GNU Linux-libre 4.9.309-gnu1
[releases.git] / virt / kvm / arm / vgic / vgic-init.c
1 /*
2  * Copyright (C) 2015, 2016 ARM Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16
17 #include <linux/uaccess.h>
18 #include <linux/interrupt.h>
19 #include <linux/cpu.h>
20 #include <linux/kvm_host.h>
21 #include <kvm/arm_vgic.h>
22 #include <asm/kvm_mmu.h>
23 #include "vgic.h"
24
25 /*
26  * Initialization rules: there are multiple stages to the vgic
27  * initialization, both for the distributor and the CPU interfaces.
28  *
29  * Distributor:
30  *
31  * - kvm_vgic_early_init(): initialization of static data that doesn't
32  *   depend on any sizing information or emulation type. No allocation
33  *   is allowed there.
34  *
35  * - vgic_init(): allocation and initialization of the generic data
36  *   structures that depend on sizing information (number of CPUs,
37  *   number of interrupts). Also initializes the vcpu specific data
38  *   structures. Can be executed lazily for GICv2.
39  *
40  * CPU Interface:
41  *
42  * - kvm_vgic_cpu_early_init(): initialization of static data that
43  *   doesn't depend on any sizing information or emulation type. No
44  *   allocation is allowed there.
45  */
46
47 /* EARLY INIT */
48
49 /*
50  * Those 2 functions should not be needed anymore but they
51  * still are called from arm.c
52  */
53 void kvm_vgic_early_init(struct kvm *kvm)
54 {
55 }
56
57 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
58 {
59 }
60
61 /* CREATION */
62
63 /**
64  * kvm_vgic_create: triggered by the instantiation of the VGIC device by
65  * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
66  * or through the generic KVM_CREATE_DEVICE API ioctl.
67  * irqchip_in_kernel() tells you if this function succeeded or not.
68  * @kvm: kvm struct pointer
69  * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
70  */
71 int kvm_vgic_create(struct kvm *kvm, u32 type)
72 {
73         int i, vcpu_lock_idx = -1, ret;
74         struct kvm_vcpu *vcpu;
75
76         if (irqchip_in_kernel(kvm))
77                 return -EEXIST;
78
79         /*
80          * This function is also called by the KVM_CREATE_IRQCHIP handler,
81          * which had no chance yet to check the availability of the GICv2
82          * emulation. So check this here again. KVM_CREATE_DEVICE does
83          * the proper checks already.
84          */
85         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
86                 !kvm_vgic_global_state.can_emulate_gicv2)
87                 return -ENODEV;
88
89         /*
90          * Any time a vcpu is run, vcpu_load is called which tries to grab the
91          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
92          * that no other VCPUs are run while we create the vgic.
93          */
94         ret = -EBUSY;
95         kvm_for_each_vcpu(i, vcpu, kvm) {
96                 if (!mutex_trylock(&vcpu->mutex))
97                         goto out_unlock;
98                 vcpu_lock_idx = i;
99         }
100
101         kvm_for_each_vcpu(i, vcpu, kvm) {
102                 if (vcpu->arch.has_run_once)
103                         goto out_unlock;
104         }
105         ret = 0;
106
107         if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
108                 kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
109         else
110                 kvm->arch.max_vcpus = VGIC_V3_MAX_CPUS;
111
112         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) {
113                 ret = -E2BIG;
114                 goto out_unlock;
115         }
116
117         kvm->arch.vgic.in_kernel = true;
118         kvm->arch.vgic.vgic_model = type;
119
120         /*
121          * kvm_vgic_global_state.vctrl_base is set on vgic probe (kvm_arch_init)
122          * it is stored in distributor struct for asm save/restore purpose
123          */
124         kvm->arch.vgic.vctrl_base = kvm_vgic_global_state.vctrl_base;
125
126         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
127         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
128         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
129
130 out_unlock:
131         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
132                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
133                 mutex_unlock(&vcpu->mutex);
134         }
135         return ret;
136 }
137
138 /* INIT/DESTROY */
139
140 /**
141  * kvm_vgic_dist_init: initialize the dist data structures
142  * @kvm: kvm struct pointer
143  * @nr_spis: number of spis, frozen by caller
144  */
145 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
146 {
147         struct vgic_dist *dist = &kvm->arch.vgic;
148         struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
149         int i;
150
151         INIT_LIST_HEAD(&dist->lpi_list_head);
152         spin_lock_init(&dist->lpi_list_lock);
153
154         dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL);
155         if (!dist->spis)
156                 return  -ENOMEM;
157
158         /*
159          * In the following code we do not take the irq struct lock since
160          * no other action on irq structs can happen while the VGIC is
161          * not initialized yet:
162          * If someone wants to inject an interrupt or does a MMIO access, we
163          * require prior initialization in case of a virtual GICv3 or trigger
164          * initialization when using a virtual GICv2.
165          */
166         for (i = 0; i < nr_spis; i++) {
167                 struct vgic_irq *irq = &dist->spis[i];
168
169                 irq->intid = i + VGIC_NR_PRIVATE_IRQS;
170                 INIT_LIST_HEAD(&irq->ap_list);
171                 spin_lock_init(&irq->irq_lock);
172                 irq->vcpu = NULL;
173                 irq->target_vcpu = vcpu0;
174                 kref_init(&irq->refcount);
175                 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
176                         irq->targets = 0;
177                 else
178                         irq->mpidr = 0;
179         }
180         return 0;
181 }
182
183 /**
184  * kvm_vgic_vcpu_init: initialize the vcpu data structures and
185  * enable the VCPU interface
186  * @vcpu: the VCPU which's VGIC should be initialized
187  */
188 static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
189 {
190         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
191         int i;
192
193         INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
194         spin_lock_init(&vgic_cpu->ap_list_lock);
195
196         /*
197          * Enable and configure all SGIs to be edge-triggered and
198          * configure all PPIs as level-triggered.
199          */
200         for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
201                 struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
202
203                 INIT_LIST_HEAD(&irq->ap_list);
204                 spin_lock_init(&irq->irq_lock);
205                 irq->intid = i;
206                 irq->vcpu = NULL;
207                 irq->target_vcpu = vcpu;
208                 irq->targets = 1U << vcpu->vcpu_id;
209                 kref_init(&irq->refcount);
210                 if (vgic_irq_is_sgi(i)) {
211                         /* SGIs */
212                         irq->enabled = 1;
213                         irq->config = VGIC_CONFIG_EDGE;
214                 } else {
215                         /* PPIs */
216                         irq->config = VGIC_CONFIG_LEVEL;
217                 }
218         }
219         if (kvm_vgic_global_state.type == VGIC_V2)
220                 vgic_v2_enable(vcpu);
221         else
222                 vgic_v3_enable(vcpu);
223 }
224
225 /*
226  * vgic_init: allocates and initializes dist and vcpu data structures
227  * depending on two dimensioning parameters:
228  * - the number of spis
229  * - the number of vcpus
230  * The function is generally called when nr_spis has been explicitly set
231  * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
232  * vgic_initialized() returns true when this function has succeeded.
233  * Must be called with kvm->lock held!
234  */
235 int vgic_init(struct kvm *kvm)
236 {
237         struct vgic_dist *dist = &kvm->arch.vgic;
238         struct kvm_vcpu *vcpu;
239         int ret = 0, i;
240
241         if (vgic_initialized(kvm))
242                 return 0;
243
244         /* Are we also in the middle of creating a VCPU? */
245         if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus))
246                 return -EBUSY;
247
248         /* freeze the number of spis */
249         if (!dist->nr_spis)
250                 dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
251
252         ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
253         if (ret)
254                 goto out;
255
256         if (vgic_has_its(kvm))
257                 dist->msis_require_devid = true;
258
259         kvm_for_each_vcpu(i, vcpu, kvm)
260                 kvm_vgic_vcpu_init(vcpu);
261
262         ret = kvm_vgic_setup_default_irq_routing(kvm);
263         if (ret)
264                 goto out;
265
266         dist->initialized = true;
267 out:
268         return ret;
269 }
270
271 static void kvm_vgic_dist_destroy(struct kvm *kvm)
272 {
273         struct vgic_dist *dist = &kvm->arch.vgic;
274
275         dist->ready = false;
276         dist->initialized = false;
277
278         kfree(dist->spis);
279         dist->nr_spis = 0;
280 }
281
282 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
283 {
284         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
285
286         INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
287 }
288
289 /* To be called with kvm->lock held */
290 static void __kvm_vgic_destroy(struct kvm *kvm)
291 {
292         struct kvm_vcpu *vcpu;
293         int i;
294
295         kvm_vgic_dist_destroy(kvm);
296
297         kvm_for_each_vcpu(i, vcpu, kvm)
298                 kvm_vgic_vcpu_destroy(vcpu);
299 }
300
301 void kvm_vgic_destroy(struct kvm *kvm)
302 {
303         mutex_lock(&kvm->lock);
304         __kvm_vgic_destroy(kvm);
305         mutex_unlock(&kvm->lock);
306 }
307
308 /**
309  * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
310  * is a GICv2. A GICv3 must be explicitly initialized by the guest using the
311  * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
312  * @kvm: kvm struct pointer
313  */
314 int vgic_lazy_init(struct kvm *kvm)
315 {
316         int ret = 0;
317
318         if (unlikely(!vgic_initialized(kvm))) {
319                 /*
320                  * We only provide the automatic initialization of the VGIC
321                  * for the legacy case of a GICv2. Any other type must
322                  * be explicitly initialized once setup with the respective
323                  * KVM device call.
324                  */
325                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
326                         return -EBUSY;
327
328                 mutex_lock(&kvm->lock);
329                 ret = vgic_init(kvm);
330                 mutex_unlock(&kvm->lock);
331         }
332
333         return ret;
334 }
335
336 /* RESOURCE MAPPING */
337
338 /**
339  * Map the MMIO regions depending on the VGIC model exposed to the guest
340  * called on the first VCPU run.
341  * Also map the virtual CPU interface into the VM.
342  * v2/v3 derivatives call vgic_init if not already done.
343  * vgic_ready() returns true if this function has succeeded.
344  * @kvm: kvm struct pointer
345  */
346 int kvm_vgic_map_resources(struct kvm *kvm)
347 {
348         struct vgic_dist *dist = &kvm->arch.vgic;
349         int ret = 0;
350
351         mutex_lock(&kvm->lock);
352         if (!irqchip_in_kernel(kvm))
353                 goto out;
354
355         if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
356                 ret = vgic_v2_map_resources(kvm);
357         else
358                 ret = vgic_v3_map_resources(kvm);
359
360         if (ret)
361                 __kvm_vgic_destroy(kvm);
362
363 out:
364         mutex_unlock(&kvm->lock);
365         return ret;
366 }
367
368 /* GENERIC PROBE */
369
370 static int vgic_init_cpu_starting(unsigned int cpu)
371 {
372         enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
373         return 0;
374 }
375
376
377 static int vgic_init_cpu_dying(unsigned int cpu)
378 {
379         disable_percpu_irq(kvm_vgic_global_state.maint_irq);
380         return 0;
381 }
382
383 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
384 {
385         /*
386          * We cannot rely on the vgic maintenance interrupt to be
387          * delivered synchronously. This means we can only use it to
388          * exit the VM, and we perform the handling of EOIed
389          * interrupts on the exit path (see vgic_process_maintenance).
390          */
391         return IRQ_HANDLED;
392 }
393
394 /**
395  * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
396  * according to the host GIC model. Accordingly calls either
397  * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
398  * instantiated by a guest later on .
399  */
400 int kvm_vgic_hyp_init(void)
401 {
402         const struct gic_kvm_info *gic_kvm_info;
403         int ret;
404
405         gic_kvm_info = gic_get_kvm_info();
406         if (!gic_kvm_info)
407                 return -ENODEV;
408
409         if (!gic_kvm_info->maint_irq) {
410                 kvm_err("No vgic maintenance irq\n");
411                 return -ENXIO;
412         }
413
414         switch (gic_kvm_info->type) {
415         case GIC_V2:
416                 ret = vgic_v2_probe(gic_kvm_info);
417                 break;
418         case GIC_V3:
419                 ret = vgic_v3_probe(gic_kvm_info);
420                 if (!ret) {
421                         static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
422                         kvm_info("GIC system register CPU interface enabled\n");
423                 }
424                 break;
425         default:
426                 ret = -ENODEV;
427         };
428
429         if (ret)
430                 return ret;
431
432         kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
433         ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
434                                  vgic_maintenance_handler,
435                                  "vgic", kvm_get_running_vcpus());
436         if (ret) {
437                 kvm_err("Cannot register interrupt %d\n",
438                         kvm_vgic_global_state.maint_irq);
439                 return ret;
440         }
441
442         ret = cpuhp_setup_state(CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING,
443                                 "AP_KVM_ARM_VGIC_INIT_STARTING",
444                                 vgic_init_cpu_starting, vgic_init_cpu_dying);
445         if (ret) {
446                 kvm_err("Cannot register vgic CPU notifier\n");
447                 goto out_free_irq;
448         }
449
450         kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
451         return 0;
452
453 out_free_irq:
454         free_percpu_irq(kvm_vgic_global_state.maint_irq,
455                         kvm_get_running_vcpus());
456         return ret;
457 }