GNU Linux-libre 4.14.290-gnu1
[releases.git] / virt / kvm / arm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/virt.h>
33 #include <asm/system_misc.h>
34
35 #include "trace.h"
36
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45
46 #define S2_PGD_SIZE     (PTRS_PER_S2_PGD * sizeof(pgd_t))
47 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
48
49 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
50 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
51
52 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
53 {
54         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
55 }
56
57 /**
58  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
59  * @kvm:        pointer to kvm structure.
60  *
61  * Interface to HYP function to flush all VM TLB entries
62  */
63 void kvm_flush_remote_tlbs(struct kvm *kvm)
64 {
65         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
66 }
67
68 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
69 {
70         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
71 }
72
73 /*
74  * D-Cache management functions. They take the page table entries by
75  * value, as they are flushing the cache using the kernel mapping (or
76  * kmap on 32bit).
77  */
78 static void kvm_flush_dcache_pte(pte_t pte)
79 {
80         __kvm_flush_dcache_pte(pte);
81 }
82
83 static void kvm_flush_dcache_pmd(pmd_t pmd)
84 {
85         __kvm_flush_dcache_pmd(pmd);
86 }
87
88 static void kvm_flush_dcache_pud(pud_t pud)
89 {
90         __kvm_flush_dcache_pud(pud);
91 }
92
93 static bool kvm_is_device_pfn(unsigned long pfn)
94 {
95         return !pfn_valid(pfn);
96 }
97
98 /**
99  * stage2_dissolve_pmd() - clear and flush huge PMD entry
100  * @kvm:        pointer to kvm structure.
101  * @addr:       IPA
102  * @pmd:        pmd pointer for IPA
103  *
104  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
105  * pages in the range dirty.
106  */
107 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
108 {
109         if (!pmd_thp_or_huge(*pmd))
110                 return;
111
112         pmd_clear(pmd);
113         kvm_tlb_flush_vmid_ipa(kvm, addr);
114         put_page(virt_to_page(pmd));
115 }
116
117 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
118                                   int min, int max)
119 {
120         void *page;
121
122         BUG_ON(max > KVM_NR_MEM_OBJS);
123         if (cache->nobjs >= min)
124                 return 0;
125         while (cache->nobjs < max) {
126                 page = (void *)__get_free_page(PGALLOC_GFP);
127                 if (!page)
128                         return -ENOMEM;
129                 cache->objects[cache->nobjs++] = page;
130         }
131         return 0;
132 }
133
134 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
135 {
136         while (mc->nobjs)
137                 free_page((unsigned long)mc->objects[--mc->nobjs]);
138 }
139
140 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
141 {
142         void *p;
143
144         BUG_ON(!mc || !mc->nobjs);
145         p = mc->objects[--mc->nobjs];
146         return p;
147 }
148
149 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
150 {
151         pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
152         stage2_pgd_clear(pgd);
153         kvm_tlb_flush_vmid_ipa(kvm, addr);
154         stage2_pud_free(pud_table);
155         put_page(virt_to_page(pgd));
156 }
157
158 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
159 {
160         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
161         VM_BUG_ON(stage2_pud_huge(*pud));
162         stage2_pud_clear(pud);
163         kvm_tlb_flush_vmid_ipa(kvm, addr);
164         stage2_pmd_free(pmd_table);
165         put_page(virt_to_page(pud));
166 }
167
168 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
169 {
170         pte_t *pte_table = pte_offset_kernel(pmd, 0);
171         VM_BUG_ON(pmd_thp_or_huge(*pmd));
172         pmd_clear(pmd);
173         kvm_tlb_flush_vmid_ipa(kvm, addr);
174         pte_free_kernel(NULL, pte_table);
175         put_page(virt_to_page(pmd));
176 }
177
178 /*
179  * Unmapping vs dcache management:
180  *
181  * If a guest maps certain memory pages as uncached, all writes will
182  * bypass the data cache and go directly to RAM.  However, the CPUs
183  * can still speculate reads (not writes) and fill cache lines with
184  * data.
185  *
186  * Those cache lines will be *clean* cache lines though, so a
187  * clean+invalidate operation is equivalent to an invalidate
188  * operation, because no cache lines are marked dirty.
189  *
190  * Those clean cache lines could be filled prior to an uncached write
191  * by the guest, and the cache coherent IO subsystem would therefore
192  * end up writing old data to disk.
193  *
194  * This is why right after unmapping a page/section and invalidating
195  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
196  * the IO subsystem will never hit in the cache.
197  */
198 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
199                        phys_addr_t addr, phys_addr_t end)
200 {
201         phys_addr_t start_addr = addr;
202         pte_t *pte, *start_pte;
203
204         start_pte = pte = pte_offset_kernel(pmd, addr);
205         do {
206                 if (!pte_none(*pte)) {
207                         pte_t old_pte = *pte;
208
209                         kvm_set_pte(pte, __pte(0));
210                         kvm_tlb_flush_vmid_ipa(kvm, addr);
211
212                         /* No need to invalidate the cache for device mappings */
213                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
214                                 kvm_flush_dcache_pte(old_pte);
215
216                         put_page(virt_to_page(pte));
217                 }
218         } while (pte++, addr += PAGE_SIZE, addr != end);
219
220         if (stage2_pte_table_empty(start_pte))
221                 clear_stage2_pmd_entry(kvm, pmd, start_addr);
222 }
223
224 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
225                        phys_addr_t addr, phys_addr_t end)
226 {
227         phys_addr_t next, start_addr = addr;
228         pmd_t *pmd, *start_pmd;
229
230         start_pmd = pmd = stage2_pmd_offset(pud, addr);
231         do {
232                 next = stage2_pmd_addr_end(addr, end);
233                 if (!pmd_none(*pmd)) {
234                         if (pmd_thp_or_huge(*pmd)) {
235                                 pmd_t old_pmd = *pmd;
236
237                                 pmd_clear(pmd);
238                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
239
240                                 kvm_flush_dcache_pmd(old_pmd);
241
242                                 put_page(virt_to_page(pmd));
243                         } else {
244                                 unmap_stage2_ptes(kvm, pmd, addr, next);
245                         }
246                 }
247         } while (pmd++, addr = next, addr != end);
248
249         if (stage2_pmd_table_empty(start_pmd))
250                 clear_stage2_pud_entry(kvm, pud, start_addr);
251 }
252
253 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
254                        phys_addr_t addr, phys_addr_t end)
255 {
256         phys_addr_t next, start_addr = addr;
257         pud_t *pud, *start_pud;
258
259         start_pud = pud = stage2_pud_offset(pgd, addr);
260         do {
261                 next = stage2_pud_addr_end(addr, end);
262                 if (!stage2_pud_none(*pud)) {
263                         if (stage2_pud_huge(*pud)) {
264                                 pud_t old_pud = *pud;
265
266                                 stage2_pud_clear(pud);
267                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
268                                 kvm_flush_dcache_pud(old_pud);
269                                 put_page(virt_to_page(pud));
270                         } else {
271                                 unmap_stage2_pmds(kvm, pud, addr, next);
272                         }
273                 }
274         } while (pud++, addr = next, addr != end);
275
276         if (stage2_pud_table_empty(start_pud))
277                 clear_stage2_pgd_entry(kvm, pgd, start_addr);
278 }
279
280 /**
281  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
282  * @kvm:   The VM pointer
283  * @start: The intermediate physical base address of the range to unmap
284  * @size:  The size of the area to unmap
285  *
286  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
287  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
288  * destroying the VM), otherwise another faulting VCPU may come in and mess
289  * with things behind our backs.
290  */
291 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
292 {
293         pgd_t *pgd;
294         phys_addr_t addr = start, end = start + size;
295         phys_addr_t next;
296
297         assert_spin_locked(&kvm->mmu_lock);
298         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
299         do {
300                 /*
301                  * Make sure the page table is still active, as another thread
302                  * could have possibly freed the page table, while we released
303                  * the lock.
304                  */
305                 if (!READ_ONCE(kvm->arch.pgd))
306                         break;
307                 next = stage2_pgd_addr_end(addr, end);
308                 if (!stage2_pgd_none(*pgd))
309                         unmap_stage2_puds(kvm, pgd, addr, next);
310         } while (pgd++, addr = next, addr != end);
311 }
312
313 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
314                               phys_addr_t addr, phys_addr_t end)
315 {
316         pte_t *pte;
317
318         pte = pte_offset_kernel(pmd, addr);
319         do {
320                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
321                         kvm_flush_dcache_pte(*pte);
322         } while (pte++, addr += PAGE_SIZE, addr != end);
323 }
324
325 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
326                               phys_addr_t addr, phys_addr_t end)
327 {
328         pmd_t *pmd;
329         phys_addr_t next;
330
331         pmd = stage2_pmd_offset(pud, addr);
332         do {
333                 next = stage2_pmd_addr_end(addr, end);
334                 if (!pmd_none(*pmd)) {
335                         if (pmd_thp_or_huge(*pmd))
336                                 kvm_flush_dcache_pmd(*pmd);
337                         else
338                                 stage2_flush_ptes(kvm, pmd, addr, next);
339                 }
340         } while (pmd++, addr = next, addr != end);
341 }
342
343 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
344                               phys_addr_t addr, phys_addr_t end)
345 {
346         pud_t *pud;
347         phys_addr_t next;
348
349         pud = stage2_pud_offset(pgd, addr);
350         do {
351                 next = stage2_pud_addr_end(addr, end);
352                 if (!stage2_pud_none(*pud)) {
353                         if (stage2_pud_huge(*pud))
354                                 kvm_flush_dcache_pud(*pud);
355                         else
356                                 stage2_flush_pmds(kvm, pud, addr, next);
357                 }
358         } while (pud++, addr = next, addr != end);
359 }
360
361 static void stage2_flush_memslot(struct kvm *kvm,
362                                  struct kvm_memory_slot *memslot)
363 {
364         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
365         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
366         phys_addr_t next;
367         pgd_t *pgd;
368
369         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
370         do {
371                 next = stage2_pgd_addr_end(addr, end);
372                 if (!stage2_pgd_none(*pgd))
373                         stage2_flush_puds(kvm, pgd, addr, next);
374         } while (pgd++, addr = next, addr != end);
375 }
376
377 /**
378  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
379  * @kvm: The struct kvm pointer
380  *
381  * Go through the stage 2 page tables and invalidate any cache lines
382  * backing memory already mapped to the VM.
383  */
384 static void stage2_flush_vm(struct kvm *kvm)
385 {
386         struct kvm_memslots *slots;
387         struct kvm_memory_slot *memslot;
388         int idx;
389
390         idx = srcu_read_lock(&kvm->srcu);
391         spin_lock(&kvm->mmu_lock);
392
393         slots = kvm_memslots(kvm);
394         kvm_for_each_memslot(memslot, slots)
395                 stage2_flush_memslot(kvm, memslot);
396
397         spin_unlock(&kvm->mmu_lock);
398         srcu_read_unlock(&kvm->srcu, idx);
399 }
400
401 static void clear_hyp_pgd_entry(pgd_t *pgd)
402 {
403         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
404         pgd_clear(pgd);
405         pud_free(NULL, pud_table);
406         put_page(virt_to_page(pgd));
407 }
408
409 static void clear_hyp_pud_entry(pud_t *pud)
410 {
411         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
412         VM_BUG_ON(pud_huge(*pud));
413         pud_clear(pud);
414         pmd_free(NULL, pmd_table);
415         put_page(virt_to_page(pud));
416 }
417
418 static void clear_hyp_pmd_entry(pmd_t *pmd)
419 {
420         pte_t *pte_table = pte_offset_kernel(pmd, 0);
421         VM_BUG_ON(pmd_thp_or_huge(*pmd));
422         pmd_clear(pmd);
423         pte_free_kernel(NULL, pte_table);
424         put_page(virt_to_page(pmd));
425 }
426
427 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
428 {
429         pte_t *pte, *start_pte;
430
431         start_pte = pte = pte_offset_kernel(pmd, addr);
432         do {
433                 if (!pte_none(*pte)) {
434                         kvm_set_pte(pte, __pte(0));
435                         put_page(virt_to_page(pte));
436                 }
437         } while (pte++, addr += PAGE_SIZE, addr != end);
438
439         if (hyp_pte_table_empty(start_pte))
440                 clear_hyp_pmd_entry(pmd);
441 }
442
443 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
444 {
445         phys_addr_t next;
446         pmd_t *pmd, *start_pmd;
447
448         start_pmd = pmd = pmd_offset(pud, addr);
449         do {
450                 next = pmd_addr_end(addr, end);
451                 /* Hyp doesn't use huge pmds */
452                 if (!pmd_none(*pmd))
453                         unmap_hyp_ptes(pmd, addr, next);
454         } while (pmd++, addr = next, addr != end);
455
456         if (hyp_pmd_table_empty(start_pmd))
457                 clear_hyp_pud_entry(pud);
458 }
459
460 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
461 {
462         phys_addr_t next;
463         pud_t *pud, *start_pud;
464
465         start_pud = pud = pud_offset(pgd, addr);
466         do {
467                 next = pud_addr_end(addr, end);
468                 /* Hyp doesn't use huge puds */
469                 if (!pud_none(*pud))
470                         unmap_hyp_pmds(pud, addr, next);
471         } while (pud++, addr = next, addr != end);
472
473         if (hyp_pud_table_empty(start_pud))
474                 clear_hyp_pgd_entry(pgd);
475 }
476
477 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
478 {
479         pgd_t *pgd;
480         phys_addr_t addr = start, end = start + size;
481         phys_addr_t next;
482
483         /*
484          * We don't unmap anything from HYP, except at the hyp tear down.
485          * Hence, we don't have to invalidate the TLBs here.
486          */
487         pgd = pgdp + pgd_index(addr);
488         do {
489                 next = pgd_addr_end(addr, end);
490                 if (!pgd_none(*pgd))
491                         unmap_hyp_puds(pgd, addr, next);
492         } while (pgd++, addr = next, addr != end);
493 }
494
495 /**
496  * free_hyp_pgds - free Hyp-mode page tables
497  *
498  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
499  * therefore contains either mappings in the kernel memory area (above
500  * PAGE_OFFSET), or device mappings in the vmalloc range (from
501  * VMALLOC_START to VMALLOC_END).
502  *
503  * boot_hyp_pgd should only map two pages for the init code.
504  */
505 void free_hyp_pgds(void)
506 {
507         mutex_lock(&kvm_hyp_pgd_mutex);
508
509         if (boot_hyp_pgd) {
510                 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
511                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
512                 boot_hyp_pgd = NULL;
513         }
514
515         if (hyp_pgd) {
516                 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
517                 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
518                                 (uintptr_t)high_memory - PAGE_OFFSET);
519                 unmap_hyp_range(hyp_pgd, kern_hyp_va(VMALLOC_START),
520                                 VMALLOC_END - VMALLOC_START);
521
522                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
523                 hyp_pgd = NULL;
524         }
525         if (merged_hyp_pgd) {
526                 clear_page(merged_hyp_pgd);
527                 free_page((unsigned long)merged_hyp_pgd);
528                 merged_hyp_pgd = NULL;
529         }
530
531         mutex_unlock(&kvm_hyp_pgd_mutex);
532 }
533
534 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
535                                     unsigned long end, unsigned long pfn,
536                                     pgprot_t prot)
537 {
538         pte_t *pte;
539         unsigned long addr;
540
541         addr = start;
542         do {
543                 pte = pte_offset_kernel(pmd, addr);
544                 kvm_set_pte(pte, pfn_pte(pfn, prot));
545                 get_page(virt_to_page(pte));
546                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
547                 pfn++;
548         } while (addr += PAGE_SIZE, addr != end);
549 }
550
551 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
552                                    unsigned long end, unsigned long pfn,
553                                    pgprot_t prot)
554 {
555         pmd_t *pmd;
556         pte_t *pte;
557         unsigned long addr, next;
558
559         addr = start;
560         do {
561                 pmd = pmd_offset(pud, addr);
562
563                 BUG_ON(pmd_sect(*pmd));
564
565                 if (pmd_none(*pmd)) {
566                         pte = pte_alloc_one_kernel(NULL, addr);
567                         if (!pte) {
568                                 kvm_err("Cannot allocate Hyp pte\n");
569                                 return -ENOMEM;
570                         }
571                         pmd_populate_kernel(NULL, pmd, pte);
572                         get_page(virt_to_page(pmd));
573                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
574                 }
575
576                 next = pmd_addr_end(addr, end);
577
578                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
579                 pfn += (next - addr) >> PAGE_SHIFT;
580         } while (addr = next, addr != end);
581
582         return 0;
583 }
584
585 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
586                                    unsigned long end, unsigned long pfn,
587                                    pgprot_t prot)
588 {
589         pud_t *pud;
590         pmd_t *pmd;
591         unsigned long addr, next;
592         int ret;
593
594         addr = start;
595         do {
596                 pud = pud_offset(pgd, addr);
597
598                 if (pud_none_or_clear_bad(pud)) {
599                         pmd = pmd_alloc_one(NULL, addr);
600                         if (!pmd) {
601                                 kvm_err("Cannot allocate Hyp pmd\n");
602                                 return -ENOMEM;
603                         }
604                         pud_populate(NULL, pud, pmd);
605                         get_page(virt_to_page(pud));
606                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
607                 }
608
609                 next = pud_addr_end(addr, end);
610                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
611                 if (ret)
612                         return ret;
613                 pfn += (next - addr) >> PAGE_SHIFT;
614         } while (addr = next, addr != end);
615
616         return 0;
617 }
618
619 static int __create_hyp_mappings(pgd_t *pgdp,
620                                  unsigned long start, unsigned long end,
621                                  unsigned long pfn, pgprot_t prot)
622 {
623         pgd_t *pgd;
624         pud_t *pud;
625         unsigned long addr, next;
626         int err = 0;
627
628         mutex_lock(&kvm_hyp_pgd_mutex);
629         addr = start & PAGE_MASK;
630         end = PAGE_ALIGN(end);
631         do {
632                 pgd = pgdp + pgd_index(addr);
633
634                 if (pgd_none(*pgd)) {
635                         pud = pud_alloc_one(NULL, addr);
636                         if (!pud) {
637                                 kvm_err("Cannot allocate Hyp pud\n");
638                                 err = -ENOMEM;
639                                 goto out;
640                         }
641                         pgd_populate(NULL, pgd, pud);
642                         get_page(virt_to_page(pgd));
643                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
644                 }
645
646                 next = pgd_addr_end(addr, end);
647                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
648                 if (err)
649                         goto out;
650                 pfn += (next - addr) >> PAGE_SHIFT;
651         } while (addr = next, addr != end);
652 out:
653         mutex_unlock(&kvm_hyp_pgd_mutex);
654         return err;
655 }
656
657 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
658 {
659         if (!is_vmalloc_addr(kaddr)) {
660                 BUG_ON(!virt_addr_valid(kaddr));
661                 return __pa(kaddr);
662         } else {
663                 return page_to_phys(vmalloc_to_page(kaddr)) +
664                        offset_in_page(kaddr);
665         }
666 }
667
668 /**
669  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
670  * @from:       The virtual kernel start address of the range
671  * @to:         The virtual kernel end address of the range (exclusive)
672  * @prot:       The protection to be applied to this range
673  *
674  * The same virtual address as the kernel virtual address is also used
675  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
676  * physical pages.
677  */
678 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
679 {
680         phys_addr_t phys_addr;
681         unsigned long virt_addr;
682         unsigned long start = kern_hyp_va((unsigned long)from);
683         unsigned long end = kern_hyp_va((unsigned long)to);
684
685         if (is_kernel_in_hyp_mode())
686                 return 0;
687
688         start = start & PAGE_MASK;
689         end = PAGE_ALIGN(end);
690
691         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
692                 int err;
693
694                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
695                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
696                                             virt_addr + PAGE_SIZE,
697                                             __phys_to_pfn(phys_addr),
698                                             prot);
699                 if (err)
700                         return err;
701         }
702
703         return 0;
704 }
705
706 /**
707  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
708  * @from:       The kernel start VA of the range
709  * @to:         The kernel end VA of the range (exclusive)
710  * @phys_addr:  The physical start address which gets mapped
711  *
712  * The resulting HYP VA is the same as the kernel VA, modulo
713  * HYP_PAGE_OFFSET.
714  */
715 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
716 {
717         unsigned long start = kern_hyp_va((unsigned long)from);
718         unsigned long end = kern_hyp_va((unsigned long)to);
719
720         if (is_kernel_in_hyp_mode())
721                 return 0;
722
723         /* Check for a valid kernel IO mapping */
724         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
725                 return -EINVAL;
726
727         return __create_hyp_mappings(hyp_pgd, start, end,
728                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
729 }
730
731 /**
732  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
733  * @kvm:        The KVM struct pointer for the VM.
734  *
735  * Allocates only the stage-2 HW PGD level table(s) (can support either full
736  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
737  * allocated pages.
738  *
739  * Note we don't need locking here as this is only called when the VM is
740  * created, which can only be done once.
741  */
742 int kvm_alloc_stage2_pgd(struct kvm *kvm)
743 {
744         pgd_t *pgd;
745
746         if (kvm->arch.pgd != NULL) {
747                 kvm_err("kvm_arch already initialized?\n");
748                 return -EINVAL;
749         }
750
751         /* Allocate the HW PGD, making sure that each page gets its own refcount */
752         pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
753         if (!pgd)
754                 return -ENOMEM;
755
756         kvm->arch.pgd = pgd;
757         return 0;
758 }
759
760 static void stage2_unmap_memslot(struct kvm *kvm,
761                                  struct kvm_memory_slot *memslot)
762 {
763         hva_t hva = memslot->userspace_addr;
764         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
765         phys_addr_t size = PAGE_SIZE * memslot->npages;
766         hva_t reg_end = hva + size;
767
768         /*
769          * A memory region could potentially cover multiple VMAs, and any holes
770          * between them, so iterate over all of them to find out if we should
771          * unmap any of them.
772          *
773          *     +--------------------------------------------+
774          * +---------------+----------------+   +----------------+
775          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
776          * +---------------+----------------+   +----------------+
777          *     |               memory region                |
778          *     +--------------------------------------------+
779          */
780         do {
781                 struct vm_area_struct *vma = find_vma(current->mm, hva);
782                 hva_t vm_start, vm_end;
783
784                 if (!vma || vma->vm_start >= reg_end)
785                         break;
786
787                 /*
788                  * Take the intersection of this VMA with the memory region
789                  */
790                 vm_start = max(hva, vma->vm_start);
791                 vm_end = min(reg_end, vma->vm_end);
792
793                 if (!(vma->vm_flags & VM_PFNMAP)) {
794                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
795                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
796                 }
797                 hva = vm_end;
798         } while (hva < reg_end);
799 }
800
801 /**
802  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
803  * @kvm: The struct kvm pointer
804  *
805  * Go through the memregions and unmap any reguler RAM
806  * backing memory already mapped to the VM.
807  */
808 void stage2_unmap_vm(struct kvm *kvm)
809 {
810         struct kvm_memslots *slots;
811         struct kvm_memory_slot *memslot;
812         int idx;
813
814         idx = srcu_read_lock(&kvm->srcu);
815         down_read(&current->mm->mmap_sem);
816         spin_lock(&kvm->mmu_lock);
817
818         slots = kvm_memslots(kvm);
819         kvm_for_each_memslot(memslot, slots)
820                 stage2_unmap_memslot(kvm, memslot);
821
822         spin_unlock(&kvm->mmu_lock);
823         up_read(&current->mm->mmap_sem);
824         srcu_read_unlock(&kvm->srcu, idx);
825 }
826
827 /**
828  * kvm_free_stage2_pgd - free all stage-2 tables
829  * @kvm:        The KVM struct pointer for the VM.
830  *
831  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
832  * underlying level-2 and level-3 tables before freeing the actual level-1 table
833  * and setting the struct pointer to NULL.
834  */
835 void kvm_free_stage2_pgd(struct kvm *kvm)
836 {
837         void *pgd = NULL;
838
839         spin_lock(&kvm->mmu_lock);
840         if (kvm->arch.pgd) {
841                 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
842                 pgd = READ_ONCE(kvm->arch.pgd);
843                 kvm->arch.pgd = NULL;
844         }
845         spin_unlock(&kvm->mmu_lock);
846
847         /* Free the HW pgd, one page at a time */
848         if (pgd)
849                 free_pages_exact(pgd, S2_PGD_SIZE);
850 }
851
852 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
853                              phys_addr_t addr)
854 {
855         pgd_t *pgd;
856         pud_t *pud;
857
858         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
859         if (WARN_ON(stage2_pgd_none(*pgd))) {
860                 if (!cache)
861                         return NULL;
862                 pud = mmu_memory_cache_alloc(cache);
863                 stage2_pgd_populate(pgd, pud);
864                 get_page(virt_to_page(pgd));
865         }
866
867         return stage2_pud_offset(pgd, addr);
868 }
869
870 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
871                              phys_addr_t addr)
872 {
873         pud_t *pud;
874         pmd_t *pmd;
875
876         pud = stage2_get_pud(kvm, cache, addr);
877         if (!pud)
878                 return NULL;
879
880         if (stage2_pud_none(*pud)) {
881                 if (!cache)
882                         return NULL;
883                 pmd = mmu_memory_cache_alloc(cache);
884                 stage2_pud_populate(pud, pmd);
885                 get_page(virt_to_page(pud));
886         }
887
888         return stage2_pmd_offset(pud, addr);
889 }
890
891 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
892                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
893 {
894         pmd_t *pmd, old_pmd;
895
896         pmd = stage2_get_pmd(kvm, cache, addr);
897         VM_BUG_ON(!pmd);
898
899         old_pmd = *pmd;
900         if (pmd_present(old_pmd)) {
901                 /*
902                  * Multiple vcpus faulting on the same PMD entry, can
903                  * lead to them sequentially updating the PMD with the
904                  * same value. Following the break-before-make
905                  * (pmd_clear() followed by tlb_flush()) process can
906                  * hinder forward progress due to refaults generated
907                  * on missing translations.
908                  *
909                  * Skip updating the page table if the entry is
910                  * unchanged.
911                  */
912                 if (pmd_val(old_pmd) == pmd_val(*new_pmd))
913                         return 0;
914
915                 /*
916                  * Mapping in huge pages should only happen through a
917                  * fault.  If a page is merged into a transparent huge
918                  * page, the individual subpages of that huge page
919                  * should be unmapped through MMU notifiers before we
920                  * get here.
921                  *
922                  * Merging of CompoundPages is not supported; they
923                  * should become splitting first, unmapped, merged,
924                  * and mapped back in on-demand.
925                  */
926                 VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
927
928                 pmd_clear(pmd);
929                 kvm_tlb_flush_vmid_ipa(kvm, addr);
930         } else {
931                 get_page(virt_to_page(pmd));
932         }
933
934         kvm_set_pmd(pmd, *new_pmd);
935         return 0;
936 }
937
938 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
939                           phys_addr_t addr, const pte_t *new_pte,
940                           unsigned long flags)
941 {
942         pmd_t *pmd;
943         pte_t *pte, old_pte;
944         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
945         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
946
947         VM_BUG_ON(logging_active && !cache);
948
949         /* Create stage-2 page table mapping - Levels 0 and 1 */
950         pmd = stage2_get_pmd(kvm, cache, addr);
951         if (!pmd) {
952                 /*
953                  * Ignore calls from kvm_set_spte_hva for unallocated
954                  * address ranges.
955                  */
956                 return 0;
957         }
958
959         /*
960          * While dirty page logging - dissolve huge PMD, then continue on to
961          * allocate page.
962          */
963         if (logging_active)
964                 stage2_dissolve_pmd(kvm, addr, pmd);
965
966         /* Create stage-2 page mappings - Level 2 */
967         if (pmd_none(*pmd)) {
968                 if (!cache)
969                         return 0; /* ignore calls from kvm_set_spte_hva */
970                 pte = mmu_memory_cache_alloc(cache);
971                 pmd_populate_kernel(NULL, pmd, pte);
972                 get_page(virt_to_page(pmd));
973         }
974
975         pte = pte_offset_kernel(pmd, addr);
976
977         if (iomap && pte_present(*pte))
978                 return -EFAULT;
979
980         /* Create 2nd stage page table mapping - Level 3 */
981         old_pte = *pte;
982         if (pte_present(old_pte)) {
983                 /* Skip page table update if there is no change */
984                 if (pte_val(old_pte) == pte_val(*new_pte))
985                         return 0;
986
987                 kvm_set_pte(pte, __pte(0));
988                 kvm_tlb_flush_vmid_ipa(kvm, addr);
989         } else {
990                 get_page(virt_to_page(pte));
991         }
992
993         kvm_set_pte(pte, *new_pte);
994         return 0;
995 }
996
997 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
998 static int stage2_ptep_test_and_clear_young(pte_t *pte)
999 {
1000         if (pte_young(*pte)) {
1001                 *pte = pte_mkold(*pte);
1002                 return 1;
1003         }
1004         return 0;
1005 }
1006 #else
1007 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1008 {
1009         return __ptep_test_and_clear_young(pte);
1010 }
1011 #endif
1012
1013 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1014 {
1015         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1016 }
1017
1018 /**
1019  * kvm_phys_addr_ioremap - map a device range to guest IPA
1020  *
1021  * @kvm:        The KVM pointer
1022  * @guest_ipa:  The IPA at which to insert the mapping
1023  * @pa:         The physical address of the device
1024  * @size:       The size of the mapping
1025  */
1026 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1027                           phys_addr_t pa, unsigned long size, bool writable)
1028 {
1029         phys_addr_t addr, end;
1030         int ret = 0;
1031         unsigned long pfn;
1032         struct kvm_mmu_memory_cache cache = { 0, };
1033
1034         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1035         pfn = __phys_to_pfn(pa);
1036
1037         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1038                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1039
1040                 if (writable)
1041                         pte = kvm_s2pte_mkwrite(pte);
1042
1043                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1044                                                 KVM_NR_MEM_OBJS);
1045                 if (ret)
1046                         goto out;
1047                 spin_lock(&kvm->mmu_lock);
1048                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1049                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1050                 spin_unlock(&kvm->mmu_lock);
1051                 if (ret)
1052                         goto out;
1053
1054                 pfn++;
1055         }
1056
1057 out:
1058         mmu_free_memory_cache(&cache);
1059         return ret;
1060 }
1061
1062 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1063 {
1064         kvm_pfn_t pfn = *pfnp;
1065         gfn_t gfn = *ipap >> PAGE_SHIFT;
1066         struct page *page = pfn_to_page(pfn);
1067
1068         /*
1069          * PageTransCompoungMap() returns true for THP and
1070          * hugetlbfs. Make sure the adjustment is done only for THP
1071          * pages.
1072          */
1073         if (!PageHuge(page) && PageTransCompoundMap(page)) {
1074                 unsigned long mask;
1075                 /*
1076                  * The address we faulted on is backed by a transparent huge
1077                  * page.  However, because we map the compound huge page and
1078                  * not the individual tail page, we need to transfer the
1079                  * refcount to the head page.  We have to be careful that the
1080                  * THP doesn't start to split while we are adjusting the
1081                  * refcounts.
1082                  *
1083                  * We are sure this doesn't happen, because mmu_notifier_retry
1084                  * was successful and we are holding the mmu_lock, so if this
1085                  * THP is trying to split, it will be blocked in the mmu
1086                  * notifier before touching any of the pages, specifically
1087                  * before being able to call __split_huge_page_refcount().
1088                  *
1089                  * We can therefore safely transfer the refcount from PG_tail
1090                  * to PG_head and switch the pfn from a tail page to the head
1091                  * page accordingly.
1092                  */
1093                 mask = PTRS_PER_PMD - 1;
1094                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1095                 if (pfn & mask) {
1096                         *ipap &= PMD_MASK;
1097                         kvm_release_pfn_clean(pfn);
1098                         pfn &= ~mask;
1099                         kvm_get_pfn(pfn);
1100                         *pfnp = pfn;
1101                 }
1102
1103                 return true;
1104         }
1105
1106         return false;
1107 }
1108
1109 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1110 {
1111         if (kvm_vcpu_trap_is_iabt(vcpu))
1112                 return false;
1113
1114         return kvm_vcpu_dabt_iswrite(vcpu);
1115 }
1116
1117 /**
1118  * stage2_wp_ptes - write protect PMD range
1119  * @pmd:        pointer to pmd entry
1120  * @addr:       range start address
1121  * @end:        range end address
1122  */
1123 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1124 {
1125         pte_t *pte;
1126
1127         pte = pte_offset_kernel(pmd, addr);
1128         do {
1129                 if (!pte_none(*pte)) {
1130                         if (!kvm_s2pte_readonly(pte))
1131                                 kvm_set_s2pte_readonly(pte);
1132                 }
1133         } while (pte++, addr += PAGE_SIZE, addr != end);
1134 }
1135
1136 /**
1137  * stage2_wp_pmds - write protect PUD range
1138  * @pud:        pointer to pud entry
1139  * @addr:       range start address
1140  * @end:        range end address
1141  */
1142 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1143 {
1144         pmd_t *pmd;
1145         phys_addr_t next;
1146
1147         pmd = stage2_pmd_offset(pud, addr);
1148
1149         do {
1150                 next = stage2_pmd_addr_end(addr, end);
1151                 if (!pmd_none(*pmd)) {
1152                         if (pmd_thp_or_huge(*pmd)) {
1153                                 if (!kvm_s2pmd_readonly(pmd))
1154                                         kvm_set_s2pmd_readonly(pmd);
1155                         } else {
1156                                 stage2_wp_ptes(pmd, addr, next);
1157                         }
1158                 }
1159         } while (pmd++, addr = next, addr != end);
1160 }
1161
1162 /**
1163   * stage2_wp_puds - write protect PGD range
1164   * @pgd:       pointer to pgd entry
1165   * @addr:      range start address
1166   * @end:       range end address
1167   *
1168   * Process PUD entries, for a huge PUD we cause a panic.
1169   */
1170 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1171 {
1172         pud_t *pud;
1173         phys_addr_t next;
1174
1175         pud = stage2_pud_offset(pgd, addr);
1176         do {
1177                 next = stage2_pud_addr_end(addr, end);
1178                 if (!stage2_pud_none(*pud)) {
1179                         /* TODO:PUD not supported, revisit later if supported */
1180                         BUG_ON(stage2_pud_huge(*pud));
1181                         stage2_wp_pmds(pud, addr, next);
1182                 }
1183         } while (pud++, addr = next, addr != end);
1184 }
1185
1186 /**
1187  * stage2_wp_range() - write protect stage2 memory region range
1188  * @kvm:        The KVM pointer
1189  * @addr:       Start address of range
1190  * @end:        End address of range
1191  */
1192 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1193 {
1194         pgd_t *pgd;
1195         phys_addr_t next;
1196
1197         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1198         do {
1199                 /*
1200                  * Release kvm_mmu_lock periodically if the memory region is
1201                  * large. Otherwise, we may see kernel panics with
1202                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1203                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1204                  * will also starve other vCPUs. We have to also make sure
1205                  * that the page tables are not freed while we released
1206                  * the lock.
1207                  */
1208                 cond_resched_lock(&kvm->mmu_lock);
1209                 if (!READ_ONCE(kvm->arch.pgd))
1210                         break;
1211                 next = stage2_pgd_addr_end(addr, end);
1212                 if (stage2_pgd_present(*pgd))
1213                         stage2_wp_puds(pgd, addr, next);
1214         } while (pgd++, addr = next, addr != end);
1215 }
1216
1217 /**
1218  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1219  * @kvm:        The KVM pointer
1220  * @slot:       The memory slot to write protect
1221  *
1222  * Called to start logging dirty pages after memory region
1223  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1224  * all present PMD and PTEs are write protected in the memory region.
1225  * Afterwards read of dirty page log can be called.
1226  *
1227  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1228  * serializing operations for VM memory regions.
1229  */
1230 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1231 {
1232         struct kvm_memslots *slots = kvm_memslots(kvm);
1233         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1234         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1235         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1236
1237         spin_lock(&kvm->mmu_lock);
1238         stage2_wp_range(kvm, start, end);
1239         spin_unlock(&kvm->mmu_lock);
1240         kvm_flush_remote_tlbs(kvm);
1241 }
1242
1243 /**
1244  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1245  * @kvm:        The KVM pointer
1246  * @slot:       The memory slot associated with mask
1247  * @gfn_offset: The gfn offset in memory slot
1248  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1249  *              slot to be write protected
1250  *
1251  * Walks bits set in mask write protects the associated pte's. Caller must
1252  * acquire kvm_mmu_lock.
1253  */
1254 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1255                 struct kvm_memory_slot *slot,
1256                 gfn_t gfn_offset, unsigned long mask)
1257 {
1258         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1259         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1260         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1261
1262         stage2_wp_range(kvm, start, end);
1263 }
1264
1265 /*
1266  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1267  * dirty pages.
1268  *
1269  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1270  * enable dirty logging for them.
1271  */
1272 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1273                 struct kvm_memory_slot *slot,
1274                 gfn_t gfn_offset, unsigned long mask)
1275 {
1276         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1277 }
1278
1279 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1280                                       unsigned long size)
1281 {
1282         __coherent_cache_guest_page(vcpu, pfn, size);
1283 }
1284
1285 static void kvm_send_hwpoison_signal(unsigned long address,
1286                                      struct vm_area_struct *vma)
1287 {
1288         siginfo_t info;
1289
1290         info.si_signo   = SIGBUS;
1291         info.si_errno   = 0;
1292         info.si_code    = BUS_MCEERR_AR;
1293         info.si_addr    = (void __user *)address;
1294
1295         if (is_vm_hugetlb_page(vma))
1296                 info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1297         else
1298                 info.si_addr_lsb = PAGE_SHIFT;
1299
1300         send_sig_info(SIGBUS, &info, current);
1301 }
1302
1303 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1304                           struct kvm_memory_slot *memslot, unsigned long hva,
1305                           unsigned long fault_status)
1306 {
1307         int ret;
1308         bool write_fault, writable, hugetlb = false, force_pte = false;
1309         unsigned long mmu_seq;
1310         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1311         struct kvm *kvm = vcpu->kvm;
1312         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1313         struct vm_area_struct *vma;
1314         kvm_pfn_t pfn;
1315         pgprot_t mem_type = PAGE_S2;
1316         bool logging_active = memslot_is_logging(memslot);
1317         unsigned long flags = 0;
1318
1319         write_fault = kvm_is_write_fault(vcpu);
1320         if (fault_status == FSC_PERM && !write_fault) {
1321                 kvm_err("Unexpected L2 read permission error\n");
1322                 return -EFAULT;
1323         }
1324
1325         /* Let's check if we will get back a huge page backed by hugetlbfs */
1326         down_read(&current->mm->mmap_sem);
1327         vma = find_vma_intersection(current->mm, hva, hva + 1);
1328         if (unlikely(!vma)) {
1329                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1330                 up_read(&current->mm->mmap_sem);
1331                 return -EFAULT;
1332         }
1333
1334         if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1335                 hugetlb = true;
1336                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1337         } else {
1338                 /*
1339                  * Pages belonging to memslots that don't have the same
1340                  * alignment for userspace and IPA cannot be mapped using
1341                  * block descriptors even if the pages belong to a THP for
1342                  * the process, because the stage-2 block descriptor will
1343                  * cover more than a single THP and we loose atomicity for
1344                  * unmapping, updates, and splits of the THP or other pages
1345                  * in the stage-2 block range.
1346                  */
1347                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1348                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1349                         force_pte = true;
1350         }
1351         up_read(&current->mm->mmap_sem);
1352
1353         /* We need minimum second+third level pages */
1354         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1355                                      KVM_NR_MEM_OBJS);
1356         if (ret)
1357                 return ret;
1358
1359         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1360         /*
1361          * Ensure the read of mmu_notifier_seq happens before we call
1362          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1363          * the page we just got a reference to gets unmapped before we have a
1364          * chance to grab the mmu_lock, which ensure that if the page gets
1365          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1366          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1367          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1368          */
1369         smp_rmb();
1370
1371         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1372         if (pfn == KVM_PFN_ERR_HWPOISON) {
1373                 kvm_send_hwpoison_signal(hva, vma);
1374                 return 0;
1375         }
1376         if (is_error_noslot_pfn(pfn))
1377                 return -EFAULT;
1378
1379         if (kvm_is_device_pfn(pfn)) {
1380                 mem_type = PAGE_S2_DEVICE;
1381                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1382         } else if (logging_active) {
1383                 /*
1384                  * Faults on pages in a memslot with logging enabled
1385                  * should not be mapped with huge pages (it introduces churn
1386                  * and performance degradation), so force a pte mapping.
1387                  */
1388                 force_pte = true;
1389                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1390
1391                 /*
1392                  * Only actually map the page as writable if this was a write
1393                  * fault.
1394                  */
1395                 if (!write_fault)
1396                         writable = false;
1397         }
1398
1399         spin_lock(&kvm->mmu_lock);
1400         if (mmu_notifier_retry(kvm, mmu_seq))
1401                 goto out_unlock;
1402
1403         if (!hugetlb && !force_pte)
1404                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1405
1406         if (hugetlb) {
1407                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1408                 new_pmd = pmd_mkhuge(new_pmd);
1409                 if (writable) {
1410                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1411                         kvm_set_pfn_dirty(pfn);
1412                 }
1413                 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1414                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1415         } else {
1416                 pte_t new_pte = pfn_pte(pfn, mem_type);
1417
1418                 if (writable) {
1419                         new_pte = kvm_s2pte_mkwrite(new_pte);
1420                         kvm_set_pfn_dirty(pfn);
1421                         mark_page_dirty(kvm, gfn);
1422                 }
1423                 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1424                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1425         }
1426
1427 out_unlock:
1428         spin_unlock(&kvm->mmu_lock);
1429         kvm_set_pfn_accessed(pfn);
1430         kvm_release_pfn_clean(pfn);
1431         return ret;
1432 }
1433
1434 /*
1435  * Resolve the access fault by making the page young again.
1436  * Note that because the faulting entry is guaranteed not to be
1437  * cached in the TLB, we don't need to invalidate anything.
1438  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1439  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1440  */
1441 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1442 {
1443         pmd_t *pmd;
1444         pte_t *pte;
1445         kvm_pfn_t pfn;
1446         bool pfn_valid = false;
1447
1448         trace_kvm_access_fault(fault_ipa);
1449
1450         spin_lock(&vcpu->kvm->mmu_lock);
1451
1452         pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1453         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1454                 goto out;
1455
1456         if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1457                 *pmd = pmd_mkyoung(*pmd);
1458                 pfn = pmd_pfn(*pmd);
1459                 pfn_valid = true;
1460                 goto out;
1461         }
1462
1463         pte = pte_offset_kernel(pmd, fault_ipa);
1464         if (pte_none(*pte))             /* Nothing there either */
1465                 goto out;
1466
1467         *pte = pte_mkyoung(*pte);       /* Just a page... */
1468         pfn = pte_pfn(*pte);
1469         pfn_valid = true;
1470 out:
1471         spin_unlock(&vcpu->kvm->mmu_lock);
1472         if (pfn_valid)
1473                 kvm_set_pfn_accessed(pfn);
1474 }
1475
1476 /**
1477  * kvm_handle_guest_abort - handles all 2nd stage aborts
1478  * @vcpu:       the VCPU pointer
1479  * @run:        the kvm_run structure
1480  *
1481  * Any abort that gets to the host is almost guaranteed to be caused by a
1482  * missing second stage translation table entry, which can mean that either the
1483  * guest simply needs more memory and we must allocate an appropriate page or it
1484  * can mean that the guest tried to access I/O memory, which is emulated by user
1485  * space. The distinction is based on the IPA causing the fault and whether this
1486  * memory region has been registered as standard RAM by user space.
1487  */
1488 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1489 {
1490         unsigned long fault_status;
1491         phys_addr_t fault_ipa;
1492         struct kvm_memory_slot *memslot;
1493         unsigned long hva;
1494         bool is_iabt, write_fault, writable;
1495         gfn_t gfn;
1496         int ret, idx;
1497
1498         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1499
1500         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1501         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1502
1503         /* Synchronous External Abort? */
1504         if (kvm_vcpu_dabt_isextabt(vcpu)) {
1505                 /*
1506                  * For RAS the host kernel may handle this abort.
1507                  * There is no need to pass the error into the guest.
1508                  */
1509                 if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1510                         return 1;
1511
1512                 if (unlikely(!is_iabt)) {
1513                         kvm_inject_vabt(vcpu);
1514                         return 1;
1515                 }
1516         }
1517
1518         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1519                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1520
1521         /* Check the stage-2 fault is trans. fault or write fault */
1522         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1523             fault_status != FSC_ACCESS) {
1524                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1525                         kvm_vcpu_trap_get_class(vcpu),
1526                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1527                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1528                 return -EFAULT;
1529         }
1530
1531         idx = srcu_read_lock(&vcpu->kvm->srcu);
1532
1533         gfn = fault_ipa >> PAGE_SHIFT;
1534         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1535         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1536         write_fault = kvm_is_write_fault(vcpu);
1537         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1538                 if (is_iabt) {
1539                         /* Prefetch Abort on I/O address */
1540                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1541                         ret = 1;
1542                         goto out_unlock;
1543                 }
1544
1545                 /*
1546                  * Check for a cache maintenance operation. Since we
1547                  * ended-up here, we know it is outside of any memory
1548                  * slot. But we can't find out if that is for a device,
1549                  * or if the guest is just being stupid. The only thing
1550                  * we know for sure is that this range cannot be cached.
1551                  *
1552                  * So let's assume that the guest is just being
1553                  * cautious, and skip the instruction.
1554                  */
1555                 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1556                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1557                         ret = 1;
1558                         goto out_unlock;
1559                 }
1560
1561                 /*
1562                  * The IPA is reported as [MAX:12], so we need to
1563                  * complement it with the bottom 12 bits from the
1564                  * faulting VA. This is always 12 bits, irrespective
1565                  * of the page size.
1566                  */
1567                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1568                 ret = io_mem_abort(vcpu, run, fault_ipa);
1569                 goto out_unlock;
1570         }
1571
1572         /* Userspace should not be able to register out-of-bounds IPAs */
1573         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1574
1575         if (fault_status == FSC_ACCESS) {
1576                 handle_access_fault(vcpu, fault_ipa);
1577                 ret = 1;
1578                 goto out_unlock;
1579         }
1580
1581         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1582         if (ret == 0)
1583                 ret = 1;
1584 out_unlock:
1585         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1586         return ret;
1587 }
1588
1589 static int handle_hva_to_gpa(struct kvm *kvm,
1590                              unsigned long start,
1591                              unsigned long end,
1592                              int (*handler)(struct kvm *kvm,
1593                                             gpa_t gpa, u64 size,
1594                                             void *data),
1595                              void *data)
1596 {
1597         struct kvm_memslots *slots;
1598         struct kvm_memory_slot *memslot;
1599         int ret = 0;
1600
1601         slots = kvm_memslots(kvm);
1602
1603         /* we only care about the pages that the guest sees */
1604         kvm_for_each_memslot(memslot, slots) {
1605                 unsigned long hva_start, hva_end;
1606                 gfn_t gpa;
1607
1608                 hva_start = max(start, memslot->userspace_addr);
1609                 hva_end = min(end, memslot->userspace_addr +
1610                                         (memslot->npages << PAGE_SHIFT));
1611                 if (hva_start >= hva_end)
1612                         continue;
1613
1614                 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1615                 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1616         }
1617
1618         return ret;
1619 }
1620
1621 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1622 {
1623         unmap_stage2_range(kvm, gpa, size);
1624         return 0;
1625 }
1626
1627 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1628 {
1629         unsigned long end = hva + PAGE_SIZE;
1630
1631         if (!kvm->arch.pgd)
1632                 return 0;
1633
1634         trace_kvm_unmap_hva(hva);
1635         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1636         return 0;
1637 }
1638
1639 int kvm_unmap_hva_range(struct kvm *kvm,
1640                         unsigned long start, unsigned long end)
1641 {
1642         if (!kvm->arch.pgd)
1643                 return 0;
1644
1645         trace_kvm_unmap_hva_range(start, end);
1646         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1647         return 0;
1648 }
1649
1650 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1651 {
1652         pte_t *pte = (pte_t *)data;
1653
1654         WARN_ON(size != PAGE_SIZE);
1655         /*
1656          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1657          * flag clear because MMU notifiers will have unmapped a huge PMD before
1658          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1659          * therefore stage2_set_pte() never needs to clear out a huge PMD
1660          * through this calling path.
1661          */
1662         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1663         return 0;
1664 }
1665
1666
1667 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1668 {
1669         unsigned long end = hva + PAGE_SIZE;
1670         pte_t stage2_pte;
1671
1672         if (!kvm->arch.pgd)
1673                 return;
1674
1675         trace_kvm_set_spte_hva(hva);
1676         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1677         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1678 }
1679
1680 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1681 {
1682         pmd_t *pmd;
1683         pte_t *pte;
1684
1685         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1686         pmd = stage2_get_pmd(kvm, NULL, gpa);
1687         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1688                 return 0;
1689
1690         if (pmd_thp_or_huge(*pmd))      /* THP, HugeTLB */
1691                 return stage2_pmdp_test_and_clear_young(pmd);
1692
1693         pte = pte_offset_kernel(pmd, gpa);
1694         if (pte_none(*pte))
1695                 return 0;
1696
1697         return stage2_ptep_test_and_clear_young(pte);
1698 }
1699
1700 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1701 {
1702         pmd_t *pmd;
1703         pte_t *pte;
1704
1705         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1706         pmd = stage2_get_pmd(kvm, NULL, gpa);
1707         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1708                 return 0;
1709
1710         if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
1711                 return pmd_young(*pmd);
1712
1713         pte = pte_offset_kernel(pmd, gpa);
1714         if (!pte_none(*pte))            /* Just a page... */
1715                 return pte_young(*pte);
1716
1717         return 0;
1718 }
1719
1720 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1721 {
1722         if (!kvm->arch.pgd)
1723                 return 0;
1724         trace_kvm_age_hva(start, end);
1725         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1726 }
1727
1728 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1729 {
1730         if (!kvm->arch.pgd)
1731                 return 0;
1732         trace_kvm_test_age_hva(hva);
1733         return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
1734                                  kvm_test_age_hva_handler, NULL);
1735 }
1736
1737 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1738 {
1739         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1740 }
1741
1742 phys_addr_t kvm_mmu_get_httbr(void)
1743 {
1744         if (__kvm_cpu_uses_extended_idmap())
1745                 return virt_to_phys(merged_hyp_pgd);
1746         else
1747                 return virt_to_phys(hyp_pgd);
1748 }
1749
1750 phys_addr_t kvm_get_idmap_vector(void)
1751 {
1752         return hyp_idmap_vector;
1753 }
1754
1755 static int kvm_map_idmap_text(pgd_t *pgd)
1756 {
1757         int err;
1758
1759         /* Create the idmap in the boot page tables */
1760         err =   __create_hyp_mappings(pgd,
1761                                       hyp_idmap_start, hyp_idmap_end,
1762                                       __phys_to_pfn(hyp_idmap_start),
1763                                       PAGE_HYP_EXEC);
1764         if (err)
1765                 kvm_err("Failed to idmap %lx-%lx\n",
1766                         hyp_idmap_start, hyp_idmap_end);
1767
1768         return err;
1769 }
1770
1771 int kvm_mmu_init(void)
1772 {
1773         int err;
1774
1775         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1776         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1777         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1778
1779         /*
1780          * We rely on the linker script to ensure at build time that the HYP
1781          * init code does not cross a page boundary.
1782          */
1783         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1784
1785         kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1786         kvm_debug("HYP VA range: %lx:%lx\n",
1787                   kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1788
1789         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1790             hyp_idmap_start <  kern_hyp_va(~0UL) &&
1791             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1792                 /*
1793                  * The idmap page is intersecting with the VA space,
1794                  * it is not safe to continue further.
1795                  */
1796                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1797                 err = -EINVAL;
1798                 goto out;
1799         }
1800
1801         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1802         if (!hyp_pgd) {
1803                 kvm_err("Hyp mode PGD not allocated\n");
1804                 err = -ENOMEM;
1805                 goto out;
1806         }
1807
1808         if (__kvm_cpu_uses_extended_idmap()) {
1809                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1810                                                          hyp_pgd_order);
1811                 if (!boot_hyp_pgd) {
1812                         kvm_err("Hyp boot PGD not allocated\n");
1813                         err = -ENOMEM;
1814                         goto out;
1815                 }
1816
1817                 err = kvm_map_idmap_text(boot_hyp_pgd);
1818                 if (err)
1819                         goto out;
1820
1821                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1822                 if (!merged_hyp_pgd) {
1823                         kvm_err("Failed to allocate extra HYP pgd\n");
1824                         goto out;
1825                 }
1826                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1827                                     hyp_idmap_start);
1828         } else {
1829                 err = kvm_map_idmap_text(hyp_pgd);
1830                 if (err)
1831                         goto out;
1832         }
1833
1834         return 0;
1835 out:
1836         free_hyp_pgds();
1837         return err;
1838 }
1839
1840 void kvm_arch_commit_memory_region(struct kvm *kvm,
1841                                    const struct kvm_userspace_memory_region *mem,
1842                                    const struct kvm_memory_slot *old,
1843                                    const struct kvm_memory_slot *new,
1844                                    enum kvm_mr_change change)
1845 {
1846         /*
1847          * At this point memslot has been committed and there is an
1848          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1849          * memory slot is write protected.
1850          */
1851         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1852                 kvm_mmu_wp_memory_region(kvm, mem->slot);
1853 }
1854
1855 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1856                                    struct kvm_memory_slot *memslot,
1857                                    const struct kvm_userspace_memory_region *mem,
1858                                    enum kvm_mr_change change)
1859 {
1860         hva_t hva = mem->userspace_addr;
1861         hva_t reg_end = hva + mem->memory_size;
1862         bool writable = !(mem->flags & KVM_MEM_READONLY);
1863         int ret = 0;
1864
1865         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1866                         change != KVM_MR_FLAGS_ONLY)
1867                 return 0;
1868
1869         /*
1870          * Prevent userspace from creating a memory region outside of the IPA
1871          * space addressable by the KVM guest IPA space.
1872          */
1873         if (memslot->base_gfn + memslot->npages >
1874             (KVM_PHYS_SIZE >> PAGE_SHIFT))
1875                 return -EFAULT;
1876
1877         down_read(&current->mm->mmap_sem);
1878         /*
1879          * A memory region could potentially cover multiple VMAs, and any holes
1880          * between them, so iterate over all of them to find out if we can map
1881          * any of them right now.
1882          *
1883          *     +--------------------------------------------+
1884          * +---------------+----------------+   +----------------+
1885          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1886          * +---------------+----------------+   +----------------+
1887          *     |               memory region                |
1888          *     +--------------------------------------------+
1889          */
1890         do {
1891                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1892                 hva_t vm_start, vm_end;
1893
1894                 if (!vma || vma->vm_start >= reg_end)
1895                         break;
1896
1897                 /*
1898                  * Mapping a read-only VMA is only allowed if the
1899                  * memory region is configured as read-only.
1900                  */
1901                 if (writable && !(vma->vm_flags & VM_WRITE)) {
1902                         ret = -EPERM;
1903                         break;
1904                 }
1905
1906                 /*
1907                  * Take the intersection of this VMA with the memory region
1908                  */
1909                 vm_start = max(hva, vma->vm_start);
1910                 vm_end = min(reg_end, vma->vm_end);
1911
1912                 if (vma->vm_flags & VM_PFNMAP) {
1913                         gpa_t gpa = mem->guest_phys_addr +
1914                                     (vm_start - mem->userspace_addr);
1915                         phys_addr_t pa;
1916
1917                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1918                         pa += vm_start - vma->vm_start;
1919
1920                         /* IO region dirty page logging not allowed */
1921                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1922                                 ret = -EINVAL;
1923                                 goto out;
1924                         }
1925
1926                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1927                                                     vm_end - vm_start,
1928                                                     writable);
1929                         if (ret)
1930                                 break;
1931                 }
1932                 hva = vm_end;
1933         } while (hva < reg_end);
1934
1935         if (change == KVM_MR_FLAGS_ONLY)
1936                 goto out;
1937
1938         spin_lock(&kvm->mmu_lock);
1939         if (ret)
1940                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1941         else
1942                 stage2_flush_memslot(kvm, memslot);
1943         spin_unlock(&kvm->mmu_lock);
1944 out:
1945         up_read(&current->mm->mmap_sem);
1946         return ret;
1947 }
1948
1949 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1950                            struct kvm_memory_slot *dont)
1951 {
1952 }
1953
1954 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1955                             unsigned long npages)
1956 {
1957         return 0;
1958 }
1959
1960 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1961 {
1962 }
1963
1964 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1965 {
1966         kvm_free_stage2_pgd(kvm);
1967 }
1968
1969 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1970                                    struct kvm_memory_slot *slot)
1971 {
1972         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1973         phys_addr_t size = slot->npages << PAGE_SHIFT;
1974
1975         spin_lock(&kvm->mmu_lock);
1976         unmap_stage2_range(kvm, gpa, size);
1977         spin_unlock(&kvm->mmu_lock);
1978 }
1979
1980 /*
1981  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1982  *
1983  * Main problems:
1984  * - S/W ops are local to a CPU (not broadcast)
1985  * - We have line migration behind our back (speculation)
1986  * - System caches don't support S/W at all (damn!)
1987  *
1988  * In the face of the above, the best we can do is to try and convert
1989  * S/W ops to VA ops. Because the guest is not allowed to infer the
1990  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1991  * which is a rather good thing for us.
1992  *
1993  * Also, it is only used when turning caches on/off ("The expected
1994  * usage of the cache maintenance instructions that operate by set/way
1995  * is associated with the cache maintenance instructions associated
1996  * with the powerdown and powerup of caches, if this is required by
1997  * the implementation.").
1998  *
1999  * We use the following policy:
2000  *
2001  * - If we trap a S/W operation, we enable VM trapping to detect
2002  *   caches being turned on/off, and do a full clean.
2003  *
2004  * - We flush the caches on both caches being turned on and off.
2005  *
2006  * - Once the caches are enabled, we stop trapping VM ops.
2007  */
2008 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2009 {
2010         unsigned long hcr = vcpu_get_hcr(vcpu);
2011
2012         /*
2013          * If this is the first time we do a S/W operation
2014          * (i.e. HCR_TVM not set) flush the whole memory, and set the
2015          * VM trapping.
2016          *
2017          * Otherwise, rely on the VM trapping to wait for the MMU +
2018          * Caches to be turned off. At that point, we'll be able to
2019          * clean the caches again.
2020          */
2021         if (!(hcr & HCR_TVM)) {
2022                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2023                                         vcpu_has_cache_enabled(vcpu));
2024                 stage2_flush_vm(vcpu->kvm);
2025                 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
2026         }
2027 }
2028
2029 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2030 {
2031         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2032
2033         /*
2034          * If switching the MMU+caches on, need to invalidate the caches.
2035          * If switching it off, need to clean the caches.
2036          * Clean + invalidate does the trick always.
2037          */
2038         if (now_enabled != was_enabled)
2039                 stage2_flush_vm(vcpu->kvm);
2040
2041         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2042         if (now_enabled)
2043                 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
2044
2045         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2046 }