GNU Linux-libre 4.19.264-gnu1
[releases.git] / sound / x86 / intel_hdmi_audio.c
1 /*
2  *   intel_hdmi_audio.c - Intel HDMI audio driver
3  *
4  *  Copyright (C) 2016 Intel Corp
5  *  Authors:    Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6  *              Ramesh Babu K V <ramesh.babu@intel.com>
7  *              Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8  *              Jerome Anand <jerome.anand@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; version 2 of the License.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21  * ALSA driver for Intel HDMI audio
22  */
23
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
44
45 #define for_each_pipe(card_ctx, pipe) \
46         for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
47 #define for_each_port(card_ctx, port) \
48         for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
49
50 /*standard module options for ALSA. This module supports only one card*/
51 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
52 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
53 static bool single_port;
54
55 module_param_named(index, hdmi_card_index, int, 0444);
56 MODULE_PARM_DESC(index,
57                 "Index value for INTEL Intel HDMI Audio controller.");
58 module_param_named(id, hdmi_card_id, charp, 0444);
59 MODULE_PARM_DESC(id,
60                 "ID string for INTEL Intel HDMI Audio controller.");
61 module_param(single_port, bool, 0444);
62 MODULE_PARM_DESC(single_port,
63                 "Single-port mode (for compatibility)");
64
65 /*
66  * ELD SA bits in the CEA Speaker Allocation data block
67  */
68 static const int eld_speaker_allocation_bits[] = {
69         [0] = FL | FR,
70         [1] = LFE,
71         [2] = FC,
72         [3] = RL | RR,
73         [4] = RC,
74         [5] = FLC | FRC,
75         [6] = RLC | RRC,
76         /* the following are not defined in ELD yet */
77         [7] = 0,
78 };
79
80 /*
81  * This is an ordered list!
82  *
83  * The preceding ones have better chances to be selected by
84  * hdmi_channel_allocation().
85  */
86 static struct cea_channel_speaker_allocation channel_allocations[] = {
87 /*                        channel:   7     6    5    4    3     2    1    0  */
88 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
89                                 /* 2.1 */
90 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
91                                 /* Dolby Surround */
92 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
93                                 /* surround40 */
94 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
95                                 /* surround41 */
96 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
97                                 /* surround50 */
98 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
99                                 /* surround51 */
100 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
101                                 /* 6.1 */
102 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
103                                 /* surround71 */
104 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
105
106 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
107 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
108 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
109 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
110 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
111 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
112 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
113 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
114 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
115 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
116 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
117 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
118 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
119 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
120 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
121 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
122 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
123 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
124 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
125 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
126 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
127 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
128 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
129 };
130
131 static const struct channel_map_table map_tables[] = {
132         { SNDRV_CHMAP_FL,       0x00,   FL },
133         { SNDRV_CHMAP_FR,       0x01,   FR },
134         { SNDRV_CHMAP_RL,       0x04,   RL },
135         { SNDRV_CHMAP_RR,       0x05,   RR },
136         { SNDRV_CHMAP_LFE,      0x02,   LFE },
137         { SNDRV_CHMAP_FC,       0x03,   FC },
138         { SNDRV_CHMAP_RLC,      0x06,   RLC },
139         { SNDRV_CHMAP_RRC,      0x07,   RRC },
140         {} /* terminator */
141 };
142
143 /* hardware capability structure */
144 static const struct snd_pcm_hardware had_pcm_hardware = {
145         .info = (SNDRV_PCM_INFO_INTERLEAVED |
146                 SNDRV_PCM_INFO_MMAP |
147                 SNDRV_PCM_INFO_MMAP_VALID |
148                 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
149         .formats = (SNDRV_PCM_FMTBIT_S16_LE |
150                     SNDRV_PCM_FMTBIT_S24_LE |
151                     SNDRV_PCM_FMTBIT_S32_LE),
152         .rates = SNDRV_PCM_RATE_32000 |
153                 SNDRV_PCM_RATE_44100 |
154                 SNDRV_PCM_RATE_48000 |
155                 SNDRV_PCM_RATE_88200 |
156                 SNDRV_PCM_RATE_96000 |
157                 SNDRV_PCM_RATE_176400 |
158                 SNDRV_PCM_RATE_192000,
159         .rate_min = HAD_MIN_RATE,
160         .rate_max = HAD_MAX_RATE,
161         .channels_min = HAD_MIN_CHANNEL,
162         .channels_max = HAD_MAX_CHANNEL,
163         .buffer_bytes_max = HAD_MAX_BUFFER,
164         .period_bytes_min = HAD_MIN_PERIOD_BYTES,
165         .period_bytes_max = HAD_MAX_PERIOD_BYTES,
166         .periods_min = HAD_MIN_PERIODS,
167         .periods_max = HAD_MAX_PERIODS,
168         .fifo_size = HAD_FIFO_SIZE,
169 };
170
171 /* Get the active PCM substream;
172  * Call had_substream_put() for unreferecing.
173  * Don't call this inside had_spinlock, as it takes by itself
174  */
175 static struct snd_pcm_substream *
176 had_substream_get(struct snd_intelhad *intelhaddata)
177 {
178         struct snd_pcm_substream *substream;
179         unsigned long flags;
180
181         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
182         substream = intelhaddata->stream_info.substream;
183         if (substream)
184                 intelhaddata->stream_info.substream_refcount++;
185         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
186         return substream;
187 }
188
189 /* Unref the active PCM substream;
190  * Don't call this inside had_spinlock, as it takes by itself
191  */
192 static void had_substream_put(struct snd_intelhad *intelhaddata)
193 {
194         unsigned long flags;
195
196         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
197         intelhaddata->stream_info.substream_refcount--;
198         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
199 }
200
201 static u32 had_config_offset(int pipe)
202 {
203         switch (pipe) {
204         default:
205         case 0:
206                 return AUDIO_HDMI_CONFIG_A;
207         case 1:
208                 return AUDIO_HDMI_CONFIG_B;
209         case 2:
210                 return AUDIO_HDMI_CONFIG_C;
211         }
212 }
213
214 /* Register access functions */
215 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
216                                  int pipe, u32 reg)
217 {
218         return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
219 }
220
221 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
222                                    int pipe, u32 reg, u32 val)
223 {
224         iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
225 }
226
227 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
228 {
229         if (!ctx->connected)
230                 *val = 0;
231         else
232                 *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
233 }
234
235 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
236 {
237         if (ctx->connected)
238                 had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
239 }
240
241 /*
242  * enable / disable audio configuration
243  *
244  * The normal read/modify should not directly be used on VLV2 for
245  * updating AUD_CONFIG register.
246  * This is because:
247  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
248  * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
249  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
250  * register. This field should be 1xy binary for configuration with 6 or
251  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
252  * causes the "channels" field to be updated as 0xy binary resulting in
253  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
254  * appropriate value when doing read-modify of AUD_CONFIG register.
255  */
256 static void had_enable_audio(struct snd_intelhad *intelhaddata,
257                              bool enable)
258 {
259         /* update the cached value */
260         intelhaddata->aud_config.regx.aud_en = enable;
261         had_write_register(intelhaddata, AUD_CONFIG,
262                            intelhaddata->aud_config.regval);
263 }
264
265 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
266 static void had_ack_irqs(struct snd_intelhad *ctx)
267 {
268         u32 status_reg;
269
270         if (!ctx->connected)
271                 return;
272         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
273         status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
274         had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
275         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
276 }
277
278 /* Reset buffer pointers */
279 static void had_reset_audio(struct snd_intelhad *intelhaddata)
280 {
281         had_write_register(intelhaddata, AUD_HDMI_STATUS,
282                            AUD_HDMI_STATUSG_MASK_FUNCRST);
283         had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
284 }
285
286 /*
287  * initialize audio channel status registers
288  * This function is called in the prepare callback
289  */
290 static int had_prog_status_reg(struct snd_pcm_substream *substream,
291                         struct snd_intelhad *intelhaddata)
292 {
293         union aud_ch_status_0 ch_stat0 = {.regval = 0};
294         union aud_ch_status_1 ch_stat1 = {.regval = 0};
295
296         ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
297                                           IEC958_AES0_NONAUDIO) >> 1;
298         ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
299                                           IEC958_AES3_CON_CLOCK) >> 4;
300
301         switch (substream->runtime->rate) {
302         case AUD_SAMPLE_RATE_32:
303                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
304                 break;
305
306         case AUD_SAMPLE_RATE_44_1:
307                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
308                 break;
309         case AUD_SAMPLE_RATE_48:
310                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
311                 break;
312         case AUD_SAMPLE_RATE_88_2:
313                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
314                 break;
315         case AUD_SAMPLE_RATE_96:
316                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
317                 break;
318         case AUD_SAMPLE_RATE_176_4:
319                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
320                 break;
321         case AUD_SAMPLE_RATE_192:
322                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
323                 break;
324
325         default:
326                 /* control should never come here */
327                 return -EINVAL;
328         }
329
330         had_write_register(intelhaddata,
331                            AUD_CH_STATUS_0, ch_stat0.regval);
332
333         switch (substream->runtime->format) {
334         case SNDRV_PCM_FORMAT_S16_LE:
335                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
336                 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
337                 break;
338         case SNDRV_PCM_FORMAT_S24_LE:
339         case SNDRV_PCM_FORMAT_S32_LE:
340                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
341                 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
342                 break;
343         default:
344                 return -EINVAL;
345         }
346
347         had_write_register(intelhaddata,
348                            AUD_CH_STATUS_1, ch_stat1.regval);
349         return 0;
350 }
351
352 /*
353  * function to initialize audio
354  * registers and buffer confgiuration registers
355  * This function is called in the prepare callback
356  */
357 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
358                                struct snd_intelhad *intelhaddata)
359 {
360         union aud_cfg cfg_val = {.regval = 0};
361         union aud_buf_config buf_cfg = {.regval = 0};
362         u8 channels;
363
364         had_prog_status_reg(substream, intelhaddata);
365
366         buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
367         buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
368         buf_cfg.regx.aud_delay = 0;
369         had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
370
371         channels = substream->runtime->channels;
372         cfg_val.regx.num_ch = channels - 2;
373         if (channels <= 2)
374                 cfg_val.regx.layout = LAYOUT0;
375         else
376                 cfg_val.regx.layout = LAYOUT1;
377
378         if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
379                 cfg_val.regx.packet_mode = 1;
380
381         if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
382                 cfg_val.regx.left_align = 1;
383
384         cfg_val.regx.val_bit = 1;
385
386         /* fix up the DP bits */
387         if (intelhaddata->dp_output) {
388                 cfg_val.regx.dp_modei = 1;
389                 cfg_val.regx.set = 1;
390         }
391
392         had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
393         intelhaddata->aud_config = cfg_val;
394         return 0;
395 }
396
397 /*
398  * Compute derived values in channel_allocations[].
399  */
400 static void init_channel_allocations(void)
401 {
402         int i, j;
403         struct cea_channel_speaker_allocation *p;
404
405         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
406                 p = channel_allocations + i;
407                 p->channels = 0;
408                 p->spk_mask = 0;
409                 for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
410                         if (p->speakers[j]) {
411                                 p->channels++;
412                                 p->spk_mask |= p->speakers[j];
413                         }
414         }
415 }
416
417 /*
418  * The transformation takes two steps:
419  *
420  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
421  *            spk_mask => (channel_allocations[])         => ai->CA
422  *
423  * TODO: it could select the wrong CA from multiple candidates.
424  */
425 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
426                                   int channels)
427 {
428         int i;
429         int ca = 0;
430         int spk_mask = 0;
431
432         /*
433          * CA defaults to 0 for basic stereo audio
434          */
435         if (channels <= 2)
436                 return 0;
437
438         /*
439          * expand ELD's speaker allocation mask
440          *
441          * ELD tells the speaker mask in a compact(paired) form,
442          * expand ELD's notions to match the ones used by Audio InfoFrame.
443          */
444
445         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
446                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
447                         spk_mask |= eld_speaker_allocation_bits[i];
448         }
449
450         /* search for the first working match in the CA table */
451         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
452                 if (channels == channel_allocations[i].channels &&
453                 (spk_mask & channel_allocations[i].spk_mask) ==
454                                 channel_allocations[i].spk_mask) {
455                         ca = channel_allocations[i].ca_index;
456                         break;
457                 }
458         }
459
460         dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
461
462         return ca;
463 }
464
465 /* from speaker bit mask to ALSA API channel position */
466 static int spk_to_chmap(int spk)
467 {
468         const struct channel_map_table *t = map_tables;
469
470         for (; t->map; t++) {
471                 if (t->spk_mask == spk)
472                         return t->map;
473         }
474         return 0;
475 }
476
477 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
478 {
479         int i, c;
480         int spk_mask = 0;
481         struct snd_pcm_chmap_elem *chmap;
482         u8 eld_high, eld_high_mask = 0xF0;
483         u8 high_msb;
484
485         kfree(intelhaddata->chmap->chmap);
486         intelhaddata->chmap->chmap = NULL;
487
488         chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
489         if (!chmap)
490                 return;
491
492         dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
493                 intelhaddata->eld[DRM_ELD_SPEAKER]);
494
495         /* WA: Fix the max channel supported to 8 */
496
497         /*
498          * Sink may support more than 8 channels, if eld_high has more than
499          * one bit set. SOC supports max 8 channels.
500          * Refer eld_speaker_allocation_bits, for sink speaker allocation
501          */
502
503         /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
504         eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
505         if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
506                 /* eld_high & (eld_high-1): if more than 1 bit set */
507                 /* 0x1F: 7 channels */
508                 for (i = 1; i < 4; i++) {
509                         high_msb = eld_high & (0x80 >> i);
510                         if (high_msb) {
511                                 intelhaddata->eld[DRM_ELD_SPEAKER] &=
512                                         high_msb | 0xF;
513                                 break;
514                         }
515                 }
516         }
517
518         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
519                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
520                         spk_mask |= eld_speaker_allocation_bits[i];
521         }
522
523         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
524                 if (spk_mask == channel_allocations[i].spk_mask) {
525                         for (c = 0; c < channel_allocations[i].channels; c++) {
526                                 chmap->map[c] = spk_to_chmap(
527                                         channel_allocations[i].speakers[
528                                                 (MAX_SPEAKERS - 1) - c]);
529                         }
530                         chmap->channels = channel_allocations[i].channels;
531                         intelhaddata->chmap->chmap = chmap;
532                         break;
533                 }
534         }
535         if (i >= ARRAY_SIZE(channel_allocations))
536                 kfree(chmap);
537 }
538
539 /*
540  * ALSA API channel-map control callbacks
541  */
542 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
543                                 struct snd_ctl_elem_info *uinfo)
544 {
545         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
546         uinfo->count = HAD_MAX_CHANNEL;
547         uinfo->value.integer.min = 0;
548         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
549         return 0;
550 }
551
552 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
553                                 struct snd_ctl_elem_value *ucontrol)
554 {
555         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
556         struct snd_intelhad *intelhaddata = info->private_data;
557         int i;
558         const struct snd_pcm_chmap_elem *chmap;
559
560         memset(ucontrol->value.integer.value, 0,
561                sizeof(long) * HAD_MAX_CHANNEL);
562         mutex_lock(&intelhaddata->mutex);
563         if (!intelhaddata->chmap->chmap) {
564                 mutex_unlock(&intelhaddata->mutex);
565                 return 0;
566         }
567
568         chmap = intelhaddata->chmap->chmap;
569         for (i = 0; i < chmap->channels; i++)
570                 ucontrol->value.integer.value[i] = chmap->map[i];
571         mutex_unlock(&intelhaddata->mutex);
572
573         return 0;
574 }
575
576 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
577                                                 struct snd_pcm *pcm)
578 {
579         int err;
580
581         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
582                         NULL, 0, (unsigned long)intelhaddata,
583                         &intelhaddata->chmap);
584         if (err < 0)
585                 return err;
586
587         intelhaddata->chmap->private_data = intelhaddata;
588         intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
589         intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
590         intelhaddata->chmap->chmap = NULL;
591         return 0;
592 }
593
594 /*
595  * Initialize Data Island Packets registers
596  * This function is called in the prepare callback
597  */
598 static void had_prog_dip(struct snd_pcm_substream *substream,
599                          struct snd_intelhad *intelhaddata)
600 {
601         int i;
602         union aud_ctrl_st ctrl_state = {.regval = 0};
603         union aud_info_frame2 frame2 = {.regval = 0};
604         union aud_info_frame3 frame3 = {.regval = 0};
605         u8 checksum = 0;
606         u32 info_frame;
607         int channels;
608         int ca;
609
610         channels = substream->runtime->channels;
611
612         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
613
614         ca = had_channel_allocation(intelhaddata, channels);
615         if (intelhaddata->dp_output) {
616                 info_frame = DP_INFO_FRAME_WORD1;
617                 frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
618         } else {
619                 info_frame = HDMI_INFO_FRAME_WORD1;
620                 frame2.regx.chnl_cnt = substream->runtime->channels - 1;
621                 frame3.regx.chnl_alloc = ca;
622
623                 /* Calculte the byte wide checksum for all valid DIP words */
624                 for (i = 0; i < BYTES_PER_WORD; i++)
625                         checksum += (info_frame >> (i * 8)) & 0xff;
626                 for (i = 0; i < BYTES_PER_WORD; i++)
627                         checksum += (frame2.regval >> (i * 8)) & 0xff;
628                 for (i = 0; i < BYTES_PER_WORD; i++)
629                         checksum += (frame3.regval >> (i * 8)) & 0xff;
630
631                 frame2.regx.chksum = -(checksum);
632         }
633
634         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
635         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
636         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
637
638         /* program remaining DIP words with zero */
639         for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
640                 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
641
642         ctrl_state.regx.dip_freq = 1;
643         ctrl_state.regx.dip_en_sta = 1;
644         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
645 }
646
647 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
648 {
649         u32 maud_val;
650
651         /* Select maud according to DP 1.2 spec */
652         if (link_rate == DP_2_7_GHZ) {
653                 switch (aud_samp_freq) {
654                 case AUD_SAMPLE_RATE_32:
655                         maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
656                         break;
657
658                 case AUD_SAMPLE_RATE_44_1:
659                         maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
660                         break;
661
662                 case AUD_SAMPLE_RATE_48:
663                         maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
664                         break;
665
666                 case AUD_SAMPLE_RATE_88_2:
667                         maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
668                         break;
669
670                 case AUD_SAMPLE_RATE_96:
671                         maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
672                         break;
673
674                 case AUD_SAMPLE_RATE_176_4:
675                         maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
676                         break;
677
678                 case HAD_MAX_RATE:
679                         maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
680                         break;
681
682                 default:
683                         maud_val = -EINVAL;
684                         break;
685                 }
686         } else if (link_rate == DP_1_62_GHZ) {
687                 switch (aud_samp_freq) {
688                 case AUD_SAMPLE_RATE_32:
689                         maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
690                         break;
691
692                 case AUD_SAMPLE_RATE_44_1:
693                         maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
694                         break;
695
696                 case AUD_SAMPLE_RATE_48:
697                         maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
698                         break;
699
700                 case AUD_SAMPLE_RATE_88_2:
701                         maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
702                         break;
703
704                 case AUD_SAMPLE_RATE_96:
705                         maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
706                         break;
707
708                 case AUD_SAMPLE_RATE_176_4:
709                         maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
710                         break;
711
712                 case HAD_MAX_RATE:
713                         maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
714                         break;
715
716                 default:
717                         maud_val = -EINVAL;
718                         break;
719                 }
720         } else
721                 maud_val = -EINVAL;
722
723         return maud_val;
724 }
725
726 /*
727  * Program HDMI audio CTS value
728  *
729  * @aud_samp_freq: sampling frequency of audio data
730  * @tmds: sampling frequency of the display data
731  * @link_rate: DP link rate
732  * @n_param: N value, depends on aud_samp_freq
733  * @intelhaddata: substream private data
734  *
735  * Program CTS register based on the audio and display sampling frequency
736  */
737 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
738                          u32 n_param, struct snd_intelhad *intelhaddata)
739 {
740         u32 cts_val;
741         u64 dividend, divisor;
742
743         if (intelhaddata->dp_output) {
744                 /* Substitute cts_val with Maud according to DP 1.2 spec*/
745                 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
746         } else {
747                 /* Calculate CTS according to HDMI 1.3a spec*/
748                 dividend = (u64)tmds * n_param*1000;
749                 divisor = 128 * aud_samp_freq;
750                 cts_val = div64_u64(dividend, divisor);
751         }
752         dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
753                  tmds, n_param, cts_val);
754         had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
755 }
756
757 static int had_calculate_n_value(u32 aud_samp_freq)
758 {
759         int n_val;
760
761         /* Select N according to HDMI 1.3a spec*/
762         switch (aud_samp_freq) {
763         case AUD_SAMPLE_RATE_32:
764                 n_val = 4096;
765                 break;
766
767         case AUD_SAMPLE_RATE_44_1:
768                 n_val = 6272;
769                 break;
770
771         case AUD_SAMPLE_RATE_48:
772                 n_val = 6144;
773                 break;
774
775         case AUD_SAMPLE_RATE_88_2:
776                 n_val = 12544;
777                 break;
778
779         case AUD_SAMPLE_RATE_96:
780                 n_val = 12288;
781                 break;
782
783         case AUD_SAMPLE_RATE_176_4:
784                 n_val = 25088;
785                 break;
786
787         case HAD_MAX_RATE:
788                 n_val = 24576;
789                 break;
790
791         default:
792                 n_val = -EINVAL;
793                 break;
794         }
795         return n_val;
796 }
797
798 /*
799  * Program HDMI audio N value
800  *
801  * @aud_samp_freq: sampling frequency of audio data
802  * @n_param: N value, depends on aud_samp_freq
803  * @intelhaddata: substream private data
804  *
805  * This function is called in the prepare callback.
806  * It programs based on the audio and display sampling frequency
807  */
808 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
809                       struct snd_intelhad *intelhaddata)
810 {
811         int n_val;
812
813         if (intelhaddata->dp_output) {
814                 /*
815                  * According to DP specs, Maud and Naud values hold
816                  * a relationship, which is stated as:
817                  * Maud/Naud = 512 * fs / f_LS_Clk
818                  * where, fs is the sampling frequency of the audio stream
819                  * and Naud is 32768 for Async clock.
820                  */
821
822                 n_val = DP_NAUD_VAL;
823         } else
824                 n_val = had_calculate_n_value(aud_samp_freq);
825
826         if (n_val < 0)
827                 return n_val;
828
829         had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
830         *n_param = n_val;
831         return 0;
832 }
833
834 /*
835  * PCM ring buffer handling
836  *
837  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
838  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
839  * moves at each period elapsed.  The below illustrates how it works:
840  *
841  * At time=0
842  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
843  *  BD  | 0 | 1 | 2 | 3 |
844  *
845  * At time=1 (period elapsed)
846  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
847  *  BD      | 1 | 2 | 3 | 0 |
848  *
849  * At time=2 (second period elapsed)
850  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
851  *  BD          | 2 | 3 | 0 | 1 |
852  *
853  * The bd_head field points to the index of the BD to be read.  It's also the
854  * position to be filled at next.  The pcm_head and the pcm_filled fields
855  * point to the indices of the current position and of the next position to
856  * be filled, respectively.  For PCM buffer there are both _head and _filled
857  * because they may be difference when nperiods > 4.  For example, in the
858  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
859  *
860  * pcm_head (=1) --v               v-- pcm_filled (=5)
861  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
862  *       BD      | 1 | 2 | 3 | 0 |
863  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
864  *
865  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
866  * the hardware skips those BDs in the loop.
867  *
868  * An exceptional setup is the case with nperiods=1.  Since we have to update
869  * BDs after finishing one BD processing, we'd need at least two BDs, where
870  * both BDs point to the same content, the same address, the same size of the
871  * whole PCM buffer.
872  */
873
874 #define AUD_BUF_ADDR(x)         (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
875 #define AUD_BUF_LEN(x)          (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
876
877 /* Set up a buffer descriptor at the "filled" position */
878 static void had_prog_bd(struct snd_pcm_substream *substream,
879                         struct snd_intelhad *intelhaddata)
880 {
881         int idx = intelhaddata->bd_head;
882         int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
883         u32 addr = substream->runtime->dma_addr + ofs;
884
885         addr |= AUD_BUF_VALID;
886         if (!substream->runtime->no_period_wakeup)
887                 addr |= AUD_BUF_INTR_EN;
888         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
889         had_write_register(intelhaddata, AUD_BUF_LEN(idx),
890                            intelhaddata->period_bytes);
891
892         /* advance the indices to the next */
893         intelhaddata->bd_head++;
894         intelhaddata->bd_head %= intelhaddata->num_bds;
895         intelhaddata->pcmbuf_filled++;
896         intelhaddata->pcmbuf_filled %= substream->runtime->periods;
897 }
898
899 /* invalidate a buffer descriptor with the given index */
900 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
901                               int idx)
902 {
903         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
904         had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
905 }
906
907 /* Initial programming of ring buffer */
908 static void had_init_ringbuf(struct snd_pcm_substream *substream,
909                              struct snd_intelhad *intelhaddata)
910 {
911         struct snd_pcm_runtime *runtime = substream->runtime;
912         int i, num_periods;
913
914         num_periods = runtime->periods;
915         intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
916         /* set the minimum 2 BDs for num_periods=1 */
917         intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
918         intelhaddata->period_bytes =
919                 frames_to_bytes(runtime, runtime->period_size);
920         WARN_ON(intelhaddata->period_bytes & 0x3f);
921
922         intelhaddata->bd_head = 0;
923         intelhaddata->pcmbuf_head = 0;
924         intelhaddata->pcmbuf_filled = 0;
925
926         for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
927                 if (i < intelhaddata->num_bds)
928                         had_prog_bd(substream, intelhaddata);
929                 else /* invalidate the rest */
930                         had_invalidate_bd(intelhaddata, i);
931         }
932
933         intelhaddata->bd_head = 0; /* reset at head again before starting */
934 }
935
936 /* process a bd, advance to the next */
937 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
938                                 struct snd_intelhad *intelhaddata)
939 {
940         int num_periods = substream->runtime->periods;
941
942         /* reprogram the next buffer */
943         had_prog_bd(substream, intelhaddata);
944
945         /* proceed to next */
946         intelhaddata->pcmbuf_head++;
947         intelhaddata->pcmbuf_head %= num_periods;
948 }
949
950 /* process the current BD(s);
951  * returns the current PCM buffer byte position, or -EPIPE for underrun.
952  */
953 static int had_process_ringbuf(struct snd_pcm_substream *substream,
954                                struct snd_intelhad *intelhaddata)
955 {
956         int len, processed;
957         unsigned long flags;
958
959         processed = 0;
960         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
961         for (;;) {
962                 /* get the remaining bytes on the buffer */
963                 had_read_register(intelhaddata,
964                                   AUD_BUF_LEN(intelhaddata->bd_head),
965                                   &len);
966                 if (len < 0 || len > intelhaddata->period_bytes) {
967                         dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
968                                 len);
969                         len = -EPIPE;
970                         goto out;
971                 }
972
973                 if (len > 0) /* OK, this is the current buffer */
974                         break;
975
976                 /* len=0 => already empty, check the next buffer */
977                 if (++processed >= intelhaddata->num_bds) {
978                         len = -EPIPE; /* all empty? - report underrun */
979                         goto out;
980                 }
981                 had_advance_ringbuf(substream, intelhaddata);
982         }
983
984         len = intelhaddata->period_bytes - len;
985         len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
986  out:
987         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
988         return len;
989 }
990
991 /* called from irq handler */
992 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
993 {
994         struct snd_pcm_substream *substream;
995
996         substream = had_substream_get(intelhaddata);
997         if (!substream)
998                 return; /* no stream? - bail out */
999
1000         if (!intelhaddata->connected) {
1001                 snd_pcm_stop_xrun(substream);
1002                 goto out; /* disconnected? - bail out */
1003         }
1004
1005         /* process or stop the stream */
1006         if (had_process_ringbuf(substream, intelhaddata) < 0)
1007                 snd_pcm_stop_xrun(substream);
1008         else
1009                 snd_pcm_period_elapsed(substream);
1010
1011  out:
1012         had_substream_put(intelhaddata);
1013 }
1014
1015 /*
1016  * The interrupt status 'sticky' bits might not be cleared by
1017  * setting '1' to that bit once...
1018  */
1019 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1020 {
1021         int i;
1022         u32 val;
1023
1024         for (i = 0; i < 100; i++) {
1025                 /* clear bit30, 31 AUD_HDMI_STATUS */
1026                 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1027                 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1028                         return;
1029                 udelay(100);
1030                 cond_resched();
1031                 had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1032         }
1033         dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1034 }
1035
1036 /* Perform some reset procedure but only when need_reset is set;
1037  * this is called from prepare or hw_free callbacks once after trigger STOP
1038  * or underrun has been processed in order to settle down the h/w state.
1039  */
1040 static void had_do_reset(struct snd_intelhad *intelhaddata)
1041 {
1042         if (!intelhaddata->need_reset || !intelhaddata->connected)
1043                 return;
1044
1045         /* Reset buffer pointers */
1046         had_reset_audio(intelhaddata);
1047         wait_clear_underrun_bit(intelhaddata);
1048         intelhaddata->need_reset = false;
1049 }
1050
1051 /* called from irq handler */
1052 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1053 {
1054         struct snd_pcm_substream *substream;
1055
1056         /* Report UNDERRUN error to above layers */
1057         substream = had_substream_get(intelhaddata);
1058         if (substream) {
1059                 snd_pcm_stop_xrun(substream);
1060                 had_substream_put(intelhaddata);
1061         }
1062         intelhaddata->need_reset = true;
1063 }
1064
1065 /*
1066  * ALSA PCM open callback
1067  */
1068 static int had_pcm_open(struct snd_pcm_substream *substream)
1069 {
1070         struct snd_intelhad *intelhaddata;
1071         struct snd_pcm_runtime *runtime;
1072         int retval;
1073
1074         intelhaddata = snd_pcm_substream_chip(substream);
1075         runtime = substream->runtime;
1076
1077         pm_runtime_get_sync(intelhaddata->dev);
1078
1079         /* set the runtime hw parameter with local snd_pcm_hardware struct */
1080         runtime->hw = had_pcm_hardware;
1081
1082         retval = snd_pcm_hw_constraint_integer(runtime,
1083                          SNDRV_PCM_HW_PARAM_PERIODS);
1084         if (retval < 0)
1085                 goto error;
1086
1087         /* Make sure, that the period size is always aligned
1088          * 64byte boundary
1089          */
1090         retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1091                         SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1092         if (retval < 0)
1093                 goto error;
1094
1095         retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1096         if (retval < 0)
1097                 goto error;
1098
1099         /* expose PCM substream */
1100         spin_lock_irq(&intelhaddata->had_spinlock);
1101         intelhaddata->stream_info.substream = substream;
1102         intelhaddata->stream_info.substream_refcount++;
1103         spin_unlock_irq(&intelhaddata->had_spinlock);
1104
1105         return retval;
1106  error:
1107         pm_runtime_mark_last_busy(intelhaddata->dev);
1108         pm_runtime_put_autosuspend(intelhaddata->dev);
1109         return retval;
1110 }
1111
1112 /*
1113  * ALSA PCM close callback
1114  */
1115 static int had_pcm_close(struct snd_pcm_substream *substream)
1116 {
1117         struct snd_intelhad *intelhaddata;
1118
1119         intelhaddata = snd_pcm_substream_chip(substream);
1120
1121         /* unreference and sync with the pending PCM accesses */
1122         spin_lock_irq(&intelhaddata->had_spinlock);
1123         intelhaddata->stream_info.substream = NULL;
1124         intelhaddata->stream_info.substream_refcount--;
1125         while (intelhaddata->stream_info.substream_refcount > 0) {
1126                 spin_unlock_irq(&intelhaddata->had_spinlock);
1127                 cpu_relax();
1128                 spin_lock_irq(&intelhaddata->had_spinlock);
1129         }
1130         spin_unlock_irq(&intelhaddata->had_spinlock);
1131
1132         pm_runtime_mark_last_busy(intelhaddata->dev);
1133         pm_runtime_put_autosuspend(intelhaddata->dev);
1134         return 0;
1135 }
1136
1137 /*
1138  * ALSA PCM hw_params callback
1139  */
1140 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1141                              struct snd_pcm_hw_params *hw_params)
1142 {
1143         struct snd_intelhad *intelhaddata;
1144         unsigned long addr;
1145         int pages, buf_size, retval;
1146
1147         intelhaddata = snd_pcm_substream_chip(substream);
1148         buf_size = params_buffer_bytes(hw_params);
1149         retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1150         if (retval < 0)
1151                 return retval;
1152         dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1153                 __func__, buf_size);
1154         /* mark the pages as uncached region */
1155         addr = (unsigned long) substream->runtime->dma_area;
1156         pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1157         retval = set_memory_uc(addr, pages);
1158         if (retval) {
1159                 dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1160                         retval);
1161                 return retval;
1162         }
1163         memset(substream->runtime->dma_area, 0, buf_size);
1164
1165         return retval;
1166 }
1167
1168 /*
1169  * ALSA PCM hw_free callback
1170  */
1171 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1172 {
1173         struct snd_intelhad *intelhaddata;
1174         unsigned long addr;
1175         u32 pages;
1176
1177         intelhaddata = snd_pcm_substream_chip(substream);
1178         had_do_reset(intelhaddata);
1179
1180         /* mark back the pages as cached/writeback region before the free */
1181         if (substream->runtime->dma_area != NULL) {
1182                 addr = (unsigned long) substream->runtime->dma_area;
1183                 pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1184                                                                 PAGE_SIZE;
1185                 set_memory_wb(addr, pages);
1186                 return snd_pcm_lib_free_pages(substream);
1187         }
1188         return 0;
1189 }
1190
1191 /*
1192  * ALSA PCM trigger callback
1193  */
1194 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1195 {
1196         int retval = 0;
1197         struct snd_intelhad *intelhaddata;
1198
1199         intelhaddata = snd_pcm_substream_chip(substream);
1200
1201         spin_lock(&intelhaddata->had_spinlock);
1202         switch (cmd) {
1203         case SNDRV_PCM_TRIGGER_START:
1204         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1205         case SNDRV_PCM_TRIGGER_RESUME:
1206                 /* Enable Audio */
1207                 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1208                 had_enable_audio(intelhaddata, true);
1209                 break;
1210
1211         case SNDRV_PCM_TRIGGER_STOP:
1212         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1213                 /* Disable Audio */
1214                 had_enable_audio(intelhaddata, false);
1215                 intelhaddata->need_reset = true;
1216                 break;
1217
1218         default:
1219                 retval = -EINVAL;
1220         }
1221         spin_unlock(&intelhaddata->had_spinlock);
1222         return retval;
1223 }
1224
1225 /*
1226  * ALSA PCM prepare callback
1227  */
1228 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1229 {
1230         int retval;
1231         u32 disp_samp_freq, n_param;
1232         u32 link_rate = 0;
1233         struct snd_intelhad *intelhaddata;
1234         struct snd_pcm_runtime *runtime;
1235
1236         intelhaddata = snd_pcm_substream_chip(substream);
1237         runtime = substream->runtime;
1238
1239         dev_dbg(intelhaddata->dev, "period_size=%d\n",
1240                 (int)frames_to_bytes(runtime, runtime->period_size));
1241         dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1242         dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1243                 (int)snd_pcm_lib_buffer_bytes(substream));
1244         dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1245         dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1246
1247         had_do_reset(intelhaddata);
1248
1249         /* Get N value in KHz */
1250         disp_samp_freq = intelhaddata->tmds_clock_speed;
1251
1252         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1253         if (retval) {
1254                 dev_err(intelhaddata->dev,
1255                         "programming N value failed %#x\n", retval);
1256                 goto prep_end;
1257         }
1258
1259         if (intelhaddata->dp_output)
1260                 link_rate = intelhaddata->link_rate;
1261
1262         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1263                      n_param, intelhaddata);
1264
1265         had_prog_dip(substream, intelhaddata);
1266
1267         retval = had_init_audio_ctrl(substream, intelhaddata);
1268
1269         /* Prog buffer address */
1270         had_init_ringbuf(substream, intelhaddata);
1271
1272         /*
1273          * Program channel mapping in following order:
1274          * FL, FR, C, LFE, RL, RR
1275          */
1276
1277         had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1278
1279 prep_end:
1280         return retval;
1281 }
1282
1283 /*
1284  * ALSA PCM pointer callback
1285  */
1286 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1287 {
1288         struct snd_intelhad *intelhaddata;
1289         int len;
1290
1291         intelhaddata = snd_pcm_substream_chip(substream);
1292
1293         if (!intelhaddata->connected)
1294                 return SNDRV_PCM_POS_XRUN;
1295
1296         len = had_process_ringbuf(substream, intelhaddata);
1297         if (len < 0)
1298                 return SNDRV_PCM_POS_XRUN;
1299         len = bytes_to_frames(substream->runtime, len);
1300         /* wrapping may happen when periods=1 */
1301         len %= substream->runtime->buffer_size;
1302         return len;
1303 }
1304
1305 /*
1306  * ALSA PCM mmap callback
1307  */
1308 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1309                         struct vm_area_struct *vma)
1310 {
1311         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1312         return remap_pfn_range(vma, vma->vm_start,
1313                         substream->runtime->dma_addr >> PAGE_SHIFT,
1314                         vma->vm_end - vma->vm_start, vma->vm_page_prot);
1315 }
1316
1317 /*
1318  * ALSA PCM ops
1319  */
1320 static const struct snd_pcm_ops had_pcm_ops = {
1321         .open =         had_pcm_open,
1322         .close =        had_pcm_close,
1323         .ioctl =        snd_pcm_lib_ioctl,
1324         .hw_params =    had_pcm_hw_params,
1325         .hw_free =      had_pcm_hw_free,
1326         .prepare =      had_pcm_prepare,
1327         .trigger =      had_pcm_trigger,
1328         .pointer =      had_pcm_pointer,
1329         .mmap =         had_pcm_mmap,
1330 };
1331
1332 /* process mode change of the running stream; called in mutex */
1333 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1334 {
1335         struct snd_pcm_substream *substream;
1336         int retval = 0;
1337         u32 disp_samp_freq, n_param;
1338         u32 link_rate = 0;
1339
1340         substream = had_substream_get(intelhaddata);
1341         if (!substream)
1342                 return 0;
1343
1344         /* Disable Audio */
1345         had_enable_audio(intelhaddata, false);
1346
1347         /* Update CTS value */
1348         disp_samp_freq = intelhaddata->tmds_clock_speed;
1349
1350         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1351         if (retval) {
1352                 dev_err(intelhaddata->dev,
1353                         "programming N value failed %#x\n", retval);
1354                 goto out;
1355         }
1356
1357         if (intelhaddata->dp_output)
1358                 link_rate = intelhaddata->link_rate;
1359
1360         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1361                      n_param, intelhaddata);
1362
1363         /* Enable Audio */
1364         had_enable_audio(intelhaddata, true);
1365
1366 out:
1367         had_substream_put(intelhaddata);
1368         return retval;
1369 }
1370
1371 /* process hot plug, called from wq with mutex locked */
1372 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1373 {
1374         struct snd_pcm_substream *substream;
1375
1376         spin_lock_irq(&intelhaddata->had_spinlock);
1377         if (intelhaddata->connected) {
1378                 dev_dbg(intelhaddata->dev, "Device already connected\n");
1379                 spin_unlock_irq(&intelhaddata->had_spinlock);
1380                 return;
1381         }
1382
1383         /* Disable Audio */
1384         had_enable_audio(intelhaddata, false);
1385
1386         intelhaddata->connected = true;
1387         dev_dbg(intelhaddata->dev,
1388                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1389                         __func__, __LINE__);
1390         spin_unlock_irq(&intelhaddata->had_spinlock);
1391
1392         had_build_channel_allocation_map(intelhaddata);
1393
1394         /* Report to above ALSA layer */
1395         substream = had_substream_get(intelhaddata);
1396         if (substream) {
1397                 snd_pcm_stop_xrun(substream);
1398                 had_substream_put(intelhaddata);
1399         }
1400
1401         snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1402 }
1403
1404 /* process hot unplug, called from wq with mutex locked */
1405 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1406 {
1407         struct snd_pcm_substream *substream;
1408
1409         spin_lock_irq(&intelhaddata->had_spinlock);
1410         if (!intelhaddata->connected) {
1411                 dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1412                 spin_unlock_irq(&intelhaddata->had_spinlock);
1413                 return;
1414
1415         }
1416
1417         /* Disable Audio */
1418         had_enable_audio(intelhaddata, false);
1419
1420         intelhaddata->connected = false;
1421         dev_dbg(intelhaddata->dev,
1422                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1423                         __func__, __LINE__);
1424         spin_unlock_irq(&intelhaddata->had_spinlock);
1425
1426         kfree(intelhaddata->chmap->chmap);
1427         intelhaddata->chmap->chmap = NULL;
1428
1429         /* Report to above ALSA layer */
1430         substream = had_substream_get(intelhaddata);
1431         if (substream) {
1432                 snd_pcm_stop_xrun(substream);
1433                 had_substream_put(intelhaddata);
1434         }
1435
1436         snd_jack_report(intelhaddata->jack, 0);
1437 }
1438
1439 /*
1440  * ALSA iec958 and ELD controls
1441  */
1442
1443 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1444                                 struct snd_ctl_elem_info *uinfo)
1445 {
1446         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1447         uinfo->count = 1;
1448         return 0;
1449 }
1450
1451 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1452                                 struct snd_ctl_elem_value *ucontrol)
1453 {
1454         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1455
1456         mutex_lock(&intelhaddata->mutex);
1457         ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1458         ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1459         ucontrol->value.iec958.status[2] =
1460                                         (intelhaddata->aes_bits >> 16) & 0xff;
1461         ucontrol->value.iec958.status[3] =
1462                                         (intelhaddata->aes_bits >> 24) & 0xff;
1463         mutex_unlock(&intelhaddata->mutex);
1464         return 0;
1465 }
1466
1467 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1468                                 struct snd_ctl_elem_value *ucontrol)
1469 {
1470         ucontrol->value.iec958.status[0] = 0xff;
1471         ucontrol->value.iec958.status[1] = 0xff;
1472         ucontrol->value.iec958.status[2] = 0xff;
1473         ucontrol->value.iec958.status[3] = 0xff;
1474         return 0;
1475 }
1476
1477 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1478                                 struct snd_ctl_elem_value *ucontrol)
1479 {
1480         unsigned int val;
1481         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1482         int changed = 0;
1483
1484         val = (ucontrol->value.iec958.status[0] << 0) |
1485                 (ucontrol->value.iec958.status[1] << 8) |
1486                 (ucontrol->value.iec958.status[2] << 16) |
1487                 (ucontrol->value.iec958.status[3] << 24);
1488         mutex_lock(&intelhaddata->mutex);
1489         if (intelhaddata->aes_bits != val) {
1490                 intelhaddata->aes_bits = val;
1491                 changed = 1;
1492         }
1493         mutex_unlock(&intelhaddata->mutex);
1494         return changed;
1495 }
1496
1497 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1498                             struct snd_ctl_elem_info *uinfo)
1499 {
1500         uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1501         uinfo->count = HDMI_MAX_ELD_BYTES;
1502         return 0;
1503 }
1504
1505 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1506                            struct snd_ctl_elem_value *ucontrol)
1507 {
1508         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1509
1510         mutex_lock(&intelhaddata->mutex);
1511         memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1512                HDMI_MAX_ELD_BYTES);
1513         mutex_unlock(&intelhaddata->mutex);
1514         return 0;
1515 }
1516
1517 static const struct snd_kcontrol_new had_controls[] = {
1518         {
1519                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1520                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1521                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1522                 .info = had_iec958_info, /* shared */
1523                 .get = had_iec958_mask_get,
1524         },
1525         {
1526                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1527                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1528                 .info = had_iec958_info,
1529                 .get = had_iec958_get,
1530                 .put = had_iec958_put,
1531         },
1532         {
1533                 .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1534                            SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1535                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1536                 .name = "ELD",
1537                 .info = had_ctl_eld_info,
1538                 .get = had_ctl_eld_get,
1539         },
1540 };
1541
1542 /*
1543  * audio interrupt handler
1544  */
1545 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1546 {
1547         struct snd_intelhad_card *card_ctx = dev_id;
1548         u32 audio_stat[3] = {};
1549         int pipe, port;
1550
1551         for_each_pipe(card_ctx, pipe) {
1552                 /* use raw register access to ack IRQs even while disconnected */
1553                 audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1554                                                          AUD_HDMI_STATUS) &
1555                         (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1556
1557                 if (audio_stat[pipe])
1558                         had_write_register_raw(card_ctx, pipe,
1559                                                AUD_HDMI_STATUS, audio_stat[pipe]);
1560         }
1561
1562         for_each_port(card_ctx, port) {
1563                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1564                 int pipe = ctx->pipe;
1565
1566                 if (pipe < 0)
1567                         continue;
1568
1569                 if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1570                         had_process_buffer_done(ctx);
1571                 if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1572                         had_process_buffer_underrun(ctx);
1573         }
1574
1575         return IRQ_HANDLED;
1576 }
1577
1578 /*
1579  * monitor plug/unplug notification from i915; just kick off the work
1580  */
1581 static void notify_audio_lpe(struct platform_device *pdev, int port)
1582 {
1583         struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1584         struct snd_intelhad *ctx;
1585
1586         ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1587         if (single_port)
1588                 ctx->port = port;
1589
1590         schedule_work(&ctx->hdmi_audio_wq);
1591 }
1592
1593 /* the work to handle monitor hot plug/unplug */
1594 static void had_audio_wq(struct work_struct *work)
1595 {
1596         struct snd_intelhad *ctx =
1597                 container_of(work, struct snd_intelhad, hdmi_audio_wq);
1598         struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1599         struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1600
1601         pm_runtime_get_sync(ctx->dev);
1602         mutex_lock(&ctx->mutex);
1603         if (ppdata->pipe < 0) {
1604                 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1605                         __func__, ctx->port);
1606
1607                 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1608
1609                 ctx->dp_output = false;
1610                 ctx->tmds_clock_speed = 0;
1611                 ctx->link_rate = 0;
1612
1613                 /* Shut down the stream */
1614                 had_process_hot_unplug(ctx);
1615
1616                 ctx->pipe = -1;
1617         } else {
1618                 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1619                         __func__, ctx->port, ppdata->ls_clock);
1620
1621                 memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1622
1623                 ctx->dp_output = ppdata->dp_output;
1624                 if (ctx->dp_output) {
1625                         ctx->tmds_clock_speed = 0;
1626                         ctx->link_rate = ppdata->ls_clock;
1627                 } else {
1628                         ctx->tmds_clock_speed = ppdata->ls_clock;
1629                         ctx->link_rate = 0;
1630                 }
1631
1632                 /*
1633                  * Shut down the stream before we change
1634                  * the pipe assignment for this pcm device
1635                  */
1636                 had_process_hot_plug(ctx);
1637
1638                 ctx->pipe = ppdata->pipe;
1639
1640                 /* Restart the stream if necessary */
1641                 had_process_mode_change(ctx);
1642         }
1643
1644         mutex_unlock(&ctx->mutex);
1645         pm_runtime_mark_last_busy(ctx->dev);
1646         pm_runtime_put_autosuspend(ctx->dev);
1647 }
1648
1649 /*
1650  * Jack interface
1651  */
1652 static int had_create_jack(struct snd_intelhad *ctx,
1653                            struct snd_pcm *pcm)
1654 {
1655         char hdmi_str[32];
1656         int err;
1657
1658         snprintf(hdmi_str, sizeof(hdmi_str),
1659                  "HDMI/DP,pcm=%d", pcm->device);
1660
1661         err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1662                            SND_JACK_AVOUT, &ctx->jack,
1663                            true, false);
1664         if (err < 0)
1665                 return err;
1666         ctx->jack->private_data = ctx;
1667         return 0;
1668 }
1669
1670 /*
1671  * PM callbacks
1672  */
1673
1674 static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1675 {
1676         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1677         int port;
1678
1679         for_each_port(card_ctx, port) {
1680                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1681                 struct snd_pcm_substream *substream;
1682
1683                 substream = had_substream_get(ctx);
1684                 if (substream) {
1685                         snd_pcm_suspend(substream);
1686                         had_substream_put(ctx);
1687                 }
1688         }
1689
1690         return 0;
1691 }
1692
1693 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1694 {
1695         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1696         int err;
1697
1698         err = hdmi_lpe_audio_runtime_suspend(dev);
1699         if (!err)
1700                 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1701         return err;
1702 }
1703
1704 static int hdmi_lpe_audio_runtime_resume(struct device *dev)
1705 {
1706         pm_runtime_mark_last_busy(dev);
1707         return 0;
1708 }
1709
1710 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1711 {
1712         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1713
1714         hdmi_lpe_audio_runtime_resume(dev);
1715         snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1716         return 0;
1717 }
1718
1719 /* release resources */
1720 static void hdmi_lpe_audio_free(struct snd_card *card)
1721 {
1722         struct snd_intelhad_card *card_ctx = card->private_data;
1723         struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1724         int port;
1725
1726         spin_lock_irq(&pdata->lpe_audio_slock);
1727         pdata->notify_audio_lpe = NULL;
1728         spin_unlock_irq(&pdata->lpe_audio_slock);
1729
1730         for_each_port(card_ctx, port) {
1731                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1732
1733                 cancel_work_sync(&ctx->hdmi_audio_wq);
1734         }
1735
1736         if (card_ctx->mmio_start)
1737                 iounmap(card_ctx->mmio_start);
1738         if (card_ctx->irq >= 0)
1739                 free_irq(card_ctx->irq, card_ctx);
1740 }
1741
1742 /*
1743  * hdmi_lpe_audio_probe - start bridge with i915
1744  *
1745  * This function is called when the i915 driver creates the
1746  * hdmi-lpe-audio platform device.
1747  */
1748 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1749 {
1750         struct snd_card *card;
1751         struct snd_intelhad_card *card_ctx;
1752         struct snd_intelhad *ctx;
1753         struct snd_pcm *pcm;
1754         struct intel_hdmi_lpe_audio_pdata *pdata;
1755         int irq;
1756         struct resource *res_mmio;
1757         int port, ret;
1758
1759         pdata = pdev->dev.platform_data;
1760         if (!pdata) {
1761                 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1762                 return -EINVAL;
1763         }
1764
1765         /* get resources */
1766         irq = platform_get_irq(pdev, 0);
1767         if (irq < 0) {
1768                 dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
1769                 return irq;
1770         }
1771
1772         res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1773         if (!res_mmio) {
1774                 dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1775                 return -ENXIO;
1776         }
1777
1778         /* create a card instance with ALSA framework */
1779         ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1780                            THIS_MODULE, sizeof(*card_ctx), &card);
1781         if (ret)
1782                 return ret;
1783
1784         card_ctx = card->private_data;
1785         card_ctx->dev = &pdev->dev;
1786         card_ctx->card = card;
1787         strcpy(card->driver, INTEL_HAD);
1788         strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1789         strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1790
1791         card_ctx->irq = -1;
1792
1793         card->private_free = hdmi_lpe_audio_free;
1794
1795         platform_set_drvdata(pdev, card_ctx);
1796
1797         card_ctx->num_pipes = pdata->num_pipes;
1798         card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1799
1800         for_each_port(card_ctx, port) {
1801                 ctx = &card_ctx->pcm_ctx[port];
1802                 ctx->card_ctx = card_ctx;
1803                 ctx->dev = card_ctx->dev;
1804                 ctx->port = single_port ? -1 : port;
1805                 ctx->pipe = -1;
1806
1807                 spin_lock_init(&ctx->had_spinlock);
1808                 mutex_init(&ctx->mutex);
1809                 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1810         }
1811
1812         dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1813                 __func__, (unsigned int)res_mmio->start,
1814                 (unsigned int)res_mmio->end);
1815
1816         card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
1817                                                (size_t)(resource_size(res_mmio)));
1818         if (!card_ctx->mmio_start) {
1819                 dev_err(&pdev->dev, "Could not get ioremap\n");
1820                 ret = -EACCES;
1821                 goto err;
1822         }
1823
1824         /* setup interrupt handler */
1825         ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1826                           pdev->name, card_ctx);
1827         if (ret < 0) {
1828                 dev_err(&pdev->dev, "request_irq failed\n");
1829                 goto err;
1830         }
1831
1832         card_ctx->irq = irq;
1833
1834         /* only 32bit addressable */
1835         dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1836         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1837
1838         init_channel_allocations();
1839
1840         card_ctx->num_pipes = pdata->num_pipes;
1841         card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1842
1843         for_each_port(card_ctx, port) {
1844                 int i;
1845
1846                 ctx = &card_ctx->pcm_ctx[port];
1847                 ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1848                                   MAX_CAP_STREAMS, &pcm);
1849                 if (ret)
1850                         goto err;
1851
1852                 /* setup private data which can be retrieved when required */
1853                 pcm->private_data = ctx;
1854                 pcm->info_flags = 0;
1855                 strlcpy(pcm->name, card->shortname, strlen(card->shortname));
1856                 /* setup the ops for playabck */
1857                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1858
1859                 /* allocate dma pages;
1860                  * try to allocate 600k buffer as default which is large enough
1861                  */
1862                 snd_pcm_lib_preallocate_pages_for_all(pcm,
1863                                                       SNDRV_DMA_TYPE_DEV, NULL,
1864                                                       HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1865
1866                 /* create controls */
1867                 for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1868                         struct snd_kcontrol *kctl;
1869
1870                         kctl = snd_ctl_new1(&had_controls[i], ctx);
1871                         if (!kctl) {
1872                                 ret = -ENOMEM;
1873                                 goto err;
1874                         }
1875
1876                         kctl->id.device = pcm->device;
1877
1878                         ret = snd_ctl_add(card, kctl);
1879                         if (ret < 0)
1880                                 goto err;
1881                 }
1882
1883                 /* Register channel map controls */
1884                 ret = had_register_chmap_ctls(ctx, pcm);
1885                 if (ret < 0)
1886                         goto err;
1887
1888                 ret = had_create_jack(ctx, pcm);
1889                 if (ret < 0)
1890                         goto err;
1891         }
1892
1893         ret = snd_card_register(card);
1894         if (ret)
1895                 goto err;
1896
1897         spin_lock_irq(&pdata->lpe_audio_slock);
1898         pdata->notify_audio_lpe = notify_audio_lpe;
1899         spin_unlock_irq(&pdata->lpe_audio_slock);
1900
1901         pm_runtime_use_autosuspend(&pdev->dev);
1902         pm_runtime_mark_last_busy(&pdev->dev);
1903
1904         dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1905         for_each_port(card_ctx, port) {
1906                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1907
1908                 schedule_work(&ctx->hdmi_audio_wq);
1909         }
1910
1911         return 0;
1912
1913 err:
1914         snd_card_free(card);
1915         return ret;
1916 }
1917
1918 /*
1919  * hdmi_lpe_audio_remove - stop bridge with i915
1920  *
1921  * This function is called when the platform device is destroyed.
1922  */
1923 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1924 {
1925         struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1926
1927         snd_card_free(card_ctx->card);
1928         return 0;
1929 }
1930
1931 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1932         SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1933         SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
1934                            hdmi_lpe_audio_runtime_resume, NULL)
1935 };
1936
1937 static struct platform_driver hdmi_lpe_audio_driver = {
1938         .driver         = {
1939                 .name  = "hdmi-lpe-audio",
1940                 .pm = &hdmi_lpe_audio_pm,
1941         },
1942         .probe          = hdmi_lpe_audio_probe,
1943         .remove         = hdmi_lpe_audio_remove,
1944 };
1945
1946 module_platform_driver(hdmi_lpe_audio_driver);
1947 MODULE_ALIAS("platform:hdmi_lpe_audio");
1948
1949 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1950 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1951 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1952 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1953 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1954 MODULE_LICENSE("GPL v2");
1955 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");