GNU Linux-libre 4.9.309-gnu1
[releases.git] / sound / pci / hda / hda_controller.c
1 /*
2  *
3  *  Implementation of primary alsa driver code base for Intel HD Audio.
4  *
5  *  Copyright(c) 2004 Intel Corporation. All rights reserved.
6  *
7  *  Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
8  *                     PeiSen Hou <pshou@realtek.com.tw>
9  *
10  *  This program is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the Free
12  *  Software Foundation; either version 2 of the License, or (at your option)
13  *  any later version.
14  *
15  *  This program is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  *  more details.
19  *
20  *
21  */
22
23 #include <linux/clocksource.h>
24 #include <linux/delay.h>
25 #include <linux/interrupt.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30
31 #ifdef CONFIG_X86
32 /* for art-tsc conversion */
33 #include <asm/tsc.h>
34 #endif
35
36 #include <sound/core.h>
37 #include <sound/initval.h>
38 #include "hda_controller.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "hda_controller_trace.h"
42
43 /* DSP lock helpers */
44 #define dsp_lock(dev)           snd_hdac_dsp_lock(azx_stream(dev))
45 #define dsp_unlock(dev)         snd_hdac_dsp_unlock(azx_stream(dev))
46 #define dsp_is_locked(dev)      snd_hdac_stream_is_locked(azx_stream(dev))
47
48 /* assign a stream for the PCM */
49 static inline struct azx_dev *
50 azx_assign_device(struct azx *chip, struct snd_pcm_substream *substream)
51 {
52         struct hdac_stream *s;
53
54         s = snd_hdac_stream_assign(azx_bus(chip), substream);
55         if (!s)
56                 return NULL;
57         return stream_to_azx_dev(s);
58 }
59
60 /* release the assigned stream */
61 static inline void azx_release_device(struct azx_dev *azx_dev)
62 {
63         snd_hdac_stream_release(azx_stream(azx_dev));
64 }
65
66 static inline struct hda_pcm_stream *
67 to_hda_pcm_stream(struct snd_pcm_substream *substream)
68 {
69         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
70         return &apcm->info->stream[substream->stream];
71 }
72
73 static u64 azx_adjust_codec_delay(struct snd_pcm_substream *substream,
74                                 u64 nsec)
75 {
76         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
77         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
78         u64 codec_frames, codec_nsecs;
79
80         if (!hinfo->ops.get_delay)
81                 return nsec;
82
83         codec_frames = hinfo->ops.get_delay(hinfo, apcm->codec, substream);
84         codec_nsecs = div_u64(codec_frames * 1000000000LL,
85                               substream->runtime->rate);
86
87         if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
88                 return nsec + codec_nsecs;
89
90         return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0;
91 }
92
93 /*
94  * PCM ops
95  */
96
97 static int azx_pcm_close(struct snd_pcm_substream *substream)
98 {
99         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
100         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
101         struct azx *chip = apcm->chip;
102         struct azx_dev *azx_dev = get_azx_dev(substream);
103
104         trace_azx_pcm_close(chip, azx_dev);
105         mutex_lock(&chip->open_mutex);
106         azx_release_device(azx_dev);
107         if (hinfo->ops.close)
108                 hinfo->ops.close(hinfo, apcm->codec, substream);
109         snd_hda_power_down(apcm->codec);
110         mutex_unlock(&chip->open_mutex);
111         snd_hda_codec_pcm_put(apcm->info);
112         return 0;
113 }
114
115 static int azx_pcm_hw_params(struct snd_pcm_substream *substream,
116                              struct snd_pcm_hw_params *hw_params)
117 {
118         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
119         struct azx *chip = apcm->chip;
120         struct azx_dev *azx_dev = get_azx_dev(substream);
121         int ret;
122
123         trace_azx_pcm_hw_params(chip, azx_dev);
124         dsp_lock(azx_dev);
125         if (dsp_is_locked(azx_dev)) {
126                 ret = -EBUSY;
127                 goto unlock;
128         }
129
130         azx_dev->core.bufsize = 0;
131         azx_dev->core.period_bytes = 0;
132         azx_dev->core.format_val = 0;
133         ret = chip->ops->substream_alloc_pages(chip, substream,
134                                           params_buffer_bytes(hw_params));
135 unlock:
136         dsp_unlock(azx_dev);
137         return ret;
138 }
139
140 static int azx_pcm_hw_free(struct snd_pcm_substream *substream)
141 {
142         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
143         struct azx_dev *azx_dev = get_azx_dev(substream);
144         struct azx *chip = apcm->chip;
145         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
146         int err;
147
148         /* reset BDL address */
149         dsp_lock(azx_dev);
150         if (!dsp_is_locked(azx_dev))
151                 snd_hdac_stream_cleanup(azx_stream(azx_dev));
152
153         snd_hda_codec_cleanup(apcm->codec, hinfo, substream);
154
155         err = chip->ops->substream_free_pages(chip, substream);
156         azx_stream(azx_dev)->prepared = 0;
157         dsp_unlock(azx_dev);
158         return err;
159 }
160
161 static int azx_pcm_prepare(struct snd_pcm_substream *substream)
162 {
163         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
164         struct azx *chip = apcm->chip;
165         struct azx_dev *azx_dev = get_azx_dev(substream);
166         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
167         struct snd_pcm_runtime *runtime = substream->runtime;
168         unsigned int format_val, stream_tag;
169         int err;
170         struct hda_spdif_out *spdif =
171                 snd_hda_spdif_out_of_nid(apcm->codec, hinfo->nid);
172         unsigned short ctls = spdif ? spdif->ctls : 0;
173
174         trace_azx_pcm_prepare(chip, azx_dev);
175         dsp_lock(azx_dev);
176         if (dsp_is_locked(azx_dev)) {
177                 err = -EBUSY;
178                 goto unlock;
179         }
180
181         snd_hdac_stream_reset(azx_stream(azx_dev));
182         format_val = snd_hdac_calc_stream_format(runtime->rate,
183                                                 runtime->channels,
184                                                 runtime->format,
185                                                 hinfo->maxbps,
186                                                 ctls);
187         if (!format_val) {
188                 dev_err(chip->card->dev,
189                         "invalid format_val, rate=%d, ch=%d, format=%d\n",
190                         runtime->rate, runtime->channels, runtime->format);
191                 err = -EINVAL;
192                 goto unlock;
193         }
194
195         err = snd_hdac_stream_set_params(azx_stream(azx_dev), format_val);
196         if (err < 0)
197                 goto unlock;
198
199         snd_hdac_stream_setup(azx_stream(azx_dev));
200
201         stream_tag = azx_dev->core.stream_tag;
202         /* CA-IBG chips need the playback stream starting from 1 */
203         if ((chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) &&
204             stream_tag > chip->capture_streams)
205                 stream_tag -= chip->capture_streams;
206         err = snd_hda_codec_prepare(apcm->codec, hinfo, stream_tag,
207                                      azx_dev->core.format_val, substream);
208
209  unlock:
210         if (!err)
211                 azx_stream(azx_dev)->prepared = 1;
212         dsp_unlock(azx_dev);
213         return err;
214 }
215
216 static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
217 {
218         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
219         struct azx *chip = apcm->chip;
220         struct hdac_bus *bus = azx_bus(chip);
221         struct azx_dev *azx_dev;
222         struct snd_pcm_substream *s;
223         struct hdac_stream *hstr;
224         bool start;
225         int sbits = 0;
226         int sync_reg;
227
228         azx_dev = get_azx_dev(substream);
229         trace_azx_pcm_trigger(chip, azx_dev, cmd);
230
231         hstr = azx_stream(azx_dev);
232         if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC)
233                 sync_reg = AZX_REG_OLD_SSYNC;
234         else
235                 sync_reg = AZX_REG_SSYNC;
236
237         if (dsp_is_locked(azx_dev) || !hstr->prepared)
238                 return -EPIPE;
239
240         switch (cmd) {
241         case SNDRV_PCM_TRIGGER_START:
242         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
243         case SNDRV_PCM_TRIGGER_RESUME:
244                 start = true;
245                 break;
246         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
247         case SNDRV_PCM_TRIGGER_SUSPEND:
248         case SNDRV_PCM_TRIGGER_STOP:
249                 start = false;
250                 break;
251         default:
252                 return -EINVAL;
253         }
254
255         snd_pcm_group_for_each_entry(s, substream) {
256                 if (s->pcm->card != substream->pcm->card)
257                         continue;
258                 azx_dev = get_azx_dev(s);
259                 sbits |= 1 << azx_dev->core.index;
260                 snd_pcm_trigger_done(s, substream);
261         }
262
263         spin_lock(&bus->reg_lock);
264
265         /* first, set SYNC bits of corresponding streams */
266         snd_hdac_stream_sync_trigger(hstr, true, sbits, sync_reg);
267
268         snd_pcm_group_for_each_entry(s, substream) {
269                 if (s->pcm->card != substream->pcm->card)
270                         continue;
271                 azx_dev = get_azx_dev(s);
272                 if (start) {
273                         azx_dev->insufficient = 1;
274                         snd_hdac_stream_start(azx_stream(azx_dev), true);
275                 } else {
276                         snd_hdac_stream_stop(azx_stream(azx_dev));
277                 }
278         }
279         spin_unlock(&bus->reg_lock);
280
281         snd_hdac_stream_sync(hstr, start, sbits);
282
283         spin_lock(&bus->reg_lock);
284         /* reset SYNC bits */
285         snd_hdac_stream_sync_trigger(hstr, false, sbits, sync_reg);
286         if (start)
287                 snd_hdac_stream_timecounter_init(hstr, sbits);
288         spin_unlock(&bus->reg_lock);
289         return 0;
290 }
291
292 unsigned int azx_get_pos_lpib(struct azx *chip, struct azx_dev *azx_dev)
293 {
294         return snd_hdac_stream_get_pos_lpib(azx_stream(azx_dev));
295 }
296 EXPORT_SYMBOL_GPL(azx_get_pos_lpib);
297
298 unsigned int azx_get_pos_posbuf(struct azx *chip, struct azx_dev *azx_dev)
299 {
300         return snd_hdac_stream_get_pos_posbuf(azx_stream(azx_dev));
301 }
302 EXPORT_SYMBOL_GPL(azx_get_pos_posbuf);
303
304 unsigned int azx_get_position(struct azx *chip,
305                               struct azx_dev *azx_dev)
306 {
307         struct snd_pcm_substream *substream = azx_dev->core.substream;
308         unsigned int pos;
309         int stream = substream->stream;
310         int delay = 0;
311
312         if (chip->get_position[stream])
313                 pos = chip->get_position[stream](chip, azx_dev);
314         else /* use the position buffer as default */
315                 pos = azx_get_pos_posbuf(chip, azx_dev);
316
317         if (pos >= azx_dev->core.bufsize)
318                 pos = 0;
319
320         if (substream->runtime) {
321                 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
322                 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
323
324                 if (chip->get_delay[stream])
325                         delay += chip->get_delay[stream](chip, azx_dev, pos);
326                 if (hinfo->ops.get_delay)
327                         delay += hinfo->ops.get_delay(hinfo, apcm->codec,
328                                                       substream);
329                 substream->runtime->delay = delay;
330         }
331
332         trace_azx_get_position(chip, azx_dev, pos, delay);
333         return pos;
334 }
335 EXPORT_SYMBOL_GPL(azx_get_position);
336
337 static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream)
338 {
339         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
340         struct azx *chip = apcm->chip;
341         struct azx_dev *azx_dev = get_azx_dev(substream);
342         return bytes_to_frames(substream->runtime,
343                                azx_get_position(chip, azx_dev));
344 }
345
346 /*
347  * azx_scale64: Scale base by mult/div while not overflowing sanely
348  *
349  * Derived from scale64_check_overflow in kernel/time/timekeeping.c
350  *
351  * The tmestamps for a 48Khz stream can overflow after (2^64/10^9)/48K which
352  * is about 384307 ie ~4.5 days.
353  *
354  * This scales the calculation so that overflow will happen but after 2^64 /
355  * 48000 secs, which is pretty large!
356  *
357  * In caln below:
358  *      base may overflow, but since there isn’t any additional division
359  *      performed on base it’s OK
360  *      rem can’t overflow because both are 32-bit values
361  */
362
363 #ifdef CONFIG_X86
364 static u64 azx_scale64(u64 base, u32 num, u32 den)
365 {
366         u64 rem;
367
368         rem = do_div(base, den);
369
370         base *= num;
371         rem *= num;
372
373         do_div(rem, den);
374
375         return base + rem;
376 }
377
378 static int azx_get_sync_time(ktime_t *device,
379                 struct system_counterval_t *system, void *ctx)
380 {
381         struct snd_pcm_substream *substream = ctx;
382         struct azx_dev *azx_dev = get_azx_dev(substream);
383         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
384         struct azx *chip = apcm->chip;
385         struct snd_pcm_runtime *runtime;
386         u64 ll_counter, ll_counter_l, ll_counter_h;
387         u64 tsc_counter, tsc_counter_l, tsc_counter_h;
388         u32 wallclk_ctr, wallclk_cycles;
389         bool direction;
390         u32 dma_select;
391         u32 timeout = 200;
392         u32 retry_count = 0;
393
394         runtime = substream->runtime;
395
396         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
397                 direction = 1;
398         else
399                 direction = 0;
400
401         /* 0th stream tag is not used, so DMA ch 0 is for 1st stream tag */
402         do {
403                 timeout = 100;
404                 dma_select = (direction << GTSCC_CDMAS_DMA_DIR_SHIFT) |
405                                         (azx_dev->core.stream_tag - 1);
406                 snd_hdac_chip_writel(azx_bus(chip), GTSCC, dma_select);
407
408                 /* Enable the capture */
409                 snd_hdac_chip_updatel(azx_bus(chip), GTSCC, 0, GTSCC_TSCCI_MASK);
410
411                 while (timeout) {
412                         if (snd_hdac_chip_readl(azx_bus(chip), GTSCC) &
413                                                 GTSCC_TSCCD_MASK)
414                                 break;
415
416                         timeout--;
417                 }
418
419                 if (!timeout) {
420                         dev_err(chip->card->dev, "GTSCC capture Timedout!\n");
421                         return -EIO;
422                 }
423
424                 /* Read wall clock counter */
425                 wallclk_ctr = snd_hdac_chip_readl(azx_bus(chip), WALFCC);
426
427                 /* Read TSC counter */
428                 tsc_counter_l = snd_hdac_chip_readl(azx_bus(chip), TSCCL);
429                 tsc_counter_h = snd_hdac_chip_readl(azx_bus(chip), TSCCU);
430
431                 /* Read Link counter */
432                 ll_counter_l = snd_hdac_chip_readl(azx_bus(chip), LLPCL);
433                 ll_counter_h = snd_hdac_chip_readl(azx_bus(chip), LLPCU);
434
435                 /* Ack: registers read done */
436                 snd_hdac_chip_writel(azx_bus(chip), GTSCC, GTSCC_TSCCD_SHIFT);
437
438                 tsc_counter = (tsc_counter_h << TSCCU_CCU_SHIFT) |
439                                                 tsc_counter_l;
440
441                 ll_counter = (ll_counter_h << LLPC_CCU_SHIFT) | ll_counter_l;
442                 wallclk_cycles = wallclk_ctr & WALFCC_CIF_MASK;
443
444                 /*
445                  * An error occurs near frame "rollover". The clocks in
446                  * frame value indicates whether this error may have
447                  * occurred. Here we use the value of 10 i.e.,
448                  * HDA_MAX_CYCLE_OFFSET
449                  */
450                 if (wallclk_cycles < HDA_MAX_CYCLE_VALUE - HDA_MAX_CYCLE_OFFSET
451                                         && wallclk_cycles > HDA_MAX_CYCLE_OFFSET)
452                         break;
453
454                 /*
455                  * Sleep before we read again, else we may again get
456                  * value near to MAX_CYCLE. Try to sleep for different
457                  * amount of time so we dont hit the same number again
458                  */
459                 udelay(retry_count++);
460
461         } while (retry_count != HDA_MAX_CYCLE_READ_RETRY);
462
463         if (retry_count == HDA_MAX_CYCLE_READ_RETRY) {
464                 dev_err_ratelimited(chip->card->dev,
465                         "Error in WALFCC cycle count\n");
466                 return -EIO;
467         }
468
469         *device = ns_to_ktime(azx_scale64(ll_counter,
470                                 NSEC_PER_SEC, runtime->rate));
471         *device = ktime_add_ns(*device, (wallclk_cycles * NSEC_PER_SEC) /
472                                ((HDA_MAX_CYCLE_VALUE + 1) * runtime->rate));
473
474         *system = convert_art_to_tsc(tsc_counter);
475
476         return 0;
477 }
478
479 #else
480 static int azx_get_sync_time(ktime_t *device,
481                 struct system_counterval_t *system, void *ctx)
482 {
483         return -ENXIO;
484 }
485 #endif
486
487 static int azx_get_crosststamp(struct snd_pcm_substream *substream,
488                               struct system_device_crosststamp *xtstamp)
489 {
490         return get_device_system_crosststamp(azx_get_sync_time,
491                                         substream, NULL, xtstamp);
492 }
493
494 static inline bool is_link_time_supported(struct snd_pcm_runtime *runtime,
495                                 struct snd_pcm_audio_tstamp_config *ts)
496 {
497         if (runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME)
498                 if (ts->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED)
499                         return true;
500
501         return false;
502 }
503
504 static int azx_get_time_info(struct snd_pcm_substream *substream,
505                         struct timespec *system_ts, struct timespec *audio_ts,
506                         struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
507                         struct snd_pcm_audio_tstamp_report *audio_tstamp_report)
508 {
509         struct azx_dev *azx_dev = get_azx_dev(substream);
510         struct snd_pcm_runtime *runtime = substream->runtime;
511         struct system_device_crosststamp xtstamp;
512         int ret;
513         u64 nsec;
514
515         if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) &&
516                 (audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) {
517
518                 snd_pcm_gettime(substream->runtime, system_ts);
519
520                 nsec = timecounter_read(&azx_dev->core.tc);
521                 nsec = div_u64(nsec, 3); /* can be optimized */
522                 if (audio_tstamp_config->report_delay)
523                         nsec = azx_adjust_codec_delay(substream, nsec);
524
525                 *audio_ts = ns_to_timespec(nsec);
526
527                 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK;
528                 audio_tstamp_report->accuracy_report = 1; /* rest of structure is valid */
529                 audio_tstamp_report->accuracy = 42; /* 24 MHz WallClock == 42ns resolution */
530
531         } else if (is_link_time_supported(runtime, audio_tstamp_config)) {
532
533                 ret = azx_get_crosststamp(substream, &xtstamp);
534                 if (ret)
535                         return ret;
536
537                 switch (runtime->tstamp_type) {
538                 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC:
539                         return -EINVAL;
540
541                 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW:
542                         *system_ts = ktime_to_timespec(xtstamp.sys_monoraw);
543                         break;
544
545                 default:
546                         *system_ts = ktime_to_timespec(xtstamp.sys_realtime);
547                         break;
548
549                 }
550
551                 *audio_ts = ktime_to_timespec(xtstamp.device);
552
553                 audio_tstamp_report->actual_type =
554                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED;
555                 audio_tstamp_report->accuracy_report = 1;
556                 /* 24 MHz WallClock == 42ns resolution */
557                 audio_tstamp_report->accuracy = 42;
558
559         } else {
560                 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT;
561         }
562
563         return 0;
564 }
565
566 static struct snd_pcm_hardware azx_pcm_hw = {
567         .info =                 (SNDRV_PCM_INFO_MMAP |
568                                  SNDRV_PCM_INFO_INTERLEAVED |
569                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
570                                  SNDRV_PCM_INFO_MMAP_VALID |
571                                  /* No full-resume yet implemented */
572                                  /* SNDRV_PCM_INFO_RESUME |*/
573                                  SNDRV_PCM_INFO_PAUSE |
574                                  SNDRV_PCM_INFO_SYNC_START |
575                                  SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */
576                                  SNDRV_PCM_INFO_HAS_LINK_ATIME |
577                                  SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
578         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
579         .rates =                SNDRV_PCM_RATE_48000,
580         .rate_min =             48000,
581         .rate_max =             48000,
582         .channels_min =         2,
583         .channels_max =         2,
584         .buffer_bytes_max =     AZX_MAX_BUF_SIZE,
585         .period_bytes_min =     128,
586         .period_bytes_max =     AZX_MAX_BUF_SIZE / 2,
587         .periods_min =          2,
588         .periods_max =          AZX_MAX_FRAG,
589         .fifo_size =            0,
590 };
591
592 static int azx_pcm_open(struct snd_pcm_substream *substream)
593 {
594         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
595         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
596         struct azx *chip = apcm->chip;
597         struct azx_dev *azx_dev;
598         struct snd_pcm_runtime *runtime = substream->runtime;
599         int err;
600         int buff_step;
601
602         snd_hda_codec_pcm_get(apcm->info);
603         mutex_lock(&chip->open_mutex);
604         azx_dev = azx_assign_device(chip, substream);
605         trace_azx_pcm_open(chip, azx_dev);
606         if (azx_dev == NULL) {
607                 err = -EBUSY;
608                 goto unlock;
609         }
610         runtime->private_data = azx_dev;
611
612         runtime->hw = azx_pcm_hw;
613         if (chip->gts_present)
614                 runtime->hw.info |= SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME;
615         runtime->hw.channels_min = hinfo->channels_min;
616         runtime->hw.channels_max = hinfo->channels_max;
617         runtime->hw.formats = hinfo->formats;
618         runtime->hw.rates = hinfo->rates;
619         snd_pcm_limit_hw_rates(runtime);
620         snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
621
622         /* avoid wrap-around with wall-clock */
623         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME,
624                                      20,
625                                      178000000);
626
627         if (chip->align_buffer_size)
628                 /* constrain buffer sizes to be multiple of 128
629                    bytes. This is more efficient in terms of memory
630                    access but isn't required by the HDA spec and
631                    prevents users from specifying exact period/buffer
632                    sizes. For example for 44.1kHz, a period size set
633                    to 20ms will be rounded to 19.59ms. */
634                 buff_step = 128;
635         else
636                 /* Don't enforce steps on buffer sizes, still need to
637                    be multiple of 4 bytes (HDA spec). Tested on Intel
638                    HDA controllers, may not work on all devices where
639                    option needs to be disabled */
640                 buff_step = 4;
641
642         snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
643                                    buff_step);
644         snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
645                                    buff_step);
646         snd_hda_power_up(apcm->codec);
647         if (hinfo->ops.open)
648                 err = hinfo->ops.open(hinfo, apcm->codec, substream);
649         else
650                 err = -ENODEV;
651         if (err < 0) {
652                 azx_release_device(azx_dev);
653                 goto powerdown;
654         }
655         snd_pcm_limit_hw_rates(runtime);
656         /* sanity check */
657         if (snd_BUG_ON(!runtime->hw.channels_min) ||
658             snd_BUG_ON(!runtime->hw.channels_max) ||
659             snd_BUG_ON(!runtime->hw.formats) ||
660             snd_BUG_ON(!runtime->hw.rates)) {
661                 azx_release_device(azx_dev);
662                 if (hinfo->ops.close)
663                         hinfo->ops.close(hinfo, apcm->codec, substream);
664                 err = -EINVAL;
665                 goto powerdown;
666         }
667
668         /* disable LINK_ATIME timestamps for capture streams
669            until we figure out how to handle digital inputs */
670         if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
671                 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */
672                 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME;
673         }
674
675         snd_pcm_set_sync(substream);
676         mutex_unlock(&chip->open_mutex);
677         return 0;
678
679  powerdown:
680         snd_hda_power_down(apcm->codec);
681  unlock:
682         mutex_unlock(&chip->open_mutex);
683         snd_hda_codec_pcm_put(apcm->info);
684         return err;
685 }
686
687 static int azx_pcm_mmap(struct snd_pcm_substream *substream,
688                         struct vm_area_struct *area)
689 {
690         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
691         struct azx *chip = apcm->chip;
692         if (chip->ops->pcm_mmap_prepare)
693                 chip->ops->pcm_mmap_prepare(substream, area);
694         return snd_pcm_lib_default_mmap(substream, area);
695 }
696
697 static const struct snd_pcm_ops azx_pcm_ops = {
698         .open = azx_pcm_open,
699         .close = azx_pcm_close,
700         .ioctl = snd_pcm_lib_ioctl,
701         .hw_params = azx_pcm_hw_params,
702         .hw_free = azx_pcm_hw_free,
703         .prepare = azx_pcm_prepare,
704         .trigger = azx_pcm_trigger,
705         .pointer = azx_pcm_pointer,
706         .get_time_info =  azx_get_time_info,
707         .mmap = azx_pcm_mmap,
708         .page = snd_pcm_sgbuf_ops_page,
709 };
710
711 static void azx_pcm_free(struct snd_pcm *pcm)
712 {
713         struct azx_pcm *apcm = pcm->private_data;
714         if (apcm) {
715                 list_del(&apcm->list);
716                 apcm->info->pcm = NULL;
717                 kfree(apcm);
718         }
719 }
720
721 #define MAX_PREALLOC_SIZE       (32 * 1024 * 1024)
722
723 int snd_hda_attach_pcm_stream(struct hda_bus *_bus, struct hda_codec *codec,
724                               struct hda_pcm *cpcm)
725 {
726         struct hdac_bus *bus = &_bus->core;
727         struct azx *chip = bus_to_azx(bus);
728         struct snd_pcm *pcm;
729         struct azx_pcm *apcm;
730         int pcm_dev = cpcm->device;
731         unsigned int size;
732         int s, err;
733
734         list_for_each_entry(apcm, &chip->pcm_list, list) {
735                 if (apcm->pcm->device == pcm_dev) {
736                         dev_err(chip->card->dev, "PCM %d already exists\n",
737                                 pcm_dev);
738                         return -EBUSY;
739                 }
740         }
741         err = snd_pcm_new(chip->card, cpcm->name, pcm_dev,
742                           cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams,
743                           cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams,
744                           &pcm);
745         if (err < 0)
746                 return err;
747         strlcpy(pcm->name, cpcm->name, sizeof(pcm->name));
748         apcm = kzalloc(sizeof(*apcm), GFP_KERNEL);
749         if (apcm == NULL) {
750                 snd_device_free(chip->card, pcm);
751                 return -ENOMEM;
752         }
753         apcm->chip = chip;
754         apcm->pcm = pcm;
755         apcm->codec = codec;
756         apcm->info = cpcm;
757         pcm->private_data = apcm;
758         pcm->private_free = azx_pcm_free;
759         if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM)
760                 pcm->dev_class = SNDRV_PCM_CLASS_MODEM;
761         list_add_tail(&apcm->list, &chip->pcm_list);
762         cpcm->pcm = pcm;
763         for (s = 0; s < 2; s++) {
764                 if (cpcm->stream[s].substreams)
765                         snd_pcm_set_ops(pcm, s, &azx_pcm_ops);
766         }
767         /* buffer pre-allocation */
768         size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024;
769         if (size > MAX_PREALLOC_SIZE)
770                 size = MAX_PREALLOC_SIZE;
771         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
772                                               chip->card->dev,
773                                               size, MAX_PREALLOC_SIZE);
774         return 0;
775 }
776
777 static unsigned int azx_command_addr(u32 cmd)
778 {
779         unsigned int addr = cmd >> 28;
780
781         if (addr >= AZX_MAX_CODECS) {
782                 snd_BUG();
783                 addr = 0;
784         }
785
786         return addr;
787 }
788
789 /* receive a response */
790 static int azx_rirb_get_response(struct hdac_bus *bus, unsigned int addr,
791                                  unsigned int *res)
792 {
793         struct azx *chip = bus_to_azx(bus);
794         struct hda_bus *hbus = &chip->bus;
795         unsigned long timeout;
796         unsigned long loopcounter;
797         int do_poll = 0;
798
799  again:
800         timeout = jiffies + msecs_to_jiffies(1000);
801
802         for (loopcounter = 0;; loopcounter++) {
803                 spin_lock_irq(&bus->reg_lock);
804                 if (chip->polling_mode || do_poll)
805                         snd_hdac_bus_update_rirb(bus);
806                 if (!bus->rirb.cmds[addr]) {
807                         if (!do_poll)
808                                 chip->poll_count = 0;
809                         if (res)
810                                 *res = bus->rirb.res[addr]; /* the last value */
811                         spin_unlock_irq(&bus->reg_lock);
812                         return 0;
813                 }
814                 spin_unlock_irq(&bus->reg_lock);
815                 if (time_after(jiffies, timeout))
816                         break;
817                 if (hbus->needs_damn_long_delay || loopcounter > 3000)
818                         msleep(2); /* temporary workaround */
819                 else {
820                         udelay(10);
821                         cond_resched();
822                 }
823         }
824
825         if (hbus->no_response_fallback)
826                 return -EIO;
827
828         if (!chip->polling_mode && chip->poll_count < 2) {
829                 dev_dbg(chip->card->dev,
830                         "azx_get_response timeout, polling the codec once: last cmd=0x%08x\n",
831                         bus->last_cmd[addr]);
832                 do_poll = 1;
833                 chip->poll_count++;
834                 goto again;
835         }
836
837
838         if (!chip->polling_mode) {
839                 dev_warn(chip->card->dev,
840                          "azx_get_response timeout, switching to polling mode: last cmd=0x%08x\n",
841                          bus->last_cmd[addr]);
842                 chip->polling_mode = 1;
843                 goto again;
844         }
845
846         if (chip->msi) {
847                 dev_warn(chip->card->dev,
848                          "No response from codec, disabling MSI: last cmd=0x%08x\n",
849                          bus->last_cmd[addr]);
850                 if (chip->ops->disable_msi_reset_irq &&
851                     chip->ops->disable_msi_reset_irq(chip) < 0)
852                         return -EIO;
853                 goto again;
854         }
855
856         if (chip->probing) {
857                 /* If this critical timeout happens during the codec probing
858                  * phase, this is likely an access to a non-existing codec
859                  * slot.  Better to return an error and reset the system.
860                  */
861                 return -EIO;
862         }
863
864         /* a fatal communication error; need either to reset or to fallback
865          * to the single_cmd mode
866          */
867         if (hbus->allow_bus_reset && !hbus->response_reset && !hbus->in_reset) {
868                 hbus->response_reset = 1;
869                 dev_err(chip->card->dev,
870                         "No response from codec, resetting bus: last cmd=0x%08x\n",
871                         bus->last_cmd[addr]);
872                 return -EAGAIN; /* give a chance to retry */
873         }
874
875         dev_err(chip->card->dev,
876                 "azx_get_response timeout, switching to single_cmd mode: last cmd=0x%08x\n",
877                 bus->last_cmd[addr]);
878         chip->single_cmd = 1;
879         hbus->response_reset = 0;
880         snd_hdac_bus_stop_cmd_io(bus);
881         return -EIO;
882 }
883
884 /*
885  * Use the single immediate command instead of CORB/RIRB for simplicity
886  *
887  * Note: according to Intel, this is not preferred use.  The command was
888  *       intended for the BIOS only, and may get confused with unsolicited
889  *       responses.  So, we shouldn't use it for normal operation from the
890  *       driver.
891  *       I left the codes, however, for debugging/testing purposes.
892  */
893
894 /* receive a response */
895 static int azx_single_wait_for_response(struct azx *chip, unsigned int addr)
896 {
897         int timeout = 50;
898
899         while (timeout--) {
900                 /* check IRV busy bit */
901                 if (azx_readw(chip, IRS) & AZX_IRS_VALID) {
902                         /* reuse rirb.res as the response return value */
903                         azx_bus(chip)->rirb.res[addr] = azx_readl(chip, IR);
904                         return 0;
905                 }
906                 udelay(1);
907         }
908         if (printk_ratelimit())
909                 dev_dbg(chip->card->dev, "get_response timeout: IRS=0x%x\n",
910                         azx_readw(chip, IRS));
911         azx_bus(chip)->rirb.res[addr] = -1;
912         return -EIO;
913 }
914
915 /* send a command */
916 static int azx_single_send_cmd(struct hdac_bus *bus, u32 val)
917 {
918         struct azx *chip = bus_to_azx(bus);
919         unsigned int addr = azx_command_addr(val);
920         int timeout = 50;
921
922         bus->last_cmd[azx_command_addr(val)] = val;
923         while (timeout--) {
924                 /* check ICB busy bit */
925                 if (!((azx_readw(chip, IRS) & AZX_IRS_BUSY))) {
926                         /* Clear IRV valid bit */
927                         azx_writew(chip, IRS, azx_readw(chip, IRS) |
928                                    AZX_IRS_VALID);
929                         azx_writel(chip, IC, val);
930                         azx_writew(chip, IRS, azx_readw(chip, IRS) |
931                                    AZX_IRS_BUSY);
932                         return azx_single_wait_for_response(chip, addr);
933                 }
934                 udelay(1);
935         }
936         if (printk_ratelimit())
937                 dev_dbg(chip->card->dev,
938                         "send_cmd timeout: IRS=0x%x, val=0x%x\n",
939                         azx_readw(chip, IRS), val);
940         return -EIO;
941 }
942
943 /* receive a response */
944 static int azx_single_get_response(struct hdac_bus *bus, unsigned int addr,
945                                    unsigned int *res)
946 {
947         if (res)
948                 *res = bus->rirb.res[addr];
949         return 0;
950 }
951
952 /*
953  * The below are the main callbacks from hda_codec.
954  *
955  * They are just the skeleton to call sub-callbacks according to the
956  * current setting of chip->single_cmd.
957  */
958
959 /* send a command */
960 static int azx_send_cmd(struct hdac_bus *bus, unsigned int val)
961 {
962         struct azx *chip = bus_to_azx(bus);
963
964         if (chip->disabled)
965                 return 0;
966         if (chip->single_cmd)
967                 return azx_single_send_cmd(bus, val);
968         else
969                 return snd_hdac_bus_send_cmd(bus, val);
970 }
971
972 /* get a response */
973 static int azx_get_response(struct hdac_bus *bus, unsigned int addr,
974                             unsigned int *res)
975 {
976         struct azx *chip = bus_to_azx(bus);
977
978         if (chip->disabled)
979                 return 0;
980         if (chip->single_cmd)
981                 return azx_single_get_response(bus, addr, res);
982         else
983                 return azx_rirb_get_response(bus, addr, res);
984 }
985
986 static int azx_link_power(struct hdac_bus *bus, bool enable)
987 {
988         struct azx *chip = bus_to_azx(bus);
989
990         if (chip->ops->link_power)
991                 return chip->ops->link_power(chip, enable);
992         else
993                 return -EINVAL;
994 }
995
996 static const struct hdac_bus_ops bus_core_ops = {
997         .command = azx_send_cmd,
998         .get_response = azx_get_response,
999         .link_power = azx_link_power,
1000 };
1001
1002 #ifdef CONFIG_SND_HDA_DSP_LOADER
1003 /*
1004  * DSP loading code (e.g. for CA0132)
1005  */
1006
1007 /* use the first stream for loading DSP */
1008 static struct azx_dev *
1009 azx_get_dsp_loader_dev(struct azx *chip)
1010 {
1011         struct hdac_bus *bus = azx_bus(chip);
1012         struct hdac_stream *s;
1013
1014         list_for_each_entry(s, &bus->stream_list, list)
1015                 if (s->index == chip->playback_index_offset)
1016                         return stream_to_azx_dev(s);
1017
1018         return NULL;
1019 }
1020
1021 int snd_hda_codec_load_dsp_prepare(struct hda_codec *codec, unsigned int format,
1022                                    unsigned int byte_size,
1023                                    struct snd_dma_buffer *bufp)
1024 {
1025         struct hdac_bus *bus = &codec->bus->core;
1026         struct azx *chip = bus_to_azx(bus);
1027         struct azx_dev *azx_dev;
1028         struct hdac_stream *hstr;
1029         bool saved = false;
1030         int err;
1031
1032         azx_dev = azx_get_dsp_loader_dev(chip);
1033         hstr = azx_stream(azx_dev);
1034         spin_lock_irq(&bus->reg_lock);
1035         if (hstr->opened) {
1036                 chip->saved_azx_dev = *azx_dev;
1037                 saved = true;
1038         }
1039         spin_unlock_irq(&bus->reg_lock);
1040
1041         err = snd_hdac_dsp_prepare(hstr, format, byte_size, bufp);
1042         if (err < 0) {
1043                 spin_lock_irq(&bus->reg_lock);
1044                 if (saved)
1045                         *azx_dev = chip->saved_azx_dev;
1046                 spin_unlock_irq(&bus->reg_lock);
1047                 return err;
1048         }
1049
1050         hstr->prepared = 0;
1051         return err;
1052 }
1053 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_prepare);
1054
1055 void snd_hda_codec_load_dsp_trigger(struct hda_codec *codec, bool start)
1056 {
1057         struct hdac_bus *bus = &codec->bus->core;
1058         struct azx *chip = bus_to_azx(bus);
1059         struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1060
1061         snd_hdac_dsp_trigger(azx_stream(azx_dev), start);
1062 }
1063 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_trigger);
1064
1065 void snd_hda_codec_load_dsp_cleanup(struct hda_codec *codec,
1066                                     struct snd_dma_buffer *dmab)
1067 {
1068         struct hdac_bus *bus = &codec->bus->core;
1069         struct azx *chip = bus_to_azx(bus);
1070         struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1071         struct hdac_stream *hstr = azx_stream(azx_dev);
1072
1073         if (!dmab->area || !hstr->locked)
1074                 return;
1075
1076         snd_hdac_dsp_cleanup(hstr, dmab);
1077         spin_lock_irq(&bus->reg_lock);
1078         if (hstr->opened)
1079                 *azx_dev = chip->saved_azx_dev;
1080         hstr->locked = false;
1081         spin_unlock_irq(&bus->reg_lock);
1082 }
1083 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_cleanup);
1084 #endif /* CONFIG_SND_HDA_DSP_LOADER */
1085
1086 /*
1087  * reset and start the controller registers
1088  */
1089 void azx_init_chip(struct azx *chip, bool full_reset)
1090 {
1091         if (snd_hdac_bus_init_chip(azx_bus(chip), full_reset)) {
1092                 /* correct RINTCNT for CXT */
1093                 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1094                         azx_writew(chip, RINTCNT, 0xc0);
1095         }
1096 }
1097 EXPORT_SYMBOL_GPL(azx_init_chip);
1098
1099 void azx_stop_all_streams(struct azx *chip)
1100 {
1101         struct hdac_bus *bus = azx_bus(chip);
1102         struct hdac_stream *s;
1103
1104         list_for_each_entry(s, &bus->stream_list, list)
1105                 snd_hdac_stream_stop(s);
1106 }
1107 EXPORT_SYMBOL_GPL(azx_stop_all_streams);
1108
1109 void azx_stop_chip(struct azx *chip)
1110 {
1111         snd_hdac_bus_stop_chip(azx_bus(chip));
1112 }
1113 EXPORT_SYMBOL_GPL(azx_stop_chip);
1114
1115 /*
1116  * interrupt handler
1117  */
1118 static void stream_update(struct hdac_bus *bus, struct hdac_stream *s)
1119 {
1120         struct azx *chip = bus_to_azx(bus);
1121         struct azx_dev *azx_dev = stream_to_azx_dev(s);
1122
1123         /* check whether this IRQ is really acceptable */
1124         if (!chip->ops->position_check ||
1125             chip->ops->position_check(chip, azx_dev)) {
1126                 spin_unlock(&bus->reg_lock);
1127                 snd_pcm_period_elapsed(azx_stream(azx_dev)->substream);
1128                 spin_lock(&bus->reg_lock);
1129         }
1130 }
1131
1132 irqreturn_t azx_interrupt(int irq, void *dev_id)
1133 {
1134         struct azx *chip = dev_id;
1135         struct hdac_bus *bus = azx_bus(chip);
1136         u32 status;
1137         bool active, handled = false;
1138         int repeat = 0; /* count for avoiding endless loop */
1139
1140 #ifdef CONFIG_PM
1141         if (azx_has_pm_runtime(chip))
1142                 if (!pm_runtime_active(chip->card->dev))
1143                         return IRQ_NONE;
1144 #endif
1145
1146         spin_lock(&bus->reg_lock);
1147
1148         if (chip->disabled)
1149                 goto unlock;
1150
1151         do {
1152                 status = azx_readl(chip, INTSTS);
1153                 if (status == 0 || status == 0xffffffff)
1154                         break;
1155
1156                 handled = true;
1157                 active = false;
1158                 if (snd_hdac_bus_handle_stream_irq(bus, status, stream_update))
1159                         active = true;
1160
1161                 status = azx_readb(chip, RIRBSTS);
1162                 if (status & RIRB_INT_MASK) {
1163                         /*
1164                          * Clearing the interrupt status here ensures that no
1165                          * interrupt gets masked after the RIRB wp is read in
1166                          * snd_hdac_bus_update_rirb. This avoids a possible
1167                          * race condition where codec response in RIRB may
1168                          * remain unserviced by IRQ, eventually falling back
1169                          * to polling mode in azx_rirb_get_response.
1170                          */
1171                         azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);
1172                         active = true;
1173                         if (status & RIRB_INT_RESPONSE) {
1174                                 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1175                                         udelay(80);
1176                                 snd_hdac_bus_update_rirb(bus);
1177                         }
1178                 }
1179         } while (active && ++repeat < 10);
1180
1181  unlock:
1182         spin_unlock(&bus->reg_lock);
1183
1184         return IRQ_RETVAL(handled);
1185 }
1186 EXPORT_SYMBOL_GPL(azx_interrupt);
1187
1188 /*
1189  * Codec initerface
1190  */
1191
1192 /*
1193  * Probe the given codec address
1194  */
1195 static int probe_codec(struct azx *chip, int addr)
1196 {
1197         unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) |
1198                 (AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID;
1199         struct hdac_bus *bus = azx_bus(chip);
1200         int err;
1201         unsigned int res = -1;
1202
1203         mutex_lock(&bus->cmd_mutex);
1204         chip->probing = 1;
1205         azx_send_cmd(bus, cmd);
1206         err = azx_get_response(bus, addr, &res);
1207         chip->probing = 0;
1208         mutex_unlock(&bus->cmd_mutex);
1209         if (err < 0 || res == -1)
1210                 return -EIO;
1211         dev_dbg(chip->card->dev, "codec #%d probed OK\n", addr);
1212         return 0;
1213 }
1214
1215 void snd_hda_bus_reset(struct hda_bus *bus)
1216 {
1217         struct azx *chip = bus_to_azx(&bus->core);
1218
1219         bus->in_reset = 1;
1220         azx_stop_chip(chip);
1221         azx_init_chip(chip, true);
1222         if (bus->core.chip_init)
1223                 snd_hda_bus_reset_codecs(bus);
1224         bus->in_reset = 0;
1225 }
1226
1227 static int get_jackpoll_interval(struct azx *chip)
1228 {
1229         int i;
1230         unsigned int j;
1231
1232         if (!chip->jackpoll_ms)
1233                 return 0;
1234
1235         i = chip->jackpoll_ms[chip->dev_index];
1236         if (i == 0)
1237                 return 0;
1238         if (i < 50 || i > 60000)
1239                 j = 0;
1240         else
1241                 j = msecs_to_jiffies(i);
1242         if (j == 0)
1243                 dev_warn(chip->card->dev,
1244                          "jackpoll_ms value out of range: %d\n", i);
1245         return j;
1246 }
1247
1248 /* HD-audio bus initialization */
1249 int azx_bus_init(struct azx *chip, const char *model,
1250                  const struct hdac_io_ops *io_ops)
1251 {
1252         struct hda_bus *bus = &chip->bus;
1253         int err;
1254
1255         err = snd_hdac_bus_init(&bus->core, chip->card->dev, &bus_core_ops,
1256                                 io_ops);
1257         if (err < 0)
1258                 return err;
1259
1260         bus->card = chip->card;
1261         mutex_init(&bus->prepare_mutex);
1262         bus->pci = chip->pci;
1263         bus->modelname = model;
1264         bus->mixer_assigned = -1;
1265         bus->core.snoop = azx_snoop(chip);
1266         if (chip->get_position[0] != azx_get_pos_lpib ||
1267             chip->get_position[1] != azx_get_pos_lpib)
1268                 bus->core.use_posbuf = true;
1269         bus->core.bdl_pos_adj = chip->bdl_pos_adj;
1270         if (chip->driver_caps & AZX_DCAPS_CORBRP_SELF_CLEAR)
1271                 bus->core.corbrp_self_clear = true;
1272
1273         if (chip->driver_caps & AZX_DCAPS_4K_BDLE_BOUNDARY)
1274                 bus->core.align_bdle_4k = true;
1275
1276         /* AMD chipsets often cause the communication stalls upon certain
1277          * sequence like the pin-detection.  It seems that forcing the synced
1278          * access works around the stall.  Grrr...
1279          */
1280         if (chip->driver_caps & AZX_DCAPS_SYNC_WRITE) {
1281                 dev_dbg(chip->card->dev, "Enable sync_write for stable communication\n");
1282                 bus->core.sync_write = 1;
1283                 bus->allow_bus_reset = 1;
1284         }
1285
1286         return 0;
1287 }
1288 EXPORT_SYMBOL_GPL(azx_bus_init);
1289
1290 /* Probe codecs */
1291 int azx_probe_codecs(struct azx *chip, unsigned int max_slots)
1292 {
1293         struct hdac_bus *bus = azx_bus(chip);
1294         int c, codecs, err;
1295
1296         codecs = 0;
1297         if (!max_slots)
1298                 max_slots = AZX_DEFAULT_CODECS;
1299
1300         /* First try to probe all given codec slots */
1301         for (c = 0; c < max_slots; c++) {
1302                 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1303                         if (probe_codec(chip, c) < 0) {
1304                                 /* Some BIOSen give you wrong codec addresses
1305                                  * that don't exist
1306                                  */
1307                                 dev_warn(chip->card->dev,
1308                                          "Codec #%d probe error; disabling it...\n", c);
1309                                 bus->codec_mask &= ~(1 << c);
1310                                 /* More badly, accessing to a non-existing
1311                                  * codec often screws up the controller chip,
1312                                  * and disturbs the further communications.
1313                                  * Thus if an error occurs during probing,
1314                                  * better to reset the controller chip to
1315                                  * get back to the sanity state.
1316                                  */
1317                                 azx_stop_chip(chip);
1318                                 azx_init_chip(chip, true);
1319                         }
1320                 }
1321         }
1322
1323         /* Then create codec instances */
1324         for (c = 0; c < max_slots; c++) {
1325                 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1326                         struct hda_codec *codec;
1327                         err = snd_hda_codec_new(&chip->bus, chip->card, c, &codec);
1328                         if (err < 0)
1329                                 continue;
1330                         codec->jackpoll_interval = get_jackpoll_interval(chip);
1331                         codec->beep_mode = chip->beep_mode;
1332                         codecs++;
1333                 }
1334         }
1335         if (!codecs) {
1336                 dev_err(chip->card->dev, "no codecs initialized\n");
1337                 return -ENXIO;
1338         }
1339         return 0;
1340 }
1341 EXPORT_SYMBOL_GPL(azx_probe_codecs);
1342
1343 /* configure each codec instance */
1344 int azx_codec_configure(struct azx *chip)
1345 {
1346         struct hda_codec *codec, *next;
1347
1348         /* use _safe version here since snd_hda_codec_configure() deregisters
1349          * the device upon error and deletes itself from the bus list.
1350          */
1351         list_for_each_codec_safe(codec, next, &chip->bus) {
1352                 snd_hda_codec_configure(codec);
1353         }
1354         return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(azx_codec_configure);
1357
1358 static int stream_direction(struct azx *chip, unsigned char index)
1359 {
1360         if (index >= chip->capture_index_offset &&
1361             index < chip->capture_index_offset + chip->capture_streams)
1362                 return SNDRV_PCM_STREAM_CAPTURE;
1363         return SNDRV_PCM_STREAM_PLAYBACK;
1364 }
1365
1366 /* initialize SD streams */
1367 int azx_init_streams(struct azx *chip)
1368 {
1369         int i;
1370         int stream_tags[2] = { 0, 0 };
1371
1372         /* initialize each stream (aka device)
1373          * assign the starting bdl address to each stream (device)
1374          * and initialize
1375          */
1376         for (i = 0; i < chip->num_streams; i++) {
1377                 struct azx_dev *azx_dev = kzalloc(sizeof(*azx_dev), GFP_KERNEL);
1378                 int dir, tag;
1379
1380                 if (!azx_dev)
1381                         return -ENOMEM;
1382
1383                 dir = stream_direction(chip, i);
1384                 /* stream tag must be unique throughout
1385                  * the stream direction group,
1386                  * valid values 1...15
1387                  * use separate stream tag if the flag
1388                  * AZX_DCAPS_SEPARATE_STREAM_TAG is used
1389                  */
1390                 if (chip->driver_caps & AZX_DCAPS_SEPARATE_STREAM_TAG)
1391                         tag = ++stream_tags[dir];
1392                 else
1393                         tag = i + 1;
1394                 snd_hdac_stream_init(azx_bus(chip), azx_stream(azx_dev),
1395                                      i, dir, tag);
1396         }
1397
1398         return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(azx_init_streams);
1401
1402 void azx_free_streams(struct azx *chip)
1403 {
1404         struct hdac_bus *bus = azx_bus(chip);
1405         struct hdac_stream *s;
1406
1407         while (!list_empty(&bus->stream_list)) {
1408                 s = list_first_entry(&bus->stream_list, struct hdac_stream, list);
1409                 list_del(&s->list);
1410                 kfree(stream_to_azx_dev(s));
1411         }
1412 }
1413 EXPORT_SYMBOL_GPL(azx_free_streams);