GNU Linux-libre 4.14.290-gnu1
[releases.git] / virt / kvm / arm / arch_timer.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/uaccess.h>
25
26 #include <clocksource/arm_arch_timer.h>
27 #include <asm/arch_timer.h>
28 #include <asm/kvm_hyp.h>
29
30 #include <kvm/arm_vgic.h>
31 #include <kvm/arm_arch_timer.h>
32
33 #include "trace.h"
34
35 static struct timecounter *timecounter;
36 static unsigned int host_vtimer_irq;
37 static u32 host_vtimer_irq_flags;
38
39 static const struct kvm_irq_level default_ptimer_irq = {
40         .irq    = 30,
41         .level  = 1,
42 };
43
44 static const struct kvm_irq_level default_vtimer_irq = {
45         .irq    = 27,
46         .level  = 1,
47 };
48
49 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
50 {
51         vcpu_vtimer(vcpu)->active_cleared_last = false;
52 }
53
54 u64 kvm_phys_timer_read(void)
55 {
56         return timecounter->cc->read(timecounter->cc);
57 }
58
59 static bool timer_is_armed(struct arch_timer_cpu *timer)
60 {
61         return timer->armed;
62 }
63
64 /* timer_arm: as in "arm the timer", not as in ARM the company */
65 static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
66 {
67         timer->armed = true;
68         hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
69                       HRTIMER_MODE_ABS);
70 }
71
72 static void timer_disarm(struct arch_timer_cpu *timer)
73 {
74         if (timer_is_armed(timer)) {
75                 hrtimer_cancel(&timer->timer);
76                 cancel_work_sync(&timer->expired);
77                 timer->armed = false;
78         }
79 }
80
81 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
82 {
83         struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
84
85         /*
86          * We disable the timer in the world switch and let it be
87          * handled by kvm_timer_sync_hwstate(). Getting a timer
88          * interrupt at this point is a sure sign of some major
89          * breakage.
90          */
91         pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
92         return IRQ_HANDLED;
93 }
94
95 /*
96  * Work function for handling the backup timer that we schedule when a vcpu is
97  * no longer running, but had a timer programmed to fire in the future.
98  */
99 static void kvm_timer_inject_irq_work(struct work_struct *work)
100 {
101         struct kvm_vcpu *vcpu;
102
103         vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
104
105         /*
106          * If the vcpu is blocked we want to wake it up so that it will see
107          * the timer has expired when entering the guest.
108          */
109         kvm_vcpu_wake_up(vcpu);
110 }
111
112 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
113 {
114         u64 cval, now;
115
116         cval = timer_ctx->cnt_cval;
117         now = kvm_phys_timer_read() - timer_ctx->cntvoff;
118
119         if (now < cval) {
120                 u64 ns;
121
122                 ns = cyclecounter_cyc2ns(timecounter->cc,
123                                          cval - now,
124                                          timecounter->mask,
125                                          &timecounter->frac);
126                 return ns;
127         }
128
129         return 0;
130 }
131
132 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
133 {
134         return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
135                 (timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
136 }
137
138 /*
139  * Returns the earliest expiration time in ns among guest timers.
140  * Note that it will return 0 if none of timers can fire.
141  */
142 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
143 {
144         u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
145         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
146         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
147
148         if (kvm_timer_irq_can_fire(vtimer))
149                 min_virt = kvm_timer_compute_delta(vtimer);
150
151         if (kvm_timer_irq_can_fire(ptimer))
152                 min_phys = kvm_timer_compute_delta(ptimer);
153
154         /* If none of timers can fire, then return 0 */
155         if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
156                 return 0;
157
158         return min(min_virt, min_phys);
159 }
160
161 static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
162 {
163         struct arch_timer_cpu *timer;
164         struct kvm_vcpu *vcpu;
165         u64 ns;
166
167         timer = container_of(hrt, struct arch_timer_cpu, timer);
168         vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
169
170         /*
171          * Check that the timer has really expired from the guest's
172          * PoV (NTP on the host may have forced it to expire
173          * early). If we should have slept longer, restart it.
174          */
175         ns = kvm_timer_earliest_exp(vcpu);
176         if (unlikely(ns)) {
177                 hrtimer_forward_now(hrt, ns_to_ktime(ns));
178                 return HRTIMER_RESTART;
179         }
180
181         schedule_work(&timer->expired);
182         return HRTIMER_NORESTART;
183 }
184
185 bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
186 {
187         u64 cval, now;
188
189         if (!kvm_timer_irq_can_fire(timer_ctx))
190                 return false;
191
192         cval = timer_ctx->cnt_cval;
193         now = kvm_phys_timer_read() - timer_ctx->cntvoff;
194
195         return cval <= now;
196 }
197
198 /*
199  * Reflect the timer output level into the kvm_run structure
200  */
201 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
202 {
203         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
204         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
205         struct kvm_sync_regs *regs = &vcpu->run->s.regs;
206
207         /* Populate the device bitmap with the timer states */
208         regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
209                                     KVM_ARM_DEV_EL1_PTIMER);
210         if (vtimer->irq.level)
211                 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
212         if (ptimer->irq.level)
213                 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
214 }
215
216 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
217                                  struct arch_timer_context *timer_ctx)
218 {
219         int ret;
220
221         timer_ctx->active_cleared_last = false;
222         timer_ctx->irq.level = new_level;
223         trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
224                                    timer_ctx->irq.level);
225
226         if (likely(irqchip_in_kernel(vcpu->kvm))) {
227                 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
228                                           timer_ctx->irq.irq,
229                                           timer_ctx->irq.level,
230                                           timer_ctx);
231                 WARN_ON(ret);
232         }
233 }
234
235 /*
236  * Check if there was a change in the timer state (should we raise or lower
237  * the line level to the GIC).
238  */
239 static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
240 {
241         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
242         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
243         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
244
245         /*
246          * If userspace modified the timer registers via SET_ONE_REG before
247          * the vgic was initialized, we mustn't set the vtimer->irq.level value
248          * because the guest would never see the interrupt.  Instead wait
249          * until we call this function from kvm_timer_flush_hwstate.
250          */
251         if (unlikely(!timer->enabled))
252                 return;
253
254         if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
255                 kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
256
257         if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
258                 kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
259 }
260
261 /* Schedule the background timer for the emulated timer. */
262 static void kvm_timer_emulate(struct kvm_vcpu *vcpu,
263                               struct arch_timer_context *timer_ctx)
264 {
265         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
266
267         if (kvm_timer_should_fire(timer_ctx))
268                 return;
269
270         if (!kvm_timer_irq_can_fire(timer_ctx))
271                 return;
272
273         /*  The timer has not yet expired, schedule a background timer */
274         timer_arm(timer, kvm_timer_compute_delta(timer_ctx));
275 }
276
277 /*
278  * Schedule the background timer before calling kvm_vcpu_block, so that this
279  * thread is removed from its waitqueue and made runnable when there's a timer
280  * interrupt to handle.
281  */
282 void kvm_timer_schedule(struct kvm_vcpu *vcpu)
283 {
284         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
285         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
286         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
287
288         BUG_ON(timer_is_armed(timer));
289
290         /*
291          * No need to schedule a background timer if any guest timer has
292          * already expired, because kvm_vcpu_block will return before putting
293          * the thread to sleep.
294          */
295         if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
296                 return;
297
298         /*
299          * If both timers are not capable of raising interrupts (disabled or
300          * masked), then there's no more work for us to do.
301          */
302         if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
303                 return;
304
305         /*
306          * The guest timers have not yet expired, schedule a background timer.
307          * Set the earliest expiration time among the guest timers.
308          */
309         timer_arm(timer, kvm_timer_earliest_exp(vcpu));
310 }
311
312 void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
313 {
314         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
315         timer_disarm(timer);
316 }
317
318 static void kvm_timer_flush_hwstate_vgic(struct kvm_vcpu *vcpu)
319 {
320         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
321         bool phys_active;
322         int ret;
323
324         /*
325         * If we enter the guest with the virtual input level to the VGIC
326         * asserted, then we have already told the VGIC what we need to, and
327         * we don't need to exit from the guest until the guest deactivates
328         * the already injected interrupt, so therefore we should set the
329         * hardware active state to prevent unnecessary exits from the guest.
330         *
331         * Also, if we enter the guest with the virtual timer interrupt active,
332         * then it must be active on the physical distributor, because we set
333         * the HW bit and the guest must be able to deactivate the virtual and
334         * physical interrupt at the same time.
335         *
336         * Conversely, if the virtual input level is deasserted and the virtual
337         * interrupt is not active, then always clear the hardware active state
338         * to ensure that hardware interrupts from the timer triggers a guest
339         * exit.
340         */
341         phys_active = vtimer->irq.level ||
342                         kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
343
344         /*
345          * We want to avoid hitting the (re)distributor as much as
346          * possible, as this is a potentially expensive MMIO access
347          * (not to mention locks in the irq layer), and a solution for
348          * this is to cache the "active" state in memory.
349          *
350          * Things to consider: we cannot cache an "active set" state,
351          * because the HW can change this behind our back (it becomes
352          * "clear" in the HW). We must then restrict the caching to
353          * the "clear" state.
354          *
355          * The cache is invalidated on:
356          * - vcpu put, indicating that the HW cannot be trusted to be
357          *   in a sane state on the next vcpu load,
358          * - any change in the interrupt state
359          *
360          * Usage conditions:
361          * - cached value is "active clear"
362          * - value to be programmed is "active clear"
363          */
364         if (vtimer->active_cleared_last && !phys_active)
365                 return;
366
367         ret = irq_set_irqchip_state(host_vtimer_irq,
368                                     IRQCHIP_STATE_ACTIVE,
369                                     phys_active);
370         WARN_ON(ret);
371
372         vtimer->active_cleared_last = !phys_active;
373 }
374
375 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
376 {
377         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
378         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
379         struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
380         bool vlevel, plevel;
381
382         if (likely(irqchip_in_kernel(vcpu->kvm)))
383                 return false;
384
385         vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
386         plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
387
388         return vtimer->irq.level != vlevel ||
389                ptimer->irq.level != plevel;
390 }
391
392 static void kvm_timer_flush_hwstate_user(struct kvm_vcpu *vcpu)
393 {
394         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
395
396         /*
397          * To prevent continuously exiting from the guest, we mask the
398          * physical interrupt such that the guest can make forward progress.
399          * Once we detect the output level being deasserted, we unmask the
400          * interrupt again so that we exit from the guest when the timer
401          * fires.
402         */
403         if (vtimer->irq.level)
404                 disable_percpu_irq(host_vtimer_irq);
405         else
406                 enable_percpu_irq(host_vtimer_irq, 0);
407 }
408
409 /**
410  * kvm_timer_flush_hwstate - prepare timers before running the vcpu
411  * @vcpu: The vcpu pointer
412  *
413  * Check if the virtual timer has expired while we were running in the host,
414  * and inject an interrupt if that was the case, making sure the timer is
415  * masked or disabled on the host so that we keep executing.  Also schedule a
416  * software timer for the physical timer if it is enabled.
417  */
418 void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
419 {
420         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
421
422         if (unlikely(!timer->enabled))
423                 return;
424
425         kvm_timer_update_state(vcpu);
426
427         /* Set the background timer for the physical timer emulation. */
428         kvm_timer_emulate(vcpu, vcpu_ptimer(vcpu));
429
430         if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
431                 kvm_timer_flush_hwstate_user(vcpu);
432         else
433                 kvm_timer_flush_hwstate_vgic(vcpu);
434 }
435
436 /**
437  * kvm_timer_sync_hwstate - sync timer state from cpu
438  * @vcpu: The vcpu pointer
439  *
440  * Check if any of the timers have expired while we were running in the guest,
441  * and inject an interrupt if that was the case.
442  */
443 void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
444 {
445         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
446
447         /*
448          * This is to cancel the background timer for the physical timer
449          * emulation if it is set.
450          */
451         timer_disarm(timer);
452
453         /*
454          * The guest could have modified the timer registers or the timer
455          * could have expired, update the timer state.
456          */
457         kvm_timer_update_state(vcpu);
458 }
459
460 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
461 {
462         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
463         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
464
465         /*
466          * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
467          * and to 0 for ARMv7.  We provide an implementation that always
468          * resets the timer to be disabled and unmasked and is compliant with
469          * the ARMv7 architecture.
470          */
471         vtimer->cnt_ctl = 0;
472         ptimer->cnt_ctl = 0;
473         kvm_timer_update_state(vcpu);
474
475         return 0;
476 }
477
478 /* Make the updates of cntvoff for all vtimer contexts atomic */
479 static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
480 {
481         int i;
482         struct kvm *kvm = vcpu->kvm;
483         struct kvm_vcpu *tmp;
484
485         mutex_lock(&kvm->lock);
486         kvm_for_each_vcpu(i, tmp, kvm)
487                 vcpu_vtimer(tmp)->cntvoff = cntvoff;
488
489         /*
490          * When called from the vcpu create path, the CPU being created is not
491          * included in the loop above, so we just set it here as well.
492          */
493         vcpu_vtimer(vcpu)->cntvoff = cntvoff;
494         mutex_unlock(&kvm->lock);
495 }
496
497 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
498 {
499         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
500         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
501         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
502
503         /* Synchronize cntvoff across all vtimers of a VM. */
504         update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
505         vcpu_ptimer(vcpu)->cntvoff = 0;
506
507         INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
508         hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
509         timer->timer.function = kvm_timer_expire;
510
511         vtimer->irq.irq = default_vtimer_irq.irq;
512         ptimer->irq.irq = default_ptimer_irq.irq;
513 }
514
515 static void kvm_timer_init_interrupt(void *info)
516 {
517         enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
518 }
519
520 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
521 {
522         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
523
524         switch (regid) {
525         case KVM_REG_ARM_TIMER_CTL:
526                 vtimer->cnt_ctl = value;
527                 break;
528         case KVM_REG_ARM_TIMER_CNT:
529                 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
530                 break;
531         case KVM_REG_ARM_TIMER_CVAL:
532                 vtimer->cnt_cval = value;
533                 break;
534         default:
535                 return -1;
536         }
537
538         kvm_timer_update_state(vcpu);
539         return 0;
540 }
541
542 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
543 {
544         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
545
546         switch (regid) {
547         case KVM_REG_ARM_TIMER_CTL:
548                 return vtimer->cnt_ctl;
549         case KVM_REG_ARM_TIMER_CNT:
550                 return kvm_phys_timer_read() - vtimer->cntvoff;
551         case KVM_REG_ARM_TIMER_CVAL:
552                 return vtimer->cnt_cval;
553         }
554         return (u64)-1;
555 }
556
557 static int kvm_timer_starting_cpu(unsigned int cpu)
558 {
559         kvm_timer_init_interrupt(NULL);
560         return 0;
561 }
562
563 static int kvm_timer_dying_cpu(unsigned int cpu)
564 {
565         disable_percpu_irq(host_vtimer_irq);
566         return 0;
567 }
568
569 int kvm_timer_hyp_init(void)
570 {
571         struct arch_timer_kvm_info *info;
572         int err;
573
574         info = arch_timer_get_kvm_info();
575         timecounter = &info->timecounter;
576
577         if (!timecounter->cc) {
578                 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
579                 return -ENODEV;
580         }
581
582         if (info->virtual_irq <= 0) {
583                 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
584                         info->virtual_irq);
585                 return -ENODEV;
586         }
587         host_vtimer_irq = info->virtual_irq;
588
589         host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
590         if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
591             host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
592                 kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
593                         host_vtimer_irq);
594                 host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
595         }
596
597         err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
598                                  "kvm guest timer", kvm_get_running_vcpus());
599         if (err) {
600                 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
601                         host_vtimer_irq, err);
602                 return err;
603         }
604
605         kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
606
607         cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
608                           "kvm/arm/timer:starting", kvm_timer_starting_cpu,
609                           kvm_timer_dying_cpu);
610         return err;
611 }
612
613 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
614 {
615         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
616         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
617
618         timer_disarm(timer);
619         kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
620 }
621
622 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
623 {
624         int vtimer_irq, ptimer_irq;
625         int i, ret;
626
627         vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
628         ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
629         if (ret)
630                 return false;
631
632         ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
633         ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
634         if (ret)
635                 return false;
636
637         kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
638                 if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
639                     vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
640                         return false;
641         }
642
643         return true;
644 }
645
646 int kvm_timer_enable(struct kvm_vcpu *vcpu)
647 {
648         struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
649         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
650         struct irq_desc *desc;
651         struct irq_data *data;
652         int phys_irq;
653         int ret;
654
655         if (timer->enabled)
656                 return 0;
657
658         /* Without a VGIC we do not map virtual IRQs to physical IRQs */
659         if (!irqchip_in_kernel(vcpu->kvm))
660                 goto no_vgic;
661
662         if (!vgic_initialized(vcpu->kvm))
663                 return -ENODEV;
664
665         if (!timer_irqs_are_valid(vcpu)) {
666                 kvm_debug("incorrectly configured timer irqs\n");
667                 return -EINVAL;
668         }
669
670         /*
671          * Find the physical IRQ number corresponding to the host_vtimer_irq
672          */
673         desc = irq_to_desc(host_vtimer_irq);
674         if (!desc) {
675                 kvm_err("%s: no interrupt descriptor\n", __func__);
676                 return -EINVAL;
677         }
678
679         data = irq_desc_get_irq_data(desc);
680         while (data->parent_data)
681                 data = data->parent_data;
682
683         phys_irq = data->hwirq;
684
685         /*
686          * Tell the VGIC that the virtual interrupt is tied to a
687          * physical interrupt. We do that once per VCPU.
688          */
689         ret = kvm_vgic_map_phys_irq(vcpu, vtimer->irq.irq, phys_irq);
690         if (ret)
691                 return ret;
692
693 no_vgic:
694         timer->enabled = 1;
695         return 0;
696 }
697
698 /*
699  * On VHE system, we only need to configure trap on physical timer and counter
700  * accesses in EL0 and EL1 once, not for every world switch.
701  * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
702  * and this makes those bits have no effect for the host kernel execution.
703  */
704 void kvm_timer_init_vhe(void)
705 {
706         /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
707         u32 cnthctl_shift = 10;
708         u64 val;
709
710         /*
711          * Disallow physical timer access for the guest.
712          * Physical counter access is allowed.
713          */
714         val = read_sysreg(cnthctl_el2);
715         val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
716         val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
717         write_sysreg(val, cnthctl_el2);
718 }
719
720 static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
721 {
722         struct kvm_vcpu *vcpu;
723         int i;
724
725         kvm_for_each_vcpu(i, vcpu, kvm) {
726                 vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
727                 vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
728         }
729 }
730
731 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
732 {
733         int __user *uaddr = (int __user *)(long)attr->addr;
734         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
735         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
736         int irq;
737
738         if (!irqchip_in_kernel(vcpu->kvm))
739                 return -EINVAL;
740
741         if (get_user(irq, uaddr))
742                 return -EFAULT;
743
744         if (!(irq_is_ppi(irq)))
745                 return -EINVAL;
746
747         if (vcpu->arch.timer_cpu.enabled)
748                 return -EBUSY;
749
750         switch (attr->attr) {
751         case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
752                 set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
753                 break;
754         case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
755                 set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
756                 break;
757         default:
758                 return -ENXIO;
759         }
760
761         return 0;
762 }
763
764 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
765 {
766         int __user *uaddr = (int __user *)(long)attr->addr;
767         struct arch_timer_context *timer;
768         int irq;
769
770         switch (attr->attr) {
771         case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
772                 timer = vcpu_vtimer(vcpu);
773                 break;
774         case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
775                 timer = vcpu_ptimer(vcpu);
776                 break;
777         default:
778                 return -ENXIO;
779         }
780
781         irq = timer->irq.irq;
782         return put_user(irq, uaddr);
783 }
784
785 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
786 {
787         switch (attr->attr) {
788         case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
789         case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
790                 return 0;
791         }
792
793         return -ENXIO;
794 }