                        void *arg)
1742 {
1743         struct snd_pcm_hw_params *params = arg;
1744         snd_pcm_format_t format;
1745         int channels;
1746         ssize_t frame_size;
1747
1748         params->fifo_size = substream->runtime->hw.fifo_size;
1749         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1750                 format = params_format(params);
1751                 channels = params_channels(params);
1752                 frame_size = snd_pcm_format_size(format, channels);
1753                 if (frame_size > 0)
1754                         params->fifo_size /= frame_size;
1755         }
1756         return 0;
1757 }
1758
1759 /**
1760  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1761  * @substream: the pcm substream instance
1762  * @cmd: ioctl command
1763  * @arg: ioctl argument
1764  *
1765  * Processes the generic ioctl commands for PCM.
1766  * Can be passed as the ioctl callback for PCM ops.
1767  *
1768  * Return: Zero if successful, or a negative error code on failure.
1769  */
1770 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1771                       unsigned int cmd, void *arg)
1772 {
1773         switch (cmd) {
1774         case SNDRV_PCM_IOCTL1_RESET:
1775                 return snd_pcm_lib_ioctl_reset(substream, arg);
1776         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1777                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1778         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1779                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1780         }
1781         return -ENXIO;
1782 }
1783 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1784
1785 /**
1786  * snd_pcm_period_elapsed - update the pcm status for the next period
1787  * @substream: the pcm substream instance
1788  *
1789  * This function is called from the interrupt handler when the
1790  * PCM has processed the period size.  It will update the current
1791  * pointer, wake up sleepers, etc.
1792  *
1793  * Even if more than one periods have elapsed since the last call, you
1794  * have to call this only once.
1795  */
1796 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1797 {
1798         struct snd_pcm_runtime *runtime;
1799         unsigned long flags;
1800
1801         if (snd_BUG_ON(!substream))
1802                 return;
1803
1804         snd_pcm_stream_lock_irqsave(substream, flags);
1805         if (PCM_RUNTIME_CHECK(substream))
1806                 goto _unlock;
1807         runtime = substream->runtime;
1808
1809         if (!snd_pcm_running(substream) ||
1810             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1811                 goto _end;
1812
1813 #ifdef CONFIG_SND_PCM_TIMER
1814         if (substream->timer_running)
1815                 snd_timer_interrupt(substream->timer, 1);
1816 #endif
1817  _end:
1818         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1819  _unlock:
1820         snd_pcm_stream_unlock_irqrestore(substream, flags);
1821 }
1822 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1823
1824 /*
1825  * Wait until avail_min data becomes available
1826  * Returns a negative error code if any error occurs during operation.
1827  * The available space is stored on availp.  When err = 0 and avail = 0
1828  * on the capture stream, it indicates the stream is in DRAINING state.
1829  */
1830 static int wait_for_avail(struct snd_pcm_substream *substream,
1831                               snd_pcm_uframes_t *availp)
1832 {
1833         struct snd_pcm_runtime *runtime = substream->runtime;
1834         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1835         wait_queue_entry_t wait;
1836         int err = 0;
1837         snd_pcm_uframes_t avail = 0;
1838         long wait_time, tout;
1839
1840         init_waitqueue_entry(&wait, current);
1841         set_current_state(TASK_INTERRUPTIBLE);
1842         add_wait_queue(&runtime->tsleep, &wait);
1843
1844         if (runtime->no_period_wakeup)
1845                 wait_time = MAX_SCHEDULE_TIMEOUT;
1846         else {
1847                 /* use wait time from substream if available */
1848                 if (substream->wait_time) {
1849                         wait_time = substream->wait_time;
1850                 } else {
1851                         wait_time = 10;
1852
1853                         if (runtime->rate) {
1854                                 long t = runtime->period_size * 2 /
1855                                          runtime->rate;
1856                                 wait_time = max(t, wait_time);
1857                         }
1858                         wait_time = msecs_to_jiffies(wait_time * 1000);
1859                 }
1860         }
1861
1862         for (;;) {
1863                 if (signal_pending(current)) {
1864                         err = -ERESTARTSYS;
1865                         break;
1866                 }
1867
1868                 /*
1869                  * We need to check if space became available already
1870                  * (and thus the wakeup happened already) first to close
1871                  * the race of space already having become available.
1872                  * This check must happen after been added to the waitqueue
1873                  * and having current state be INTERRUPTIBLE.
1874                  */
1875                 avail = snd_pcm_avail(substream);
1876                 if (avail >= runtime->twake)
1877                         break;
1878                 snd_pcm_stream_unlock_irq(substream);
1879
1880                 tout = schedule_timeout(wait_time);
1881
1882                 snd_pcm_stream_lock_irq(substream);
1883                 set_current_state(TASK_INTERRUPTIBLE);
1884                 switch (runtime->status->state) {
1885                 case SNDRV_PCM_STATE_SUSPENDED:
1886                         err = -ESTRPIPE;
1887                         goto _endloop;
1888                 case SNDRV_PCM_STATE_XRUN:
1889                         err = -EPIPE;
1890                         goto _endloop;
1891                 case SNDRV_PCM_STATE_DRAINING:
1892                         if (is_playback)
1893                                 err = -EPIPE;
1894                         else 
1895                                 avail = 0; /* indicate draining */
1896                         goto _endloop;
1897                 case SNDRV_PCM_STATE_OPEN:
1898                 case SNDRV_PCM_STATE_SETUP:
1899                 case SNDRV_PCM_STATE_DISCONNECTED:
1900                         err = -EBADFD;
1901                         goto _endloop;
1902                 case SNDRV_PCM_STATE_PAUSED:
1903                         continue;
1904                 }
1905                 if (!tout) {
1906                         pcm_dbg(substream->pcm,
1907                                 "%s write error (DMA or IRQ trouble?)\n",
1908                                 is_playback ? "playback" : "capture");
1909                         err = -EIO;
1910                         break;
1911                 }
1912         }
1913  _endloop:
1914         set_current_state(TASK_RUNNING);
1915         remove_wait_queue(&runtime->tsleep, &wait);
1916         *availp = avail;
1917         return err;
1918 }
1919         
1920 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1921                               int channel, unsigned long hwoff,
1922                               void *buf, unsigned long bytes);
1923
1924 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1925                           snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1926
1927 /* calculate the target DMA-buffer position to be written/read */
1928 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1929                            int channel, unsigned long hwoff)
1930 {
1931         return runtime->dma_area + hwoff +
1932                 channel * (runtime->dma_bytes / runtime->channels);
1933 }
1934
1935 /* default copy_user ops for write; used for both interleaved and non- modes */
1936 static int default_write_copy(struct snd_pcm_substream *substream,
1937                               int channel, unsigned long hwoff,
1938                               void *buf, unsigned long bytes)
1939 {
1940         if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1941                            (void __user *)buf, bytes))
1942                 return -EFAULT;
1943         return 0;
1944 }
1945
1946 /* default copy_kernel ops for write */
1947 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1948                                      int channel, unsigned long hwoff,
1949                                      void *buf, unsigned long bytes)
1950 {
1951         memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1952         return 0;
1953 }
1954
1955 /* fill silence instead of copy data; called as a transfer helper
1956  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1957  * a NULL buffer is passed
1958  */
1959 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1960                         unsigned long hwoff, void *buf, unsigned long bytes)
1961 {
1962         struct snd_pcm_runtime *runtime = substream->runtime;
1963
1964         if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1965                 return 0;
1966         if (substream->ops->fill_silence)
1967                 return substream->ops->fill_silence(substream, channel,
1968                                                     hwoff, bytes);
1969
1970         snd_pcm_format_set_silence(runtime->format,
1971                                    get_dma_ptr(runtime, channel, hwoff),
1972                                    bytes_to_samples(runtime, bytes));
1973         return 0;
1974 }
1975
1976 /* default copy_user ops for read; used for both interleaved and non- modes */
1977 static int default_read_copy(struct snd_pcm_substream *substream,
1978                              int channel, unsigned long hwoff,
1979                              void *buf, unsigned long bytes)
1980 {
1981         if (copy_to_user((void __user *)buf,
1982                          get_dma_ptr(substream->runtime, channel, hwoff),
1983                          bytes))
1984                 return -EFAULT;
1985         return 0;
1986 }
1987
1988 /* default copy_kernel ops for read */
1989 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1990                                     int channel, unsigned long hwoff,
1991                                     void *buf, unsigned long bytes)
1992 {
1993         memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1994         return 0;
1995 }
1996
1997 /* call transfer function with the converted pointers and sizes;
1998  * for interleaved mode, it's one shot for all samples
1999  */
2000 static int interleaved_copy(struct snd_pcm_substream *substream,
2001                             snd_pcm_uframes_t hwoff, void *data,
2002                             snd_pcm_uframes_t off,
2003                             snd_pcm_uframes_t frames,
2004                             pcm_transfer_f transfer)
2005 {
2006         struct snd_pcm_runtime *runtime = substream->runtime;
2007
2008         /* convert to bytes */
2009         hwoff = frames_to_bytes(runtime, hwoff);
2010         off = frames_to_bytes(runtime, off);
2011         frames = frames_to_bytes(runtime, frames);
2012         return transfer(substream, 0, hwoff, data + off, frames);
2013 }
2014
2015 /* call transfer function with the converted pointers and sizes for each
2016  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2017  */
2018 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2019                                snd_pcm_uframes_t hwoff, void *data,
2020                                snd_pcm_uframes_t off,
2021                                snd_pcm_uframes_t frames,
2022                                pcm_transfer_f transfer)
2023 {
2024         struct snd_pcm_runtime *runtime = substream->runtime;
2025         int channels = runtime->channels;
2026         void **bufs = data;
2027         int c, err;
2028
2029         /* convert to bytes; note that it's not frames_to_bytes() here.
2030          * in non-interleaved mode, we copy for each channel, thus
2031          * each copy is n_samples bytes x channels = whole frames.
2032          */
2033         off = samples_to_bytes(runtime, off);
2034         frames = samples_to_bytes(runtime, frames);
2035         hwoff = samples_to_bytes(runtime, hwoff);
2036         for (c = 0; c < channels; ++c, ++bufs) {
2037                 if (!data || !*bufs)
2038                         err = fill_silence(substream, c, hwoff, NULL, frames);
2039                 else
2040                         err = transfer(substream, c, hwoff, *bufs + off,
2041                                        frames);
2042                 if (err < 0)
2043                         return err;
2044         }
2045         return 0;
2046 }
2047
2048 /* fill silence on the given buffer position;
2049  * called from snd_pcm_playback_silence()
2050  */
2051 static int fill_silence_frames(struct snd_pcm_substream *substream,
2052                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2053 {
2054         if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2055             substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2056                 return interleaved_copy(substream, off, NULL, 0, frames,
2057                                         fill_silence);
2058         else
2059                 return noninterleaved_copy(substream, off, NULL, 0, frames,
2060                                            fill_silence);
2061 }
2062
2063 /* sanity-check for read/write methods */
2064 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2065 {
2066         struct snd_pcm_runtime *runtime;
2067         if (PCM_RUNTIME_CHECK(substream))
2068                 return -ENXIO;
2069         runtime = substream->runtime;
2070         if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2071                 return -EINVAL;
2072         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2073                 return -EBADFD;
2074         return 0;
2075 }
2076
2077 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2078 {
2079         switch (runtime->status->state) {
2080         case SNDRV_PCM_STATE_PREPARED:
2081         case SNDRV_PCM_STATE_RUNNING:
2082         case SNDRV_PCM_STATE_PAUSED:
2083                 return 0;
2084         case SNDRV_PCM_STATE_XRUN:
2085                 return -EPIPE;
2086         case SNDRV_PCM_STATE_SUSPENDED:
2087                 return -ESTRPIPE;
2088         default:
2089                 return -EBADFD;
2090         }
2091 }
2092
2093 /* update to the given appl_ptr and call ack callback if needed;
2094  * when an error is returned, take back to the original value
2095  */
2096 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2097                            snd_pcm_uframes_t appl_ptr)
2098 {
2099         struct snd_pcm_runtime *runtime = substream->runtime;
2100         snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2101         int ret;
2102
2103         if (old_appl_ptr == appl_ptr)
2104                 return 0;
2105
2106         runtime->control->appl_ptr = appl_ptr;
2107         if (substream->ops->ack) {
2108                 ret = substream->ops->ack(substream);
2109                 if (ret < 0) {
2110                         runtime->control->appl_ptr = old_appl_ptr;
2111                         return ret;
2112                 }
2113         }
2114
2115         trace_applptr(substream, old_appl_ptr, appl_ptr);
2116
2117         return 0;
2118 }
2119
2120 /* the common loop for read/write data */
2121 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2122                                      void *data, bool interleaved,
2123                                      snd_pcm_uframes_t size, bool in_kernel)
2124 {
2125         struct snd_pcm_runtime *runtime = substream->runtime;
2126         snd_pcm_uframes_t xfer = 0;
2127         snd_pcm_uframes_t offset = 0;
2128         snd_pcm_uframes_t avail;
2129         pcm_copy_f writer;
2130         pcm_transfer_f transfer;
2131         bool nonblock;
2132         bool is_playback;
2133         int err;
2134
2135         err = pcm_sanity_check(substream);
2136         if (err < 0)
2137                 return err;
2138
2139         is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2140         if (interleaved) {
2141                 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2142                     runtime->channels > 1)
2143                         return -EINVAL;
2144                 writer = interleaved_copy;
2145         } else {
2146                 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2147                         return -EINVAL;
2148                 writer = noninterleaved_copy;
2149         }
2150
2151         if (!data) {
2152                 if (is_playback)
2153                         transfer = fill_silence;
2154                 else
2155                         return -EINVAL;
2156         } else if (in_kernel) {
2157                 if (substream->ops->copy_kernel)
2158                         transfer = substream->ops->copy_kernel;
2159                 else
2160                         transfer = is_playback ?
2161                                 default_write_copy_kernel : default_read_copy_kernel;
2162         } else {
2163                 if (substream->ops->copy_user)
2164                         transfer = (pcm_transfer_f)substream->ops->copy_user;
2165                 else
2166                         transfer = is_playback ?
2167                                 default_write_copy : default_read_copy;
2168         }
2169
2170         if (size == 0)
2171                 return 0;
2172
2173         nonblock = !!(substream->f_flags & O_NONBLOCK);
2174
2175         snd_pcm_stream_lock_irq(substream);
2176         err = pcm_accessible_state(runtime);
2177         if (err < 0)
2178                 goto _end_unlock;
2179
2180         if (!is_playback &&
2181             runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2182             size >= runtime->start_threshold) {
2183                 err = snd_pcm_start(substream);
2184                 if (err < 0)
2185                         goto _end_unlock;
2186         }
2187
2188         runtime->twake = runtime->control->avail_min ? : 1;
2189         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2190                 snd_pcm_update_hw_ptr(substream);
2191         avail = snd_pcm_avail(substream);
2192         while (size > 0) {
2193                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2194                 snd_pcm_uframes_t cont;
2195                 if (!avail) {
2196                         if (!is_playback &&
2197                             runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2198                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2199                                 goto _end_unlock;
2200                         }
2201                         if (nonblock) {
2202                                 err = -EAGAIN;
2203                                 goto _end_unlock;
2204                         }
2205                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2206                                         runtime->control->avail_min ? : 1);
2207                         err = wait_for_avail(substream, &avail);
2208                         if (err < 0)
2209                                 goto _end_unlock;
2210                         if (!avail)
2211                                 continue; /* draining */
2212                 }
2213                 frames = size > avail ? avail : size;
2214                 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2215                 appl_ofs = appl_ptr % runtime->buffer_size;
2216                 cont = runtime->buffer_size - appl_ofs;
2217                 if (frames > cont)
2218                         frames = cont;
2219                 if (snd_BUG_ON(!frames)) {
2220                         runtime->twake = 0;
2221                         snd_pcm_stream_unlock_irq(substream);
2222                         return -EINVAL;
2223                 }
2224                 if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2225                         err = -EBUSY;
2226                         goto _end_unlock;
2227                 }
2228                 snd_pcm_stream_unlock_irq(substream);
2229                 err = writer(substream, appl_ofs, data, offset, frames,
2230                              transfer);
2231                 snd_pcm_stream_lock_irq(substream);
2232                 atomic_dec(&runtime->buffer_accessing);
2233                 if (err < 0)
2234                         goto _end_unlock;
2235                 err = pcm_accessible_state(runtime);
2236                 if (err < 0)
2237                         goto _end_unlock;
2238                 appl_ptr += frames;
2239                 if (appl_ptr >= runtime->boundary)
2240                         appl_ptr -= runtime->boundary;
2241                 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2242                 if (err < 0)
2243                         goto _end_unlock;
2244
2245                 offset += frames;
2246                 size -= frames;
2247                 xfer += frames;
2248                 avail -= frames;
2249                 if (is_playback &&
2250                     runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2251                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2252                         err = snd_pcm_start(substream);
2253                         if (err < 0)
2254                                 goto _end_unlock;
2255                 }
2256         }
2257  _end_unlock:
2258         runtime->twake = 0;
2259         if (xfer > 0 && err >= 0)
2260                 snd_pcm_update_state(substream, runtime);
2261         snd_pcm_stream_unlock_irq(substream);
2262         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2263 }
2264 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2265
2266 /*
2267  * standard channel mapping helpers
2268  */
2269
2270 /* default channel maps for multi-channel playbacks, up to 8 channels */
2271 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2272         { .channels = 1,
2273           .map = { SNDRV_CHMAP_MONO } },
2274         { .channels = 2,
2275           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2276         { .channels = 4,
2277           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2278                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2279         { .channels = 6,
2280           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2281                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2282                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2283         { .channels = 8,
2284           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2285                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2286                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2287                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2288         { }
2289 };
2290 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2291
2292 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2293 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2294         { .channels = 1,
2295           .map = { SNDRV_CHMAP_MONO } },
2296         { .channels = 2,
2297           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2298         { .channels = 4,
2299           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2300                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2301         { .channels = 6,
2302           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2303                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2304                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2305         { .channels = 8,
2306           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2307                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2308                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2309                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2310         { }
2311 };
2312 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2313
2314 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2315 {
2316         if (ch > info->max_channels)
2317                 return false;
2318         return !info->channel_mask || (info->channel_mask & (1U << ch));
2319 }
2320
2321 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2322                               struct snd_ctl_elem_info *uinfo)
2323 {
2324         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2325
2326         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2327         uinfo->count = 0;
2328         uinfo->count = info->max_channels;
2329         uinfo->value.integer.min = 0;
2330         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2331         return 0;
2332 }
2333
2334 /* get callback for channel map ctl element
2335  * stores the channel position firstly matching with the current channels
2336  */
2337 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2338                              struct snd_ctl_elem_value *ucontrol)
2339 {
2340         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2341         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2342         struct snd_pcm_substream *substream;
2343         const struct snd_pcm_chmap_elem *map;
2344
2345         if (!info->chmap)
2346                 return -EINVAL;
2347         substream = snd_pcm_chmap_substream(info, idx);
2348         if (!substream)
2349                 return -ENODEV;
2350         memset(ucontrol->value.integer.value, 0,
2351                sizeof(ucontrol->value.integer.value));
2352         if (!substream->runtime)
2353                 return 0; /* no channels set */
2354         for (map = info->chmap; map->channels; map++) {
2355                 int i;
2356                 if (map->channels == substream->runtime->channels &&
2357                     valid_chmap_channels(info, map->channels)) {
2358                         for (i = 0; i < map->channels; i++)
2359                                 ucontrol->value.integer.value[i] = map->map[i];
2360                         return 0;
2361                 }
2362         }
2363         return -EINVAL;
2364 }
2365
2366 /* tlv callback for channel map ctl element
2367  * expands the pre-defined channel maps in a form of TLV
2368  */
2369 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2370                              unsigned int size, unsigned int __user *tlv)
2371 {
2372         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2373         const struct snd_pcm_chmap_elem *map;
2374         unsigned int __user *dst;
2375         int c, count = 0;
2376
2377         if (!info->chmap)
2378                 return -EINVAL;
2379         if (size < 8)
2380                 return -ENOMEM;
2381         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2382                 return -EFAULT;
2383         size -= 8;
2384         dst = tlv + 2;
2385         for (map = info->chmap; map->channels; map++) {
2386                 int chs_bytes = map->channels * 4;
2387                 if (!valid_chmap_channels(info, map->channels))
2388                         continue;
2389                 if (size < 8)
2390                         return -ENOMEM;
2391                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2392                     put_user(chs_bytes, dst + 1))
2393                         return -EFAULT;
2394                 dst += 2;
2395                 size -= 8;
2396                 count += 8;
2397                 if (size < chs_bytes)
2398                         return -ENOMEM;
2399                 size -= chs_bytes;
2400                 count += chs_bytes;
2401                 for (c = 0; c < map->channels; c++) {
2402                         if (put_user(map->map[c], dst))
2403                                 return -EFAULT;
2404                         dst++;
2405                 }
2406         }
2407         if (put_user(count, tlv + 1))
2408                 return -EFAULT;
2409         return 0;
2410 }
2411
2412 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2413 {
2414         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2415         info->pcm->streams[info->stream].chmap_kctl = NULL;
2416         kfree(info);
2417 }
2418
2419 /**
2420  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2421  * @pcm: the assigned PCM instance
2422  * @stream: stream direction
2423  * @chmap: channel map elements (for query)
2424  * @max_channels: the max number of channels for the stream
2425  * @private_value: the value passed to each kcontrol's private_value field
2426  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2427  *
2428  * Create channel-mapping control elements assigned to the given PCM stream(s).
2429  * Return: Zero if successful, or a negative error value.
2430  */
2431 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2432                            const struct snd_pcm_chmap_elem *chmap,
2433                            int max_channels,
2434                            unsigned long private_value,
2435                            struct snd_pcm_chmap **info_ret)
2436 {
2437         struct snd_pcm_chmap *info;
2438         struct snd_kcontrol_new knew = {
2439                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2440                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2441                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2442                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2443                 .info = pcm_chmap_ctl_info,
2444                 .get = pcm_chmap_ctl_get,
2445                 .tlv.c = pcm_chmap_ctl_tlv,
2446         };
2447         int err;
2448
2449         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2450                 return -EBUSY;
2451         info = kzalloc(sizeof(*info), GFP_KERNEL);
2452         if (!info)
2453                 return -ENOMEM;
2454         info->pcm = pcm;
2455         info->stream = stream;
2456         info->chmap = chmap;
2457         info->max_channels = max_channels;
2458         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2459                 knew.name = "Playback Channel Map";
2460         else
2461                 knew.name = "Capture Channel Map";
2462         knew.device = pcm->device;
2463         knew.count = pcm->streams[stream].substream_count;
2464         knew.private_value = private_value;
2465         info->kctl = snd_ctl_new1(&knew, info);
2466         if (!info->kctl) {
2467                 kfree(info);
2468                 return -ENOMEM;
2469         }
2470         info->kctl->private_free = pcm_chmap_ctl_private_free;
2471         err = snd_ctl_add(pcm->card, info->kctl);
2472         if (err < 0)
2473                 return err;
2474         pcm->streams[stream].chmap_kctl = info->kctl;
2475         if (info_ret)
2476                 *info_ret = info;
2477         return 0;
2478 }
2479 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);