GNU Linux-libre 4.9-gnu1
[releases.git] / tools / perf / util / auxtrace.c
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15
16 #include <sys/types.h>
17 #include <sys/mman.h>
18 #include <stdbool.h>
19 #include <ctype.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <string.h>
35 #include <limits.h>
36 #include <errno.h>
37 #include <linux/list.h>
38
39 #include "../perf.h"
40 #include "util.h"
41 #include "evlist.h"
42 #include "dso.h"
43 #include "map.h"
44 #include "pmu.h"
45 #include "evsel.h"
46 #include "cpumap.h"
47 #include "thread_map.h"
48 #include "asm/bug.h"
49 #include "symbol/kallsyms.h"
50 #include "auxtrace.h"
51
52 #include <linux/hash.h>
53
54 #include "event.h"
55 #include "session.h"
56 #include "debug.h"
57 #include <subcmd/parse-options.h>
58
59 #include "intel-pt.h"
60 #include "intel-bts.h"
61
62 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
63                         struct auxtrace_mmap_params *mp,
64                         void *userpg, int fd)
65 {
66         struct perf_event_mmap_page *pc = userpg;
67
68         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
69
70         mm->userpg = userpg;
71         mm->mask = mp->mask;
72         mm->len = mp->len;
73         mm->prev = 0;
74         mm->idx = mp->idx;
75         mm->tid = mp->tid;
76         mm->cpu = mp->cpu;
77
78         if (!mp->len) {
79                 mm->base = NULL;
80                 return 0;
81         }
82
83 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
84         pr_err("Cannot use AUX area tracing mmaps\n");
85         return -1;
86 #endif
87
88         pc->aux_offset = mp->offset;
89         pc->aux_size = mp->len;
90
91         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
92         if (mm->base == MAP_FAILED) {
93                 pr_debug2("failed to mmap AUX area\n");
94                 mm->base = NULL;
95                 return -1;
96         }
97
98         return 0;
99 }
100
101 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
102 {
103         if (mm->base) {
104                 munmap(mm->base, mm->len);
105                 mm->base = NULL;
106         }
107 }
108
109 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
110                                 off_t auxtrace_offset,
111                                 unsigned int auxtrace_pages,
112                                 bool auxtrace_overwrite)
113 {
114         if (auxtrace_pages) {
115                 mp->offset = auxtrace_offset;
116                 mp->len = auxtrace_pages * (size_t)page_size;
117                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
118                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
119                 pr_debug2("AUX area mmap length %zu\n", mp->len);
120         } else {
121                 mp->len = 0;
122         }
123 }
124
125 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
126                                    struct perf_evlist *evlist, int idx,
127                                    bool per_cpu)
128 {
129         mp->idx = idx;
130
131         if (per_cpu) {
132                 mp->cpu = evlist->cpus->map[idx];
133                 if (evlist->threads)
134                         mp->tid = thread_map__pid(evlist->threads, 0);
135                 else
136                         mp->tid = -1;
137         } else {
138                 mp->cpu = -1;
139                 mp->tid = thread_map__pid(evlist->threads, idx);
140         }
141 }
142
143 #define AUXTRACE_INIT_NR_QUEUES 32
144
145 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
146 {
147         struct auxtrace_queue *queue_array;
148         unsigned int max_nr_queues, i;
149
150         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
151         if (nr_queues > max_nr_queues)
152                 return NULL;
153
154         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
155         if (!queue_array)
156                 return NULL;
157
158         for (i = 0; i < nr_queues; i++) {
159                 INIT_LIST_HEAD(&queue_array[i].head);
160                 queue_array[i].priv = NULL;
161         }
162
163         return queue_array;
164 }
165
166 int auxtrace_queues__init(struct auxtrace_queues *queues)
167 {
168         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
169         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
170         if (!queues->queue_array)
171                 return -ENOMEM;
172         return 0;
173 }
174
175 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
176                                  unsigned int new_nr_queues)
177 {
178         unsigned int nr_queues = queues->nr_queues;
179         struct auxtrace_queue *queue_array;
180         unsigned int i;
181
182         if (!nr_queues)
183                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
184
185         while (nr_queues && nr_queues < new_nr_queues)
186                 nr_queues <<= 1;
187
188         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
189                 return -EINVAL;
190
191         queue_array = auxtrace_alloc_queue_array(nr_queues);
192         if (!queue_array)
193                 return -ENOMEM;
194
195         for (i = 0; i < queues->nr_queues; i++) {
196                 list_splice_tail(&queues->queue_array[i].head,
197                                  &queue_array[i].head);
198                 queue_array[i].priv = queues->queue_array[i].priv;
199         }
200
201         queues->nr_queues = nr_queues;
202         queues->queue_array = queue_array;
203
204         return 0;
205 }
206
207 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
208 {
209         int fd = perf_data_file__fd(session->file);
210         void *p;
211         ssize_t ret;
212
213         if (size > SSIZE_MAX)
214                 return NULL;
215
216         p = malloc(size);
217         if (!p)
218                 return NULL;
219
220         ret = readn(fd, p, size);
221         if (ret != (ssize_t)size) {
222                 free(p);
223                 return NULL;
224         }
225
226         return p;
227 }
228
229 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
230                                        unsigned int idx,
231                                        struct auxtrace_buffer *buffer)
232 {
233         struct auxtrace_queue *queue;
234         int err;
235
236         if (idx >= queues->nr_queues) {
237                 err = auxtrace_queues__grow(queues, idx + 1);
238                 if (err)
239                         return err;
240         }
241
242         queue = &queues->queue_array[idx];
243
244         if (!queue->set) {
245                 queue->set = true;
246                 queue->tid = buffer->tid;
247                 queue->cpu = buffer->cpu;
248         } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
249                 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
250                        queue->cpu, queue->tid, buffer->cpu, buffer->tid);
251                 return -EINVAL;
252         }
253
254         buffer->buffer_nr = queues->next_buffer_nr++;
255
256         list_add_tail(&buffer->list, &queue->head);
257
258         queues->new_data = true;
259         queues->populated = true;
260
261         return 0;
262 }
263
264 /* Limit buffers to 32MiB on 32-bit */
265 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
266
267 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
268                                          unsigned int idx,
269                                          struct auxtrace_buffer *buffer)
270 {
271         u64 sz = buffer->size;
272         bool consecutive = false;
273         struct auxtrace_buffer *b;
274         int err;
275
276         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
277                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
278                 if (!b)
279                         return -ENOMEM;
280                 b->size = BUFFER_LIMIT_FOR_32_BIT;
281                 b->consecutive = consecutive;
282                 err = auxtrace_queues__add_buffer(queues, idx, b);
283                 if (err) {
284                         auxtrace_buffer__free(b);
285                         return err;
286                 }
287                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
288                 sz -= BUFFER_LIMIT_FOR_32_BIT;
289                 consecutive = true;
290         }
291
292         buffer->size = sz;
293         buffer->consecutive = consecutive;
294
295         return 0;
296 }
297
298 static int auxtrace_queues__add_event_buffer(struct auxtrace_queues *queues,
299                                              struct perf_session *session,
300                                              unsigned int idx,
301                                              struct auxtrace_buffer *buffer)
302 {
303         if (session->one_mmap) {
304                 buffer->data = buffer->data_offset - session->one_mmap_offset +
305                                session->one_mmap_addr;
306         } else if (perf_data_file__is_pipe(session->file)) {
307                 buffer->data = auxtrace_copy_data(buffer->size, session);
308                 if (!buffer->data)
309                         return -ENOMEM;
310                 buffer->data_needs_freeing = true;
311         } else if (BITS_PER_LONG == 32 &&
312                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
313                 int err;
314
315                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
316                 if (err)
317                         return err;
318         }
319
320         return auxtrace_queues__add_buffer(queues, idx, buffer);
321 }
322
323 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
324                                struct perf_session *session,
325                                union perf_event *event, off_t data_offset,
326                                struct auxtrace_buffer **buffer_ptr)
327 {
328         struct auxtrace_buffer *buffer;
329         unsigned int idx;
330         int err;
331
332         buffer = zalloc(sizeof(struct auxtrace_buffer));
333         if (!buffer)
334                 return -ENOMEM;
335
336         buffer->pid = -1;
337         buffer->tid = event->auxtrace.tid;
338         buffer->cpu = event->auxtrace.cpu;
339         buffer->data_offset = data_offset;
340         buffer->offset = event->auxtrace.offset;
341         buffer->reference = event->auxtrace.reference;
342         buffer->size = event->auxtrace.size;
343         idx = event->auxtrace.idx;
344
345         err = auxtrace_queues__add_event_buffer(queues, session, idx, buffer);
346         if (err)
347                 goto out_err;
348
349         if (buffer_ptr)
350                 *buffer_ptr = buffer;
351
352         return 0;
353
354 out_err:
355         auxtrace_buffer__free(buffer);
356         return err;
357 }
358
359 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
360                                               struct perf_session *session,
361                                               off_t file_offset, size_t sz)
362 {
363         union perf_event *event;
364         int err;
365         char buf[PERF_SAMPLE_MAX_SIZE];
366
367         err = perf_session__peek_event(session, file_offset, buf,
368                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
369         if (err)
370                 return err;
371
372         if (event->header.type == PERF_RECORD_AUXTRACE) {
373                 if (event->header.size < sizeof(struct auxtrace_event) ||
374                     event->header.size != sz) {
375                         err = -EINVAL;
376                         goto out;
377                 }
378                 file_offset += event->header.size;
379                 err = auxtrace_queues__add_event(queues, session, event,
380                                                  file_offset, NULL);
381         }
382 out:
383         return err;
384 }
385
386 void auxtrace_queues__free(struct auxtrace_queues *queues)
387 {
388         unsigned int i;
389
390         for (i = 0; i < queues->nr_queues; i++) {
391                 while (!list_empty(&queues->queue_array[i].head)) {
392                         struct auxtrace_buffer *buffer;
393
394                         buffer = list_entry(queues->queue_array[i].head.next,
395                                             struct auxtrace_buffer, list);
396                         list_del(&buffer->list);
397                         auxtrace_buffer__free(buffer);
398                 }
399         }
400
401         zfree(&queues->queue_array);
402         queues->nr_queues = 0;
403 }
404
405 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
406                              unsigned int pos, unsigned int queue_nr,
407                              u64 ordinal)
408 {
409         unsigned int parent;
410
411         while (pos) {
412                 parent = (pos - 1) >> 1;
413                 if (heap_array[parent].ordinal <= ordinal)
414                         break;
415                 heap_array[pos] = heap_array[parent];
416                 pos = parent;
417         }
418         heap_array[pos].queue_nr = queue_nr;
419         heap_array[pos].ordinal = ordinal;
420 }
421
422 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
423                        u64 ordinal)
424 {
425         struct auxtrace_heap_item *heap_array;
426
427         if (queue_nr >= heap->heap_sz) {
428                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
429
430                 while (heap_sz <= queue_nr)
431                         heap_sz <<= 1;
432                 heap_array = realloc(heap->heap_array,
433                                      heap_sz * sizeof(struct auxtrace_heap_item));
434                 if (!heap_array)
435                         return -ENOMEM;
436                 heap->heap_array = heap_array;
437                 heap->heap_sz = heap_sz;
438         }
439
440         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
441
442         return 0;
443 }
444
445 void auxtrace_heap__free(struct auxtrace_heap *heap)
446 {
447         zfree(&heap->heap_array);
448         heap->heap_cnt = 0;
449         heap->heap_sz = 0;
450 }
451
452 void auxtrace_heap__pop(struct auxtrace_heap *heap)
453 {
454         unsigned int pos, last, heap_cnt = heap->heap_cnt;
455         struct auxtrace_heap_item *heap_array;
456
457         if (!heap_cnt)
458                 return;
459
460         heap->heap_cnt -= 1;
461
462         heap_array = heap->heap_array;
463
464         pos = 0;
465         while (1) {
466                 unsigned int left, right;
467
468                 left = (pos << 1) + 1;
469                 if (left >= heap_cnt)
470                         break;
471                 right = left + 1;
472                 if (right >= heap_cnt) {
473                         heap_array[pos] = heap_array[left];
474                         return;
475                 }
476                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
477                         heap_array[pos] = heap_array[left];
478                         pos = left;
479                 } else {
480                         heap_array[pos] = heap_array[right];
481                         pos = right;
482                 }
483         }
484
485         last = heap_cnt - 1;
486         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
487                          heap_array[last].ordinal);
488 }
489
490 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
491                                        struct perf_evlist *evlist)
492 {
493         if (itr)
494                 return itr->info_priv_size(itr, evlist);
495         return 0;
496 }
497
498 static int auxtrace_not_supported(void)
499 {
500         pr_err("AUX area tracing is not supported on this architecture\n");
501         return -EINVAL;
502 }
503
504 int auxtrace_record__info_fill(struct auxtrace_record *itr,
505                                struct perf_session *session,
506                                struct auxtrace_info_event *auxtrace_info,
507                                size_t priv_size)
508 {
509         if (itr)
510                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
511         return auxtrace_not_supported();
512 }
513
514 void auxtrace_record__free(struct auxtrace_record *itr)
515 {
516         if (itr)
517                 itr->free(itr);
518 }
519
520 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
521 {
522         if (itr && itr->snapshot_start)
523                 return itr->snapshot_start(itr);
524         return 0;
525 }
526
527 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
528 {
529         if (itr && itr->snapshot_finish)
530                 return itr->snapshot_finish(itr);
531         return 0;
532 }
533
534 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
535                                    struct auxtrace_mmap *mm,
536                                    unsigned char *data, u64 *head, u64 *old)
537 {
538         if (itr && itr->find_snapshot)
539                 return itr->find_snapshot(itr, idx, mm, data, head, old);
540         return 0;
541 }
542
543 int auxtrace_record__options(struct auxtrace_record *itr,
544                              struct perf_evlist *evlist,
545                              struct record_opts *opts)
546 {
547         if (itr)
548                 return itr->recording_options(itr, evlist, opts);
549         return 0;
550 }
551
552 u64 auxtrace_record__reference(struct auxtrace_record *itr)
553 {
554         if (itr)
555                 return itr->reference(itr);
556         return 0;
557 }
558
559 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
560                                     struct record_opts *opts, const char *str)
561 {
562         if (!str)
563                 return 0;
564
565         if (itr)
566                 return itr->parse_snapshot_options(itr, opts, str);
567
568         pr_err("No AUX area tracing to snapshot\n");
569         return -EINVAL;
570 }
571
572 struct auxtrace_record *__weak
573 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
574 {
575         *err = 0;
576         return NULL;
577 }
578
579 static int auxtrace_index__alloc(struct list_head *head)
580 {
581         struct auxtrace_index *auxtrace_index;
582
583         auxtrace_index = malloc(sizeof(struct auxtrace_index));
584         if (!auxtrace_index)
585                 return -ENOMEM;
586
587         auxtrace_index->nr = 0;
588         INIT_LIST_HEAD(&auxtrace_index->list);
589
590         list_add_tail(&auxtrace_index->list, head);
591
592         return 0;
593 }
594
595 void auxtrace_index__free(struct list_head *head)
596 {
597         struct auxtrace_index *auxtrace_index, *n;
598
599         list_for_each_entry_safe(auxtrace_index, n, head, list) {
600                 list_del(&auxtrace_index->list);
601                 free(auxtrace_index);
602         }
603 }
604
605 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
606 {
607         struct auxtrace_index *auxtrace_index;
608         int err;
609
610         if (list_empty(head)) {
611                 err = auxtrace_index__alloc(head);
612                 if (err)
613                         return NULL;
614         }
615
616         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
617
618         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
619                 err = auxtrace_index__alloc(head);
620                 if (err)
621                         return NULL;
622                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
623                                             list);
624         }
625
626         return auxtrace_index;
627 }
628
629 int auxtrace_index__auxtrace_event(struct list_head *head,
630                                    union perf_event *event, off_t file_offset)
631 {
632         struct auxtrace_index *auxtrace_index;
633         size_t nr;
634
635         auxtrace_index = auxtrace_index__last(head);
636         if (!auxtrace_index)
637                 return -ENOMEM;
638
639         nr = auxtrace_index->nr;
640         auxtrace_index->entries[nr].file_offset = file_offset;
641         auxtrace_index->entries[nr].sz = event->header.size;
642         auxtrace_index->nr += 1;
643
644         return 0;
645 }
646
647 static int auxtrace_index__do_write(int fd,
648                                     struct auxtrace_index *auxtrace_index)
649 {
650         struct auxtrace_index_entry ent;
651         size_t i;
652
653         for (i = 0; i < auxtrace_index->nr; i++) {
654                 ent.file_offset = auxtrace_index->entries[i].file_offset;
655                 ent.sz = auxtrace_index->entries[i].sz;
656                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
657                         return -errno;
658         }
659         return 0;
660 }
661
662 int auxtrace_index__write(int fd, struct list_head *head)
663 {
664         struct auxtrace_index *auxtrace_index;
665         u64 total = 0;
666         int err;
667
668         list_for_each_entry(auxtrace_index, head, list)
669                 total += auxtrace_index->nr;
670
671         if (writen(fd, &total, sizeof(total)) != sizeof(total))
672                 return -errno;
673
674         list_for_each_entry(auxtrace_index, head, list) {
675                 err = auxtrace_index__do_write(fd, auxtrace_index);
676                 if (err)
677                         return err;
678         }
679
680         return 0;
681 }
682
683 static int auxtrace_index__process_entry(int fd, struct list_head *head,
684                                          bool needs_swap)
685 {
686         struct auxtrace_index *auxtrace_index;
687         struct auxtrace_index_entry ent;
688         size_t nr;
689
690         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
691                 return -1;
692
693         auxtrace_index = auxtrace_index__last(head);
694         if (!auxtrace_index)
695                 return -1;
696
697         nr = auxtrace_index->nr;
698         if (needs_swap) {
699                 auxtrace_index->entries[nr].file_offset =
700                                                 bswap_64(ent.file_offset);
701                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
702         } else {
703                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
704                 auxtrace_index->entries[nr].sz = ent.sz;
705         }
706
707         auxtrace_index->nr = nr + 1;
708
709         return 0;
710 }
711
712 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
713                             bool needs_swap)
714 {
715         struct list_head *head = &session->auxtrace_index;
716         u64 nr;
717
718         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
719                 return -1;
720
721         if (needs_swap)
722                 nr = bswap_64(nr);
723
724         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
725                 return -1;
726
727         while (nr--) {
728                 int err;
729
730                 err = auxtrace_index__process_entry(fd, head, needs_swap);
731                 if (err)
732                         return -1;
733         }
734
735         return 0;
736 }
737
738 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
739                                                 struct perf_session *session,
740                                                 struct auxtrace_index_entry *ent)
741 {
742         return auxtrace_queues__add_indexed_event(queues, session,
743                                                   ent->file_offset, ent->sz);
744 }
745
746 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
747                                    struct perf_session *session)
748 {
749         struct auxtrace_index *auxtrace_index;
750         struct auxtrace_index_entry *ent;
751         size_t i;
752         int err;
753
754         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
755                 for (i = 0; i < auxtrace_index->nr; i++) {
756                         ent = &auxtrace_index->entries[i];
757                         err = auxtrace_queues__process_index_entry(queues,
758                                                                    session,
759                                                                    ent);
760                         if (err)
761                                 return err;
762                 }
763         }
764         return 0;
765 }
766
767 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
768                                               struct auxtrace_buffer *buffer)
769 {
770         if (buffer) {
771                 if (list_is_last(&buffer->list, &queue->head))
772                         return NULL;
773                 return list_entry(buffer->list.next, struct auxtrace_buffer,
774                                   list);
775         } else {
776                 if (list_empty(&queue->head))
777                         return NULL;
778                 return list_entry(queue->head.next, struct auxtrace_buffer,
779                                   list);
780         }
781 }
782
783 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
784 {
785         size_t adj = buffer->data_offset & (page_size - 1);
786         size_t size = buffer->size + adj;
787         off_t file_offset = buffer->data_offset - adj;
788         void *addr;
789
790         if (buffer->data)
791                 return buffer->data;
792
793         addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
794         if (addr == MAP_FAILED)
795                 return NULL;
796
797         buffer->mmap_addr = addr;
798         buffer->mmap_size = size;
799
800         buffer->data = addr + adj;
801
802         return buffer->data;
803 }
804
805 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
806 {
807         if (!buffer->data || !buffer->mmap_addr)
808                 return;
809         munmap(buffer->mmap_addr, buffer->mmap_size);
810         buffer->mmap_addr = NULL;
811         buffer->mmap_size = 0;
812         buffer->data = NULL;
813         buffer->use_data = NULL;
814 }
815
816 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
817 {
818         auxtrace_buffer__put_data(buffer);
819         if (buffer->data_needs_freeing) {
820                 buffer->data_needs_freeing = false;
821                 zfree(&buffer->data);
822                 buffer->use_data = NULL;
823                 buffer->size = 0;
824         }
825 }
826
827 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
828 {
829         auxtrace_buffer__drop_data(buffer);
830         free(buffer);
831 }
832
833 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
834                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
835                           const char *msg)
836 {
837         size_t size;
838
839         memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
840
841         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
842         auxtrace_error->type = type;
843         auxtrace_error->code = code;
844         auxtrace_error->cpu = cpu;
845         auxtrace_error->pid = pid;
846         auxtrace_error->tid = tid;
847         auxtrace_error->ip = ip;
848         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
849
850         size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
851                strlen(auxtrace_error->msg) + 1;
852         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
853 }
854
855 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
856                                          struct perf_tool *tool,
857                                          struct perf_session *session,
858                                          perf_event__handler_t process)
859 {
860         union perf_event *ev;
861         size_t priv_size;
862         int err;
863
864         pr_debug2("Synthesizing auxtrace information\n");
865         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
866         ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
867         if (!ev)
868                 return -ENOMEM;
869
870         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
871         ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
872                                         priv_size;
873         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
874                                          priv_size);
875         if (err)
876                 goto out_free;
877
878         err = process(tool, ev, NULL, NULL);
879 out_free:
880         free(ev);
881         return err;
882 }
883
884 static bool auxtrace__dont_decode(struct perf_session *session)
885 {
886         return !session->itrace_synth_opts ||
887                session->itrace_synth_opts->dont_decode;
888 }
889
890 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
891                                       union perf_event *event,
892                                       struct perf_session *session)
893 {
894         enum auxtrace_type type = event->auxtrace_info.type;
895
896         if (dump_trace)
897                 fprintf(stdout, " type: %u\n", type);
898
899         switch (type) {
900         case PERF_AUXTRACE_INTEL_PT:
901                 return intel_pt_process_auxtrace_info(event, session);
902         case PERF_AUXTRACE_INTEL_BTS:
903                 return intel_bts_process_auxtrace_info(event, session);
904         case PERF_AUXTRACE_CS_ETM:
905         case PERF_AUXTRACE_UNKNOWN:
906         default:
907                 return -EINVAL;
908         }
909 }
910
911 s64 perf_event__process_auxtrace(struct perf_tool *tool,
912                                  union perf_event *event,
913                                  struct perf_session *session)
914 {
915         s64 err;
916
917         if (dump_trace)
918                 fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
919                         event->auxtrace.size, event->auxtrace.offset,
920                         event->auxtrace.reference, event->auxtrace.idx,
921                         event->auxtrace.tid, event->auxtrace.cpu);
922
923         if (auxtrace__dont_decode(session))
924                 return event->auxtrace.size;
925
926         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
927                 return -EINVAL;
928
929         err = session->auxtrace->process_auxtrace_event(session, event, tool);
930         if (err < 0)
931                 return err;
932
933         return event->auxtrace.size;
934 }
935
936 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
937 #define PERF_ITRACE_DEFAULT_PERIOD              100000
938 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
939 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
940 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
941 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
942
943 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
944 {
945         synth_opts->instructions = true;
946         synth_opts->branches = true;
947         synth_opts->transactions = true;
948         synth_opts->errors = true;
949         synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
950         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
951         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
952         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
953         synth_opts->initial_skip = 0;
954 }
955
956 /*
957  * Please check tools/perf/Documentation/perf-script.txt for information
958  * about the options parsed here, which is introduced after this cset,
959  * when support in 'perf script' for these options is introduced.
960  */
961 int itrace_parse_synth_opts(const struct option *opt, const char *str,
962                             int unset)
963 {
964         struct itrace_synth_opts *synth_opts = opt->value;
965         const char *p;
966         char *endptr;
967         bool period_type_set = false;
968         bool period_set = false;
969
970         synth_opts->set = true;
971
972         if (unset) {
973                 synth_opts->dont_decode = true;
974                 return 0;
975         }
976
977         if (!str) {
978                 itrace_synth_opts__set_default(synth_opts);
979                 return 0;
980         }
981
982         for (p = str; *p;) {
983                 switch (*p++) {
984                 case 'i':
985                         synth_opts->instructions = true;
986                         while (*p == ' ' || *p == ',')
987                                 p += 1;
988                         if (isdigit(*p)) {
989                                 synth_opts->period = strtoull(p, &endptr, 10);
990                                 period_set = true;
991                                 p = endptr;
992                                 while (*p == ' ' || *p == ',')
993                                         p += 1;
994                                 switch (*p++) {
995                                 case 'i':
996                                         synth_opts->period_type =
997                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
998                                         period_type_set = true;
999                                         break;
1000                                 case 't':
1001                                         synth_opts->period_type =
1002                                                 PERF_ITRACE_PERIOD_TICKS;
1003                                         period_type_set = true;
1004                                         break;
1005                                 case 'm':
1006                                         synth_opts->period *= 1000;
1007                                         /* Fall through */
1008                                 case 'u':
1009                                         synth_opts->period *= 1000;
1010                                         /* Fall through */
1011                                 case 'n':
1012                                         if (*p++ != 's')
1013                                                 goto out_err;
1014                                         synth_opts->period_type =
1015                                                 PERF_ITRACE_PERIOD_NANOSECS;
1016                                         period_type_set = true;
1017                                         break;
1018                                 case '\0':
1019                                         goto out;
1020                                 default:
1021                                         goto out_err;
1022                                 }
1023                         }
1024                         break;
1025                 case 'b':
1026                         synth_opts->branches = true;
1027                         break;
1028                 case 'x':
1029                         synth_opts->transactions = true;
1030                         break;
1031                 case 'e':
1032                         synth_opts->errors = true;
1033                         break;
1034                 case 'd':
1035                         synth_opts->log = true;
1036                         break;
1037                 case 'c':
1038                         synth_opts->branches = true;
1039                         synth_opts->calls = true;
1040                         break;
1041                 case 'r':
1042                         synth_opts->branches = true;
1043                         synth_opts->returns = true;
1044                         break;
1045                 case 'g':
1046                         synth_opts->callchain = true;
1047                         synth_opts->callchain_sz =
1048                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1049                         while (*p == ' ' || *p == ',')
1050                                 p += 1;
1051                         if (isdigit(*p)) {
1052                                 unsigned int val;
1053
1054                                 val = strtoul(p, &endptr, 10);
1055                                 p = endptr;
1056                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1057                                         goto out_err;
1058                                 synth_opts->callchain_sz = val;
1059                         }
1060                         break;
1061                 case 'l':
1062                         synth_opts->last_branch = true;
1063                         synth_opts->last_branch_sz =
1064                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1065                         while (*p == ' ' || *p == ',')
1066                                 p += 1;
1067                         if (isdigit(*p)) {
1068                                 unsigned int val;
1069
1070                                 val = strtoul(p, &endptr, 10);
1071                                 p = endptr;
1072                                 if (!val ||
1073                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1074                                         goto out_err;
1075                                 synth_opts->last_branch_sz = val;
1076                         }
1077                         break;
1078                 case 's':
1079                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1080                         if (p == endptr)
1081                                 goto out_err;
1082                         p = endptr;
1083                         break;
1084                 case ' ':
1085                 case ',':
1086                         break;
1087                 default:
1088                         goto out_err;
1089                 }
1090         }
1091 out:
1092         if (synth_opts->instructions) {
1093                 if (!period_type_set)
1094                         synth_opts->period_type =
1095                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1096                 if (!period_set)
1097                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1098         }
1099
1100         return 0;
1101
1102 out_err:
1103         pr_err("Bad Instruction Tracing options '%s'\n", str);
1104         return -EINVAL;
1105 }
1106
1107 static const char * const auxtrace_error_type_name[] = {
1108         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1109 };
1110
1111 static const char *auxtrace_error_name(int type)
1112 {
1113         const char *error_type_name = NULL;
1114
1115         if (type < PERF_AUXTRACE_ERROR_MAX)
1116                 error_type_name = auxtrace_error_type_name[type];
1117         if (!error_type_name)
1118                 error_type_name = "unknown AUX";
1119         return error_type_name;
1120 }
1121
1122 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1123 {
1124         struct auxtrace_error_event *e = &event->auxtrace_error;
1125         int ret;
1126
1127         ret = fprintf(fp, " %s error type %u",
1128                       auxtrace_error_name(e->type), e->type);
1129         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1130                        e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1131         return ret;
1132 }
1133
1134 void perf_session__auxtrace_error_inc(struct perf_session *session,
1135                                       union perf_event *event)
1136 {
1137         struct auxtrace_error_event *e = &event->auxtrace_error;
1138
1139         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1140                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1141 }
1142
1143 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1144 {
1145         int i;
1146
1147         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1148                 if (!stats->nr_auxtrace_errors[i])
1149                         continue;
1150                 ui__warning("%u %s errors\n",
1151                             stats->nr_auxtrace_errors[i],
1152                             auxtrace_error_name(i));
1153         }
1154 }
1155
1156 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1157                                        union perf_event *event,
1158                                        struct perf_session *session)
1159 {
1160         if (auxtrace__dont_decode(session))
1161                 return 0;
1162
1163         perf_event__fprintf_auxtrace_error(event, stdout);
1164         return 0;
1165 }
1166
1167 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1168                                  struct auxtrace_record *itr,
1169                                  struct perf_tool *tool, process_auxtrace_t fn,
1170                                  bool snapshot, size_t snapshot_size)
1171 {
1172         u64 head, old = mm->prev, offset, ref;
1173         unsigned char *data = mm->base;
1174         size_t size, head_off, old_off, len1, len2, padding;
1175         union perf_event ev;
1176         void *data1, *data2;
1177
1178         if (snapshot) {
1179                 head = auxtrace_mmap__read_snapshot_head(mm);
1180                 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1181                                                    &head, &old))
1182                         return -1;
1183         } else {
1184                 head = auxtrace_mmap__read_head(mm);
1185         }
1186
1187         if (old == head)
1188                 return 0;
1189
1190         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1191                   mm->idx, old, head, head - old);
1192
1193         if (mm->mask) {
1194                 head_off = head & mm->mask;
1195                 old_off = old & mm->mask;
1196         } else {
1197                 head_off = head % mm->len;
1198                 old_off = old % mm->len;
1199         }
1200
1201         if (head_off > old_off)
1202                 size = head_off - old_off;
1203         else
1204                 size = mm->len - (old_off - head_off);
1205
1206         if (snapshot && size > snapshot_size)
1207                 size = snapshot_size;
1208
1209         ref = auxtrace_record__reference(itr);
1210
1211         if (head > old || size <= head || mm->mask) {
1212                 offset = head - size;
1213         } else {
1214                 /*
1215                  * When the buffer size is not a power of 2, 'head' wraps at the
1216                  * highest multiple of the buffer size, so we have to subtract
1217                  * the remainder here.
1218                  */
1219                 u64 rem = (0ULL - mm->len) % mm->len;
1220
1221                 offset = head - size - rem;
1222         }
1223
1224         if (size > head_off) {
1225                 len1 = size - head_off;
1226                 data1 = &data[mm->len - len1];
1227                 len2 = head_off;
1228                 data2 = &data[0];
1229         } else {
1230                 len1 = size;
1231                 data1 = &data[head_off - len1];
1232                 len2 = 0;
1233                 data2 = NULL;
1234         }
1235
1236         if (itr->alignment) {
1237                 unsigned int unwanted = len1 % itr->alignment;
1238
1239                 len1 -= unwanted;
1240                 size -= unwanted;
1241         }
1242
1243         /* padding must be written by fn() e.g. record__process_auxtrace() */
1244         padding = size & 7;
1245         if (padding)
1246                 padding = 8 - padding;
1247
1248         memset(&ev, 0, sizeof(ev));
1249         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1250         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1251         ev.auxtrace.size = size + padding;
1252         ev.auxtrace.offset = offset;
1253         ev.auxtrace.reference = ref;
1254         ev.auxtrace.idx = mm->idx;
1255         ev.auxtrace.tid = mm->tid;
1256         ev.auxtrace.cpu = mm->cpu;
1257
1258         if (fn(tool, &ev, data1, len1, data2, len2))
1259                 return -1;
1260
1261         mm->prev = head;
1262
1263         if (!snapshot) {
1264                 auxtrace_mmap__write_tail(mm, head);
1265                 if (itr->read_finish) {
1266                         int err;
1267
1268                         err = itr->read_finish(itr, mm->idx);
1269                         if (err < 0)
1270                                 return err;
1271                 }
1272         }
1273
1274         return 1;
1275 }
1276
1277 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1278                         struct perf_tool *tool, process_auxtrace_t fn)
1279 {
1280         return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1281 }
1282
1283 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1284                                  struct auxtrace_record *itr,
1285                                  struct perf_tool *tool, process_auxtrace_t fn,
1286                                  size_t snapshot_size)
1287 {
1288         return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1289 }
1290
1291 /**
1292  * struct auxtrace_cache - hash table to implement a cache
1293  * @hashtable: the hashtable
1294  * @sz: hashtable size (number of hlists)
1295  * @entry_size: size of an entry
1296  * @limit: limit the number of entries to this maximum, when reached the cache
1297  *         is dropped and caching begins again with an empty cache
1298  * @cnt: current number of entries
1299  * @bits: hashtable size (@sz = 2^@bits)
1300  */
1301 struct auxtrace_cache {
1302         struct hlist_head *hashtable;
1303         size_t sz;
1304         size_t entry_size;
1305         size_t limit;
1306         size_t cnt;
1307         unsigned int bits;
1308 };
1309
1310 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1311                                            unsigned int limit_percent)
1312 {
1313         struct auxtrace_cache *c;
1314         struct hlist_head *ht;
1315         size_t sz, i;
1316
1317         c = zalloc(sizeof(struct auxtrace_cache));
1318         if (!c)
1319                 return NULL;
1320
1321         sz = 1UL << bits;
1322
1323         ht = calloc(sz, sizeof(struct hlist_head));
1324         if (!ht)
1325                 goto out_free;
1326
1327         for (i = 0; i < sz; i++)
1328                 INIT_HLIST_HEAD(&ht[i]);
1329
1330         c->hashtable = ht;
1331         c->sz = sz;
1332         c->entry_size = entry_size;
1333         c->limit = (c->sz * limit_percent) / 100;
1334         c->bits = bits;
1335
1336         return c;
1337
1338 out_free:
1339         free(c);
1340         return NULL;
1341 }
1342
1343 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1344 {
1345         struct auxtrace_cache_entry *entry;
1346         struct hlist_node *tmp;
1347         size_t i;
1348
1349         if (!c)
1350                 return;
1351
1352         for (i = 0; i < c->sz; i++) {
1353                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1354                         hlist_del(&entry->hash);
1355                         auxtrace_cache__free_entry(c, entry);
1356                 }
1357         }
1358
1359         c->cnt = 0;
1360 }
1361
1362 void auxtrace_cache__free(struct auxtrace_cache *c)
1363 {
1364         if (!c)
1365                 return;
1366
1367         auxtrace_cache__drop(c);
1368         free(c->hashtable);
1369         free(c);
1370 }
1371
1372 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1373 {
1374         return malloc(c->entry_size);
1375 }
1376
1377 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1378                                 void *entry)
1379 {
1380         free(entry);
1381 }
1382
1383 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1384                         struct auxtrace_cache_entry *entry)
1385 {
1386         if (c->limit && ++c->cnt > c->limit)
1387                 auxtrace_cache__drop(c);
1388
1389         entry->key = key;
1390         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1391
1392         return 0;
1393 }
1394
1395 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1396 {
1397         struct auxtrace_cache_entry *entry;
1398         struct hlist_head *hlist;
1399
1400         if (!c)
1401                 return NULL;
1402
1403         hlist = &c->hashtable[hash_32(key, c->bits)];
1404         hlist_for_each_entry(entry, hlist, hash) {
1405                 if (entry->key == key)
1406                         return entry;
1407         }
1408
1409         return NULL;
1410 }
1411
1412 static void addr_filter__free_str(struct addr_filter *filt)
1413 {
1414         free(filt->str);
1415         filt->action   = NULL;
1416         filt->sym_from = NULL;
1417         filt->sym_to   = NULL;
1418         filt->filename = NULL;
1419         filt->str      = NULL;
1420 }
1421
1422 static struct addr_filter *addr_filter__new(void)
1423 {
1424         struct addr_filter *filt = zalloc(sizeof(*filt));
1425
1426         if (filt)
1427                 INIT_LIST_HEAD(&filt->list);
1428
1429         return filt;
1430 }
1431
1432 static void addr_filter__free(struct addr_filter *filt)
1433 {
1434         if (filt)
1435                 addr_filter__free_str(filt);
1436         free(filt);
1437 }
1438
1439 static void addr_filters__add(struct addr_filters *filts,
1440                               struct addr_filter *filt)
1441 {
1442         list_add_tail(&filt->list, &filts->head);
1443         filts->cnt += 1;
1444 }
1445
1446 static void addr_filters__del(struct addr_filters *filts,
1447                               struct addr_filter *filt)
1448 {
1449         list_del_init(&filt->list);
1450         filts->cnt -= 1;
1451 }
1452
1453 void addr_filters__init(struct addr_filters *filts)
1454 {
1455         INIT_LIST_HEAD(&filts->head);
1456         filts->cnt = 0;
1457 }
1458
1459 void addr_filters__exit(struct addr_filters *filts)
1460 {
1461         struct addr_filter *filt, *n;
1462
1463         list_for_each_entry_safe(filt, n, &filts->head, list) {
1464                 addr_filters__del(filts, filt);
1465                 addr_filter__free(filt);
1466         }
1467 }
1468
1469 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1470                             const char *str_delim)
1471 {
1472         *inp += strspn(*inp, " ");
1473
1474         if (isdigit(**inp)) {
1475                 char *endptr;
1476
1477                 if (!num)
1478                         return -EINVAL;
1479                 errno = 0;
1480                 *num = strtoull(*inp, &endptr, 0);
1481                 if (errno)
1482                         return -errno;
1483                 if (endptr == *inp)
1484                         return -EINVAL;
1485                 *inp = endptr;
1486         } else {
1487                 size_t n;
1488
1489                 if (!str)
1490                         return -EINVAL;
1491                 *inp += strspn(*inp, " ");
1492                 *str = *inp;
1493                 n = strcspn(*inp, str_delim);
1494                 if (!n)
1495                         return -EINVAL;
1496                 *inp += n;
1497                 if (**inp) {
1498                         **inp = '\0';
1499                         *inp += 1;
1500                 }
1501         }
1502         return 0;
1503 }
1504
1505 static int parse_action(struct addr_filter *filt)
1506 {
1507         if (!strcmp(filt->action, "filter")) {
1508                 filt->start = true;
1509                 filt->range = true;
1510         } else if (!strcmp(filt->action, "start")) {
1511                 filt->start = true;
1512         } else if (!strcmp(filt->action, "stop")) {
1513                 filt->start = false;
1514         } else if (!strcmp(filt->action, "tracestop")) {
1515                 filt->start = false;
1516                 filt->range = true;
1517                 filt->action += 5; /* Change 'tracestop' to 'stop' */
1518         } else {
1519                 return -EINVAL;
1520         }
1521         return 0;
1522 }
1523
1524 static int parse_sym_idx(char **inp, int *idx)
1525 {
1526         *idx = -1;
1527
1528         *inp += strspn(*inp, " ");
1529
1530         if (**inp != '#')
1531                 return 0;
1532
1533         *inp += 1;
1534
1535         if (**inp == 'g' || **inp == 'G') {
1536                 *inp += 1;
1537                 *idx = 0;
1538         } else {
1539                 unsigned long num;
1540                 char *endptr;
1541
1542                 errno = 0;
1543                 num = strtoul(*inp, &endptr, 0);
1544                 if (errno)
1545                         return -errno;
1546                 if (endptr == *inp || num > INT_MAX)
1547                         return -EINVAL;
1548                 *inp = endptr;
1549                 *idx = num;
1550         }
1551
1552         return 0;
1553 }
1554
1555 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1556 {
1557         int err = parse_num_or_str(inp, num, str, " ");
1558
1559         if (!err && *str)
1560                 err = parse_sym_idx(inp, idx);
1561
1562         return err;
1563 }
1564
1565 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1566 {
1567         char *fstr;
1568         int err;
1569
1570         filt->str = fstr = strdup(*filter_inp);
1571         if (!fstr)
1572                 return -ENOMEM;
1573
1574         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1575         if (err)
1576                 goto out_err;
1577
1578         err = parse_action(filt);
1579         if (err)
1580                 goto out_err;
1581
1582         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1583                               &filt->sym_from_idx);
1584         if (err)
1585                 goto out_err;
1586
1587         fstr += strspn(fstr, " ");
1588
1589         if (*fstr == '/') {
1590                 fstr += 1;
1591                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1592                                       &filt->sym_to_idx);
1593                 if (err)
1594                         goto out_err;
1595                 filt->range = true;
1596         }
1597
1598         fstr += strspn(fstr, " ");
1599
1600         if (*fstr == '@') {
1601                 fstr += 1;
1602                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1603                 if (err)
1604                         goto out_err;
1605         }
1606
1607         fstr += strspn(fstr, " ,");
1608
1609         *filter_inp += fstr - filt->str;
1610
1611         return 0;
1612
1613 out_err:
1614         addr_filter__free_str(filt);
1615
1616         return err;
1617 }
1618
1619 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1620                                     const char *filter)
1621 {
1622         struct addr_filter *filt;
1623         const char *fstr = filter;
1624         int err;
1625
1626         while (*fstr) {
1627                 filt = addr_filter__new();
1628                 err = parse_one_filter(filt, &fstr);
1629                 if (err) {
1630                         addr_filter__free(filt);
1631                         addr_filters__exit(filts);
1632                         return err;
1633                 }
1634                 addr_filters__add(filts, filt);
1635         }
1636
1637         return 0;
1638 }
1639
1640 struct sym_args {
1641         const char      *name;
1642         u64             start;
1643         u64             size;
1644         int             idx;
1645         int             cnt;
1646         bool            started;
1647         bool            global;
1648         bool            selected;
1649         bool            duplicate;
1650         bool            near;
1651 };
1652
1653 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1654 {
1655         /* A function with the same name, and global or the n'th found or any */
1656         return symbol_type__is_a(type, MAP__FUNCTION) &&
1657                !strcmp(name, args->name) &&
1658                ((args->global && isupper(type)) ||
1659                 (args->selected && ++(args->cnt) == args->idx) ||
1660                 (!args->global && !args->selected));
1661 }
1662
1663 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1664 {
1665         struct sym_args *args = arg;
1666
1667         if (args->started) {
1668                 if (!args->size)
1669                         args->size = start - args->start;
1670                 if (args->selected) {
1671                         if (args->size)
1672                                 return 1;
1673                 } else if (kern_sym_match(args, name, type)) {
1674                         args->duplicate = true;
1675                         return 1;
1676                 }
1677         } else if (kern_sym_match(args, name, type)) {
1678                 args->started = true;
1679                 args->start = start;
1680         }
1681
1682         return 0;
1683 }
1684
1685 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1686 {
1687         struct sym_args *args = arg;
1688
1689         if (kern_sym_match(args, name, type)) {
1690                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1691                        ++args->cnt, start, type, name);
1692                 args->near = true;
1693         } else if (args->near) {
1694                 args->near = false;
1695                 pr_err("\t\twhich is near\t\t%s\n", name);
1696         }
1697
1698         return 0;
1699 }
1700
1701 static int sym_not_found_error(const char *sym_name, int idx)
1702 {
1703         if (idx > 0) {
1704                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1705                        idx, sym_name);
1706         } else if (!idx) {
1707                 pr_err("Global symbol '%s' not found.\n", sym_name);
1708         } else {
1709                 pr_err("Symbol '%s' not found.\n", sym_name);
1710         }
1711         pr_err("Note that symbols must be functions.\n");
1712
1713         return -EINVAL;
1714 }
1715
1716 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1717 {
1718         struct sym_args args = {
1719                 .name = sym_name,
1720                 .idx = idx,
1721                 .global = !idx,
1722                 .selected = idx > 0,
1723         };
1724         int err;
1725
1726         *start = 0;
1727         *size = 0;
1728
1729         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1730         if (err < 0) {
1731                 pr_err("Failed to parse /proc/kallsyms\n");
1732                 return err;
1733         }
1734
1735         if (args.duplicate) {
1736                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1737                 args.cnt = 0;
1738                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1739                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1740                        sym_name);
1741                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1742                 return -EINVAL;
1743         }
1744
1745         if (!args.started) {
1746                 pr_err("Kernel symbol lookup: ");
1747                 return sym_not_found_error(sym_name, idx);
1748         }
1749
1750         *start = args.start;
1751         *size = args.size;
1752
1753         return 0;
1754 }
1755
1756 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1757                                char type, u64 start)
1758 {
1759         struct sym_args *args = arg;
1760
1761         if (!symbol_type__is_a(type, MAP__FUNCTION))
1762                 return 0;
1763
1764         if (!args->started) {
1765                 args->started = true;
1766                 args->start = start;
1767         }
1768         /* Don't know exactly where the kernel ends, so we add a page */
1769         args->size = round_up(start, page_size) + page_size - args->start;
1770
1771         return 0;
1772 }
1773
1774 static int addr_filter__entire_kernel(struct addr_filter *filt)
1775 {
1776         struct sym_args args = { .started = false };
1777         int err;
1778
1779         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1780         if (err < 0 || !args.started) {
1781                 pr_err("Failed to parse /proc/kallsyms\n");
1782                 return err;
1783         }
1784
1785         filt->addr = args.start;
1786         filt->size = args.size;
1787
1788         return 0;
1789 }
1790
1791 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1792 {
1793         if (start + size >= filt->addr)
1794                 return 0;
1795
1796         if (filt->sym_from) {
1797                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1798                        filt->sym_to, start, filt->sym_from, filt->addr);
1799         } else {
1800                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1801                        filt->sym_to, start, filt->addr);
1802         }
1803
1804         return -EINVAL;
1805 }
1806
1807 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1808 {
1809         bool no_size = false;
1810         u64 start, size;
1811         int err;
1812
1813         if (symbol_conf.kptr_restrict) {
1814                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1815                 return -EINVAL;
1816         }
1817
1818         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1819                 return addr_filter__entire_kernel(filt);
1820
1821         if (filt->sym_from) {
1822                 err = find_kern_sym(filt->sym_from, &start, &size,
1823                                     filt->sym_from_idx);
1824                 if (err)
1825                         return err;
1826                 filt->addr = start;
1827                 if (filt->range && !filt->size && !filt->sym_to) {
1828                         filt->size = size;
1829                         no_size = !!size;
1830                 }
1831         }
1832
1833         if (filt->sym_to) {
1834                 err = find_kern_sym(filt->sym_to, &start, &size,
1835                                     filt->sym_to_idx);
1836                 if (err)
1837                         return err;
1838
1839                 err = check_end_after_start(filt, start, size);
1840                 if (err)
1841                         return err;
1842                 filt->size = start + size - filt->addr;
1843                 no_size = !!size;
1844         }
1845
1846         /* The very last symbol in kallsyms does not imply a particular size */
1847         if (no_size) {
1848                 pr_err("Cannot determine size of symbol '%s'\n",
1849                        filt->sym_to ? filt->sym_to : filt->sym_from);
1850                 return -EINVAL;
1851         }
1852
1853         return 0;
1854 }
1855
1856 static struct dso *load_dso(const char *name)
1857 {
1858         struct map *map;
1859         struct dso *dso;
1860
1861         map = dso__new_map(name);
1862         if (!map)
1863                 return NULL;
1864
1865         map__load(map);
1866
1867         dso = dso__get(map->dso);
1868
1869         map__put(map);
1870
1871         return dso;
1872 }
1873
1874 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1875                           int idx)
1876 {
1877         /* Same name, and global or the n'th found or any */
1878         return !arch__compare_symbol_names(name, sym->name) &&
1879                ((!idx && sym->binding == STB_GLOBAL) ||
1880                 (idx > 0 && ++*cnt == idx) ||
1881                 idx < 0);
1882 }
1883
1884 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1885 {
1886         struct symbol *sym;
1887         bool near = false;
1888         int cnt = 0;
1889
1890         pr_err("Multiple symbols with name '%s'\n", sym_name);
1891
1892         sym = dso__first_symbol(dso, MAP__FUNCTION);
1893         while (sym) {
1894                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1895                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1896                                ++cnt, sym->start,
1897                                sym->binding == STB_GLOBAL ? 'g' :
1898                                sym->binding == STB_LOCAL  ? 'l' : 'w',
1899                                sym->name);
1900                         near = true;
1901                 } else if (near) {
1902                         near = false;
1903                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
1904                 }
1905                 sym = dso__next_symbol(sym);
1906         }
1907
1908         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1909                sym_name);
1910         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1911 }
1912
1913 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1914                         u64 *size, int idx)
1915 {
1916         struct symbol *sym;
1917         int cnt = 0;
1918
1919         *start = 0;
1920         *size = 0;
1921
1922         sym = dso__first_symbol(dso, MAP__FUNCTION);
1923         while (sym) {
1924                 if (*start) {
1925                         if (!*size)
1926                                 *size = sym->start - *start;
1927                         if (idx > 0) {
1928                                 if (*size)
1929                                         return 1;
1930                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1931                                 print_duplicate_syms(dso, sym_name);
1932                                 return -EINVAL;
1933                         }
1934                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1935                         *start = sym->start;
1936                         *size = sym->end - sym->start;
1937                 }
1938                 sym = dso__next_symbol(sym);
1939         }
1940
1941         if (!*start)
1942                 return sym_not_found_error(sym_name, idx);
1943
1944         return 0;
1945 }
1946
1947 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1948 {
1949         struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1950         struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1951
1952         if (!first_sym || !last_sym) {
1953                 pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1954                        filt->filename);
1955                 return -EINVAL;
1956         }
1957
1958         filt->addr = first_sym->start;
1959         filt->size = last_sym->end - first_sym->start;
1960
1961         return 0;
1962 }
1963
1964 static int addr_filter__resolve_syms(struct addr_filter *filt)
1965 {
1966         u64 start, size;
1967         struct dso *dso;
1968         int err = 0;
1969
1970         if (!filt->sym_from && !filt->sym_to)
1971                 return 0;
1972
1973         if (!filt->filename)
1974                 return addr_filter__resolve_kernel_syms(filt);
1975
1976         dso = load_dso(filt->filename);
1977         if (!dso) {
1978                 pr_err("Failed to load symbols from: %s\n", filt->filename);
1979                 return -EINVAL;
1980         }
1981
1982         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
1983                 err = addr_filter__entire_dso(filt, dso);
1984                 goto put_dso;
1985         }
1986
1987         if (filt->sym_from) {
1988                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
1989                                    filt->sym_from_idx);
1990                 if (err)
1991                         goto put_dso;
1992                 filt->addr = start;
1993                 if (filt->range && !filt->size && !filt->sym_to)
1994                         filt->size = size;
1995         }
1996
1997         if (filt->sym_to) {
1998                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
1999                                    filt->sym_to_idx);
2000                 if (err)
2001                         goto put_dso;
2002
2003                 err = check_end_after_start(filt, start, size);
2004                 if (err)
2005                         return err;
2006
2007                 filt->size = start + size - filt->addr;
2008         }
2009
2010 put_dso:
2011         dso__put(dso);
2012
2013         return err;
2014 }
2015
2016 static char *addr_filter__to_str(struct addr_filter *filt)
2017 {
2018         char filename_buf[PATH_MAX];
2019         const char *at = "";
2020         const char *fn = "";
2021         char *filter;
2022         int err;
2023
2024         if (filt->filename) {
2025                 at = "@";
2026                 fn = realpath(filt->filename, filename_buf);
2027                 if (!fn)
2028                         return NULL;
2029         }
2030
2031         if (filt->range) {
2032                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2033                                filt->action, filt->addr, filt->size, at, fn);
2034         } else {
2035                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2036                                filt->action, filt->addr, at, fn);
2037         }
2038
2039         return err < 0 ? NULL : filter;
2040 }
2041
2042 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2043                              int max_nr)
2044 {
2045         struct addr_filters filts;
2046         struct addr_filter *filt;
2047         int err;
2048
2049         addr_filters__init(&filts);
2050
2051         err = addr_filters__parse_bare_filter(&filts, filter);
2052         if (err)
2053                 goto out_exit;
2054
2055         if (filts.cnt > max_nr) {
2056                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2057                        filts.cnt, max_nr);
2058                 err = -EINVAL;
2059                 goto out_exit;
2060         }
2061
2062         list_for_each_entry(filt, &filts.head, list) {
2063                 char *new_filter;
2064
2065                 err = addr_filter__resolve_syms(filt);
2066                 if (err)
2067                         goto out_exit;
2068
2069                 new_filter = addr_filter__to_str(filt);
2070                 if (!new_filter) {
2071                         err = -ENOMEM;
2072                         goto out_exit;
2073                 }
2074
2075                 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2076                         err = -ENOMEM;
2077                         goto out_exit;
2078                 }
2079         }
2080
2081 out_exit:
2082         addr_filters__exit(&filts);
2083
2084         if (err) {
2085                 pr_err("Failed to parse address filter: '%s'\n", filter);
2086                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2087                 pr_err("Where multiple filters are separated by space or comma.\n");
2088         }
2089
2090         return err;
2091 }
2092
2093 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2094 {
2095         struct perf_pmu *pmu = NULL;
2096
2097         while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2098                 if (pmu->type == evsel->attr.type)
2099                         break;
2100         }
2101
2102         return pmu;
2103 }
2104
2105 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2106 {
2107         struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2108         int nr_addr_filters = 0;
2109
2110         if (!pmu)
2111                 return 0;
2112
2113         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2114
2115         return nr_addr_filters;
2116 }
2117
2118 int auxtrace_parse_filters(struct perf_evlist *evlist)
2119 {
2120         struct perf_evsel *evsel;
2121         char *filter;
2122         int err, max_nr;
2123
2124         evlist__for_each_entry(evlist, evsel) {
2125                 filter = evsel->filter;
2126                 max_nr = perf_evsel__nr_addr_filter(evsel);
2127                 if (!filter || !max_nr)
2128                         continue;
2129                 evsel->filter = NULL;
2130                 err = parse_addr_filter(evsel, filter, max_nr);
2131                 free(filter);
2132                 if (err)
2133                         return err;
2134                 pr_debug("Address filter: %s\n", evsel->filter);
2135         }
2136
2137         return 0;
2138 }