GNU Linux-libre 4.19.286-gnu1
[releases.git] / virt / kvm / arm / vgic / vgic-mmio.c
1 /*
2  * VGIC MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13
14 #include <linux/bitops.h>
15 #include <linux/bsearch.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/iodev.h>
19 #include <kvm/arm_arch_timer.h>
20 #include <kvm/arm_vgic.h>
21
22 #include "vgic.h"
23 #include "vgic-mmio.h"
24
25 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
26                                  gpa_t addr, unsigned int len)
27 {
28         return 0;
29 }
30
31 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
32                                  gpa_t addr, unsigned int len)
33 {
34         return -1UL;
35 }
36
37 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38                         unsigned int len, unsigned long val)
39 {
40         /* Ignore */
41 }
42
43 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
44                                unsigned int len, unsigned long val)
45 {
46         /* Ignore */
47         return 0;
48 }
49
50 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
51                                    gpa_t addr, unsigned int len)
52 {
53         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
54         u32 value = 0;
55         int i;
56
57         /* Loop over all IRQs affected by this read */
58         for (i = 0; i < len * 8; i++) {
59                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
60
61                 if (irq->group)
62                         value |= BIT(i);
63
64                 vgic_put_irq(vcpu->kvm, irq);
65         }
66
67         return value;
68 }
69
70 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
71                            unsigned int len, unsigned long val)
72 {
73         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
74         int i;
75         unsigned long flags;
76
77         for (i = 0; i < len * 8; i++) {
78                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
79
80                 spin_lock_irqsave(&irq->irq_lock, flags);
81                 irq->group = !!(val & BIT(i));
82                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
83
84                 vgic_put_irq(vcpu->kvm, irq);
85         }
86 }
87
88 /*
89  * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
90  * of the enabled bit, so there is only one function for both here.
91  */
92 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
93                                     gpa_t addr, unsigned int len)
94 {
95         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
96         u32 value = 0;
97         int i;
98
99         /* Loop over all IRQs affected by this read */
100         for (i = 0; i < len * 8; i++) {
101                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
102
103                 if (irq->enabled)
104                         value |= (1U << i);
105
106                 vgic_put_irq(vcpu->kvm, irq);
107         }
108
109         return value;
110 }
111
112 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
113                              gpa_t addr, unsigned int len,
114                              unsigned long val)
115 {
116         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
117         int i;
118         unsigned long flags;
119
120         for_each_set_bit(i, &val, len * 8) {
121                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
122
123                 spin_lock_irqsave(&irq->irq_lock, flags);
124                 irq->enabled = true;
125                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
126
127                 vgic_put_irq(vcpu->kvm, irq);
128         }
129 }
130
131 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
132                              gpa_t addr, unsigned int len,
133                              unsigned long val)
134 {
135         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
136         int i;
137         unsigned long flags;
138
139         for_each_set_bit(i, &val, len * 8) {
140                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
141
142                 spin_lock_irqsave(&irq->irq_lock, flags);
143
144                 irq->enabled = false;
145
146                 spin_unlock_irqrestore(&irq->irq_lock, flags);
147                 vgic_put_irq(vcpu->kvm, irq);
148         }
149 }
150
151 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
152                                      gpa_t addr, unsigned int len)
153 {
154         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
155         u32 value = 0;
156         int i;
157
158         /* Loop over all IRQs affected by this read */
159         for (i = 0; i < len * 8; i++) {
160                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
161                 unsigned long flags;
162
163                 spin_lock_irqsave(&irq->irq_lock, flags);
164                 if (irq_is_pending(irq))
165                         value |= (1U << i);
166                 spin_unlock_irqrestore(&irq->irq_lock, flags);
167
168                 vgic_put_irq(vcpu->kvm, irq);
169         }
170
171         return value;
172 }
173
174 /*
175  * This function will return the VCPU that performed the MMIO access and
176  * trapped from within the VM, and will return NULL if this is a userspace
177  * access.
178  *
179  * We can disable preemption locally around accessing the per-CPU variable,
180  * and use the resolved vcpu pointer after enabling preemption again, because
181  * even if the current thread is migrated to another CPU, reading the per-CPU
182  * value later will give us the same value as we update the per-CPU variable
183  * in the preempt notifier handlers.
184  */
185 static struct kvm_vcpu *vgic_get_mmio_requester_vcpu(void)
186 {
187         struct kvm_vcpu *vcpu;
188
189         preempt_disable();
190         vcpu = kvm_arm_get_running_vcpu();
191         preempt_enable();
192         return vcpu;
193 }
194
195 /* Must be called with irq->irq_lock held */
196 static void vgic_hw_irq_spending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
197                                  bool is_uaccess)
198 {
199         if (is_uaccess)
200                 return;
201
202         irq->pending_latch = true;
203         vgic_irq_set_phys_active(irq, true);
204 }
205
206 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
207 {
208         return (vgic_irq_is_sgi(irq->intid) &&
209                 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
210 }
211
212 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
213                               gpa_t addr, unsigned int len,
214                               unsigned long val)
215 {
216         bool is_uaccess = !vgic_get_mmio_requester_vcpu();
217         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
218         int i;
219         unsigned long flags;
220
221         for_each_set_bit(i, &val, len * 8) {
222                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
223
224                 /* GICD_ISPENDR0 SGI bits are WI */
225                 if (is_vgic_v2_sgi(vcpu, irq)) {
226                         vgic_put_irq(vcpu->kvm, irq);
227                         continue;
228                 }
229
230                 spin_lock_irqsave(&irq->irq_lock, flags);
231                 if (irq->hw)
232                         vgic_hw_irq_spending(vcpu, irq, is_uaccess);
233                 else
234                         irq->pending_latch = true;
235                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
236                 vgic_put_irq(vcpu->kvm, irq);
237         }
238 }
239
240 /* Must be called with irq->irq_lock held */
241 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
242                                  bool is_uaccess)
243 {
244         if (is_uaccess)
245                 return;
246
247         irq->pending_latch = false;
248
249         /*
250          * We don't want the guest to effectively mask the physical
251          * interrupt by doing a write to SPENDR followed by a write to
252          * CPENDR for HW interrupts, so we clear the active state on
253          * the physical side if the virtual interrupt is not active.
254          * This may lead to taking an additional interrupt on the
255          * host, but that should not be a problem as the worst that
256          * can happen is an additional vgic injection.  We also clear
257          * the pending state to maintain proper semantics for edge HW
258          * interrupts.
259          */
260         vgic_irq_set_phys_pending(irq, false);
261         if (!irq->active)
262                 vgic_irq_set_phys_active(irq, false);
263 }
264
265 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
266                               gpa_t addr, unsigned int len,
267                               unsigned long val)
268 {
269         bool is_uaccess = !vgic_get_mmio_requester_vcpu();
270         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
271         int i;
272         unsigned long flags;
273
274         for_each_set_bit(i, &val, len * 8) {
275                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
276
277                 /* GICD_ICPENDR0 SGI bits are WI */
278                 if (is_vgic_v2_sgi(vcpu, irq)) {
279                         vgic_put_irq(vcpu->kvm, irq);
280                         continue;
281                 }
282
283                 spin_lock_irqsave(&irq->irq_lock, flags);
284
285                 if (irq->hw)
286                         vgic_hw_irq_cpending(vcpu, irq, is_uaccess);
287                 else
288                         irq->pending_latch = false;
289
290                 spin_unlock_irqrestore(&irq->irq_lock, flags);
291                 vgic_put_irq(vcpu->kvm, irq);
292         }
293 }
294
295 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
296                                     gpa_t addr, unsigned int len)
297 {
298         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
299         u32 value = 0;
300         int i;
301
302         /* Loop over all IRQs affected by this read */
303         for (i = 0; i < len * 8; i++) {
304                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
305
306                 if (irq->active)
307                         value |= (1U << i);
308
309                 vgic_put_irq(vcpu->kvm, irq);
310         }
311
312         return value;
313 }
314
315 /* Must be called with irq->irq_lock held */
316 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
317                                       bool active, bool is_uaccess)
318 {
319         if (is_uaccess)
320                 return;
321
322         irq->active = active;
323         vgic_irq_set_phys_active(irq, active);
324 }
325
326 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
327                                     bool active)
328 {
329         unsigned long flags;
330         struct kvm_vcpu *requester_vcpu = vgic_get_mmio_requester_vcpu();
331
332         spin_lock_irqsave(&irq->irq_lock, flags);
333
334         if (irq->hw) {
335                 vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
336         } else {
337                 u32 model = vcpu->kvm->arch.vgic.vgic_model;
338                 u8 active_source;
339
340                 irq->active = active;
341
342                 /*
343                  * The GICv2 architecture indicates that the source CPUID for
344                  * an SGI should be provided during an EOI which implies that
345                  * the active state is stored somewhere, but at the same time
346                  * this state is not architecturally exposed anywhere and we
347                  * have no way of knowing the right source.
348                  *
349                  * This may lead to a VCPU not being able to receive
350                  * additional instances of a particular SGI after migration
351                  * for a GICv2 VM on some GIC implementations.  Oh well.
352                  */
353                 active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
354
355                 if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
356                     active && vgic_irq_is_sgi(irq->intid))
357                         irq->active_source = active_source;
358         }
359
360         if (irq->active)
361                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
362         else
363                 spin_unlock_irqrestore(&irq->irq_lock, flags);
364 }
365
366 /*
367  * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
368  * is not queued on some running VCPU's LRs, because then the change to the
369  * active state can be overwritten when the VCPU's state is synced coming back
370  * from the guest.
371  *
372  * For shared interrupts, we have to stop all the VCPUs because interrupts can
373  * be migrated while we don't hold the IRQ locks and we don't want to be
374  * chasing moving targets.
375  *
376  * For private interrupts we don't have to do anything because userspace
377  * accesses to the VGIC state already require all VCPUs to be stopped, and
378  * only the VCPU itself can modify its private interrupts active state, which
379  * guarantees that the VCPU is not running.
380  */
381 static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
382 {
383         if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
384             intid >= VGIC_NR_PRIVATE_IRQS)
385                 kvm_arm_halt_guest(vcpu->kvm);
386 }
387
388 /* See vgic_change_active_prepare */
389 static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid)
390 {
391         if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
392             intid >= VGIC_NR_PRIVATE_IRQS)
393                 kvm_arm_resume_guest(vcpu->kvm);
394 }
395
396 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
397                                       gpa_t addr, unsigned int len,
398                                       unsigned long val)
399 {
400         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
401         int i;
402
403         for_each_set_bit(i, &val, len * 8) {
404                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
405                 vgic_mmio_change_active(vcpu, irq, false);
406                 vgic_put_irq(vcpu->kvm, irq);
407         }
408 }
409
410 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
411                              gpa_t addr, unsigned int len,
412                              unsigned long val)
413 {
414         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
415
416         mutex_lock(&vcpu->kvm->lock);
417         vgic_change_active_prepare(vcpu, intid);
418
419         __vgic_mmio_write_cactive(vcpu, addr, len, val);
420
421         vgic_change_active_finish(vcpu, intid);
422         mutex_unlock(&vcpu->kvm->lock);
423 }
424
425 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
426                                      gpa_t addr, unsigned int len,
427                                      unsigned long val)
428 {
429         __vgic_mmio_write_cactive(vcpu, addr, len, val);
430         return 0;
431 }
432
433 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
434                                       gpa_t addr, unsigned int len,
435                                       unsigned long val)
436 {
437         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
438         int i;
439
440         for_each_set_bit(i, &val, len * 8) {
441                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
442                 vgic_mmio_change_active(vcpu, irq, true);
443                 vgic_put_irq(vcpu->kvm, irq);
444         }
445 }
446
447 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
448                              gpa_t addr, unsigned int len,
449                              unsigned long val)
450 {
451         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
452
453         mutex_lock(&vcpu->kvm->lock);
454         vgic_change_active_prepare(vcpu, intid);
455
456         __vgic_mmio_write_sactive(vcpu, addr, len, val);
457
458         vgic_change_active_finish(vcpu, intid);
459         mutex_unlock(&vcpu->kvm->lock);
460 }
461
462 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
463                                      gpa_t addr, unsigned int len,
464                                      unsigned long val)
465 {
466         __vgic_mmio_write_sactive(vcpu, addr, len, val);
467         return 0;
468 }
469
470 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
471                                       gpa_t addr, unsigned int len)
472 {
473         u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
474         int i;
475         u64 val = 0;
476
477         for (i = 0; i < len; i++) {
478                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
479
480                 val |= (u64)irq->priority << (i * 8);
481
482                 vgic_put_irq(vcpu->kvm, irq);
483         }
484
485         return val;
486 }
487
488 /*
489  * We currently don't handle changing the priority of an interrupt that
490  * is already pending on a VCPU. If there is a need for this, we would
491  * need to make this VCPU exit and re-evaluate the priorities, potentially
492  * leading to this interrupt getting presented now to the guest (if it has
493  * been masked by the priority mask before).
494  */
495 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
496                               gpa_t addr, unsigned int len,
497                               unsigned long val)
498 {
499         u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
500         int i;
501         unsigned long flags;
502
503         for (i = 0; i < len; i++) {
504                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
505
506                 spin_lock_irqsave(&irq->irq_lock, flags);
507                 /* Narrow the priority range to what we actually support */
508                 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
509                 spin_unlock_irqrestore(&irq->irq_lock, flags);
510
511                 vgic_put_irq(vcpu->kvm, irq);
512         }
513 }
514
515 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
516                                     gpa_t addr, unsigned int len)
517 {
518         u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
519         u32 value = 0;
520         int i;
521
522         for (i = 0; i < len * 4; i++) {
523                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
524
525                 if (irq->config == VGIC_CONFIG_EDGE)
526                         value |= (2U << (i * 2));
527
528                 vgic_put_irq(vcpu->kvm, irq);
529         }
530
531         return value;
532 }
533
534 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
535                             gpa_t addr, unsigned int len,
536                             unsigned long val)
537 {
538         u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
539         int i;
540         unsigned long flags;
541
542         for (i = 0; i < len * 4; i++) {
543                 struct vgic_irq *irq;
544
545                 /*
546                  * The configuration cannot be changed for SGIs in general,
547                  * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
548                  * code relies on PPIs being level triggered, so we also
549                  * make them read-only here.
550                  */
551                 if (intid + i < VGIC_NR_PRIVATE_IRQS)
552                         continue;
553
554                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
555                 spin_lock_irqsave(&irq->irq_lock, flags);
556
557                 if (test_bit(i * 2 + 1, &val))
558                         irq->config = VGIC_CONFIG_EDGE;
559                 else
560                         irq->config = VGIC_CONFIG_LEVEL;
561
562                 spin_unlock_irqrestore(&irq->irq_lock, flags);
563                 vgic_put_irq(vcpu->kvm, irq);
564         }
565 }
566
567 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
568 {
569         int i;
570         u64 val = 0;
571         int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
572
573         for (i = 0; i < 32; i++) {
574                 struct vgic_irq *irq;
575
576                 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
577                         continue;
578
579                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
580                 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
581                         val |= (1U << i);
582
583                 vgic_put_irq(vcpu->kvm, irq);
584         }
585
586         return val;
587 }
588
589 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
590                                     const u64 val)
591 {
592         int i;
593         int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
594         unsigned long flags;
595
596         for (i = 0; i < 32; i++) {
597                 struct vgic_irq *irq;
598                 bool new_level;
599
600                 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
601                         continue;
602
603                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
604
605                 /*
606                  * Line level is set irrespective of irq type
607                  * (level or edge) to avoid dependency that VM should
608                  * restore irq config before line level.
609                  */
610                 new_level = !!(val & (1U << i));
611                 spin_lock_irqsave(&irq->irq_lock, flags);
612                 irq->line_level = new_level;
613                 if (new_level)
614                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
615                 else
616                         spin_unlock_irqrestore(&irq->irq_lock, flags);
617
618                 vgic_put_irq(vcpu->kvm, irq);
619         }
620 }
621
622 static int match_region(const void *key, const void *elt)
623 {
624         const unsigned int offset = (unsigned long)key;
625         const struct vgic_register_region *region = elt;
626
627         if (offset < region->reg_offset)
628                 return -1;
629
630         if (offset >= region->reg_offset + region->len)
631                 return 1;
632
633         return 0;
634 }
635
636 const struct vgic_register_region *
637 vgic_find_mmio_region(const struct vgic_register_region *regions,
638                       int nr_regions, unsigned int offset)
639 {
640         return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
641                        sizeof(regions[0]), match_region);
642 }
643
644 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
645 {
646         if (kvm_vgic_global_state.type == VGIC_V2)
647                 vgic_v2_set_vmcr(vcpu, vmcr);
648         else
649                 vgic_v3_set_vmcr(vcpu, vmcr);
650 }
651
652 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
653 {
654         if (kvm_vgic_global_state.type == VGIC_V2)
655                 vgic_v2_get_vmcr(vcpu, vmcr);
656         else
657                 vgic_v3_get_vmcr(vcpu, vmcr);
658 }
659
660 /*
661  * kvm_mmio_read_buf() returns a value in a format where it can be converted
662  * to a byte array and be directly observed as the guest wanted it to appear
663  * in memory if it had done the store itself, which is LE for the GIC, as the
664  * guest knows the GIC is always LE.
665  *
666  * We convert this value to the CPUs native format to deal with it as a data
667  * value.
668  */
669 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
670 {
671         unsigned long data = kvm_mmio_read_buf(val, len);
672
673         switch (len) {
674         case 1:
675                 return data;
676         case 2:
677                 return le16_to_cpu(data);
678         case 4:
679                 return le32_to_cpu(data);
680         default:
681                 return le64_to_cpu(data);
682         }
683 }
684
685 /*
686  * kvm_mmio_write_buf() expects a value in a format such that if converted to
687  * a byte array it is observed as the guest would see it if it could perform
688  * the load directly.  Since the GIC is LE, and the guest knows this, the
689  * guest expects a value in little endian format.
690  *
691  * We convert the data value from the CPUs native format to LE so that the
692  * value is returned in the proper format.
693  */
694 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
695                                 unsigned long data)
696 {
697         switch (len) {
698         case 1:
699                 break;
700         case 2:
701                 data = cpu_to_le16(data);
702                 break;
703         case 4:
704                 data = cpu_to_le32(data);
705                 break;
706         default:
707                 data = cpu_to_le64(data);
708         }
709
710         kvm_mmio_write_buf(buf, len, data);
711 }
712
713 static
714 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
715 {
716         return container_of(dev, struct vgic_io_device, dev);
717 }
718
719 static bool check_region(const struct kvm *kvm,
720                          const struct vgic_register_region *region,
721                          gpa_t addr, int len)
722 {
723         int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
724
725         switch (len) {
726         case sizeof(u8):
727                 flags = VGIC_ACCESS_8bit;
728                 break;
729         case sizeof(u32):
730                 flags = VGIC_ACCESS_32bit;
731                 break;
732         case sizeof(u64):
733                 flags = VGIC_ACCESS_64bit;
734                 break;
735         default:
736                 return false;
737         }
738
739         if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
740                 if (!region->bits_per_irq)
741                         return true;
742
743                 /* Do we access a non-allocated IRQ? */
744                 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
745         }
746
747         return false;
748 }
749
750 const struct vgic_register_region *
751 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
752                      gpa_t addr, int len)
753 {
754         const struct vgic_register_region *region;
755
756         region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
757                                        addr - iodev->base_addr);
758         if (!region || !check_region(vcpu->kvm, region, addr, len))
759                 return NULL;
760
761         return region;
762 }
763
764 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
765                              gpa_t addr, u32 *val)
766 {
767         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
768         const struct vgic_register_region *region;
769         struct kvm_vcpu *r_vcpu;
770
771         region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
772         if (!region) {
773                 *val = 0;
774                 return 0;
775         }
776
777         r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
778         if (region->uaccess_read)
779                 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
780         else
781                 *val = region->read(r_vcpu, addr, sizeof(u32));
782
783         return 0;
784 }
785
786 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
787                               gpa_t addr, const u32 *val)
788 {
789         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
790         const struct vgic_register_region *region;
791         struct kvm_vcpu *r_vcpu;
792
793         region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
794         if (!region)
795                 return 0;
796
797         r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
798         if (region->uaccess_write)
799                 return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
800
801         region->write(r_vcpu, addr, sizeof(u32), *val);
802         return 0;
803 }
804
805 /*
806  * Userland access to VGIC registers.
807  */
808 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
809                  bool is_write, int offset, u32 *val)
810 {
811         if (is_write)
812                 return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
813         else
814                 return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
815 }
816
817 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
818                               gpa_t addr, int len, void *val)
819 {
820         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
821         const struct vgic_register_region *region;
822         unsigned long data = 0;
823
824         region = vgic_get_mmio_region(vcpu, iodev, addr, len);
825         if (!region) {
826                 memset(val, 0, len);
827                 return 0;
828         }
829
830         switch (iodev->iodev_type) {
831         case IODEV_CPUIF:
832                 data = region->read(vcpu, addr, len);
833                 break;
834         case IODEV_DIST:
835                 data = region->read(vcpu, addr, len);
836                 break;
837         case IODEV_REDIST:
838                 data = region->read(iodev->redist_vcpu, addr, len);
839                 break;
840         case IODEV_ITS:
841                 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
842                 break;
843         }
844
845         vgic_data_host_to_mmio_bus(val, len, data);
846         return 0;
847 }
848
849 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
850                                gpa_t addr, int len, const void *val)
851 {
852         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
853         const struct vgic_register_region *region;
854         unsigned long data = vgic_data_mmio_bus_to_host(val, len);
855
856         region = vgic_get_mmio_region(vcpu, iodev, addr, len);
857         if (!region)
858                 return 0;
859
860         switch (iodev->iodev_type) {
861         case IODEV_CPUIF:
862                 region->write(vcpu, addr, len, data);
863                 break;
864         case IODEV_DIST:
865                 region->write(vcpu, addr, len, data);
866                 break;
867         case IODEV_REDIST:
868                 region->write(iodev->redist_vcpu, addr, len, data);
869                 break;
870         case IODEV_ITS:
871                 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
872                 break;
873         }
874
875         return 0;
876 }
877
878 struct kvm_io_device_ops kvm_io_gic_ops = {
879         .read = dispatch_mmio_read,
880         .write = dispatch_mmio_write,
881 };
882
883 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
884                              enum vgic_type type)
885 {
886         struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
887         int ret = 0;
888         unsigned int len;
889
890         switch (type) {
891         case VGIC_V2:
892                 len = vgic_v2_init_dist_iodev(io_device);
893                 break;
894         case VGIC_V3:
895                 len = vgic_v3_init_dist_iodev(io_device);
896                 break;
897         default:
898                 BUG_ON(1);
899         }
900
901         io_device->base_addr = dist_base_address;
902         io_device->iodev_type = IODEV_DIST;
903         io_device->redist_vcpu = NULL;
904
905         mutex_lock(&kvm->slots_lock);
906         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
907                                       len, &io_device->dev);
908         mutex_unlock(&kvm->slots_lock);
909
910         return ret;
911 }